## 2023 Vol. 47, No. 6

Display Method: |

2023, 47(6): 063101. doi: 10.1088/1674-1137/acc642

**Abstract:**

We derive a parameterization formula for the partial wave analyses of charmed meson semi-leptonic decays while considering the effects of lepton mass. Because the proposed super-tau-charm factory will reach a significantly enhanced luminosity and BESIII is collecting new

2023, 47(6): 063102. doi: 10.1088/1674-1137/acc648

**Abstract:**

We adopt the quark pair creation model to investigate the light meson emissions of several charmonium-like states. The quark pair creation model is applied to four-body systems, and we calculate the pion/kaon emissions of

2023, 47(6): 063103. doi: 10.1088/1674-1137/acc8bf

**Abstract:**

We explain the

*W*-boson mass anomaly by introducing an

*W*-boson mass arises at the one-loop level, which can be expressed in terms of the electroweak (EW) oblique parameters

*T*and

*S*at leading order. We first rederive the general formulae of

*T*and

*S*induced by a scalar multiplet of EW charges, confirming the results in literature. We then study several specific examples of great phenomenological interest by applying these general expressions. As a result, it is found that the model with a scalar multiplet in an

*T*and

*S*. However, the cases with scalars in a complex representation under

*T*and

*S*. We further consider the strong constraints from the perturbativity and EW global fit of the precision data and vary the isospin representation and hypercharge of the additional scalar multiplet to assess the extent of the model to solve the

*W*-boson mass anomaly. It turns out that these constraints play important roles in setting limits on the model parameter space. We also briefly describe the collider signatures of the extra scalar multiplet, especially when it contains long-lived, heavy, highly charged states.

2023, 47(6): 063104. doi: 10.1088/1674-1137/acc9a2

**Abstract:**

In our previous studies, we analyzed the two-body strong decays of the low-lying Ω baryon states within a chiral quark model. The results showed that the mass, total width, and two body decay

2023, 47(6): 063105. doi: 10.1088/1674-1137/acc792

**Abstract:**

In this work, we study the doubly charmed dibaryon states with the

2023, 47(6): 063106. doi: 10.1088/1674-1137/acc92d

**Abstract:**

The simplest version of the dynamical holographic QCD model is described by adding the KKSS model action on a dilaton-graviton coupled background, in which the AdS

2023, 47(6): 063107. doi: 10.1088/1674-1137/accb87

**Abstract:**

In the framework of the improved chromomagnetic interaction model, we complete a systematic study of the

*S*-wave tetraquark states

2023, 47(6): 063108. doi: 10.1088/1674-1137/accc1c

**Abstract:**

Glueballs are investigated through gluonic operators on two

2023, 47(6): 064101. doi: 10.1088/1674-1137/acc23b

**Abstract:**

To obtain a reasonable description of the hadron production at the LHC energies, the impact parameter dependent saturation model is modified by inclusion of an anomalous dimension

*γ*, which controls the slope of the scattering amplitude in the transition from the dilute region to the saturation region. We calculate the transverse momentum distribution and nuclear modification factor of the

2023, 47(6): 064102. doi: 10.1088/1674-1137/acc1cc

**Abstract:**

In this study, we investigate the robustness of pair structures for nuclear yrast states, that is, whether the structures of relevant collective pairs as building blocks of different yrast states are the same. We focus on deformed and transitional nuclei and study the yrast states of

*S*pair, which is essential to build the monopole pairing correlation, remains approximately unchanged, whereas the structures of the non-

*S*pairs, which are essential to build the quadrupole correlation, change significantly.

2023, 47(6): 064103. doi: 10.1088/1674-1137/acc641

**Abstract:**

The quark anomalous magnetic moment (AMM) is dynamically generated through spontaneous chiral symmetry breaking. It has been revealed that, even though its exact form is still unknown, the quark AMM is essential to exploring quark matter properties and QCD phase structure under external magnetic fields. In this study, we take three different forms of the quark AMM and investigate its influence on the chiral phase transition under a magnetic field. In general, a negative (positive) quark AMM acts as a magnetic-catalyzer (magnetic-inhibitor) for chiral symmetry breaking. It is found that a constant quark AMM drives an unexpected 1st order chiral phase transition, a quark AMM proportional to the chiral condensate flips the sign on the chiral condensate, and a quark AMM proportional to the square of the chiral condensate suppresses the magnetic enhancement in the chiral condensate at finite temperatures while retaining the chiral crossover phase transition. We also evaluate the intrinsic temperature dependence of the effective AMM form by fitting the effective model result of the chiral condensate to lattice QCD data, which may have a nontrivial correlation with the chiral phase transition.

2023, 47(6): 064104. doi: 10.1088/1674-1137/accb88

**Abstract:**

In order to investigate the elastic scattering, we fit scattering observables of the weighted fits (WF16) with the relativistic Love-Franey (RLF) model. The masses, cutoff parameters, and initial coupling strengths of RLF are assumed to be independent of energy. Because the energy boundary between low energy and high energy is around 200 MeV, the masses, cutoff parameters, and initial coupling strengths of RLF are obtained by fitting scattering observables of WF16 at an incident energy of 200 MeV. With the masses, cutoff parameters, and initial coupling strengths as the input, the energy-dependent RLF model is constructed over the laboratory energy range of 20 to 800 MeV within a unified fit. To examine the validity of this fit, we investigate

*p*+

*pp*and

*pn*of 200 MeV best fit the values of WF16, the RLF model of 200 MeV without the Pauli blocking (PB) corrections fails to describe the experimental differential cross sections, analyzing powers, and spinrotation functions. When the PB corrections are taken into account for various energies, the RLF model can well describe the experimental data of

*p*+

2023, 47(6): 064105. doi: 10.1088/1674-1137/acc5dd

**Abstract:**

In this study, we investigate the patterns exhibited by integrated neutron-proton interactions (denoted as

*i.e*.,

2023, 47(6): 064106. doi: 10.1088/1674-1137/acc4ac

**Abstract:**

We calculate the three-dimensional potential energy surface (PES) for the fission of the compound nucleus

2023, 47(6): 064107. doi: 10.1088/1674-1137/accc78

**Abstract:**

In this study, derived from Balasubramaniam's formula [Phys. Rev. C

**70**, 017301 (2004)] and further considering the effect of the parent nucleus mass, blocking effect, and effect of reduced mass on cluster radioactivity half-lives, we propose a new Geiger-Nuttall law that is model-independent to systematically evaluate the half-lives of this process for 16 even-even nuclei and 10 odd-

*A*nuclei. For comparison, a single universal curve for cluster radioactivity and

*α*decay proposed by Poenaru [Phys. Rev. C

**83**, 014601 (2011)], a scaling law proposed by Horoi [J. Phys. G: Nucl. Part. Phys.

**30**, 945 (2004)], an extension of the Viola-Seaborg formula from

*α*decay to cluster radioactivity proposed by Ren

*et al.*[Phys. Rev. C

**70**, 034304 (2004)], a new semi-empirical formula for exotic cluster decay proposed by Balasubramaniam

*et al.*[Phys. Rev. C

**70**, 017301 (2004)], and a unified formula for the half-lives of

*α*decay and cluster radioactivity proposed by Ni

*et al.*[Phys. Rev. C

**78**, 044310 (2008)] are also used. The calculated results of our new Geiger-Nuttall law are in good agreement with the experimental half-lives, with the least rms being 0.606, and are better than the compared values. Moreover, we extend this formula to predict the cluster radioactivity half-lives of 51 nuclei whose decay energies are energetically allowed or observed but not yet quantified in NUBASE2020.

2023, 47(6): 065101. doi: 10.1088/1674-1137/acc571

**Abstract:**

Recently, from 12

*γ*-ray Galactic sources, the LHAASO has detected ultrahigh-energy photons up to 1.4 PeV. The

*γ*-ray spectra of the sources J2226+6057, J1908+0621, and J1825-1326 and the suggested origin pulsars near the sources have been published. In our previous work, we studied the hadronic

*γ*-ray spectra of the sources J2226+6057, J1908+0621, and J1825-1326 in terms of the Hertzian dipole model of pulsars. In this paper, we investigate the possibility of the leptonic origin of the

*γ*-ray. We use the Hertzian dipole model to describe the pulsars around the sources. The electrons around the pulsars can be accelerated to PeV by the electromagnetic fields of pulsars. Under the assumption that the initial electrons are uniformly distributed in a spherical shell between

*γ*-ray spectra can be calculated through inverse Compton scattering processes. The leptonic

*γ*-ray can roughly conform to the observation of LHAASO.

2023, 47(6): 065102. doi: 10.1088/1674-1137/acc570

**Abstract:**

In this paper, the phase structure of the Hayward-anti-de Sitter (AdS) black hole (BH) is studied using shadow formalism. It has been found that the shadow radius is a monotonic function of the horizon radius and can therefore play an equivalent role to the horizon radius in characterizing the thermodynamics of the Hayward-AdS BH. The thermodynamic phase transition (PT) of the Hayward-AdS BH is investigated with the shadow radius. It is shown that as the magnetic charge increases, the shadow radius becomes larger, while the coexistence temperature becomes lower. The thermal profile of the Hayward-AdS BH is established by combining the temperature diagram and the shadow cast diagram, which shows that for a fixed magnetic charge, the temperature of the Hayward-AdS BH increases with the pressure whereas the region of the thermal profile decreases with the pressure. In particular, the temperature of the Hayward-AdS BH follows an

*N*-type change trend when it is smaller than the critical temperature. It implies that the BH shadow may be used to investigate the thermodynamics of the Hayward-AdS BH.

2023, 47(6): 065103. doi: 10.1088/1674-1137/acc56f

**Abstract:**

This paper deals with the thermodynamical properties of the black hole formulated in Einstein's theory of relativity associated with a nonlinear electromagnetic field. The transition of the black hole is analyzed using the mass, electric charge, coupling constant, and cosmological constant. We examine the thermodynamical aspects of exact black hole solutions to compute the black hole mass, temperature, entropy, Gibbs free energy, specific heat, and critical exponents in the phase space. Further, we study the stability of the black hole solution using the specific heat and Gibbs free energy. We examine the first and second phase changes and show a

*P*-

*V*criticality, which is similar to the van der Waals phase change. We also examine the equation of the state and the critical exponents.

2023, 47(6): 065104. doi: 10.1088/1674-1137/acc8be

**Abstract:**

Gravitational waves (GWs) from compact binary coalescences can be used as standard sirens to explore the cosmic expansion history. In the next decades, it is anticipated that we could obtain the multi-band GW standard siren data (from nanohertz to a few hundred hertz), which are expected to play an important role in cosmological parameter estimation. In this work, we provide, for the first time to the best of our knowledge, joint constraints on cosmological parameters using the future multi-band GW standard siren observations. We simulate the multi-band GW standard sirens based on the SKA-era pulsar timing array (PTA), Taiji observatory, and Cosmic Explorer (CE) to perform cosmological analysis. In the ΛCDM model, we find that the joint PTA+Taiji+CE data could provide a tight constraint on the Hubble constant with a

*w*CDM model and

2023, 47(6): 065105. doi: 10.1088/1674-1137/accad5

**Abstract:**

The image of a black hole (BH) consists of direct and secondary images that depend on the observer position. We investigate the optical appearance of a Schwarzschild BH in the context of a string cloud to reveal how the BH's observable characteristics are influenced by the inclination angle, string cloud parameter, and impact parameter. Following Luminet's work [Astron. Astrophys. 75, 228 (1979)], we adopt a semi-analytic method to calculate the total bending angle of the light ray and derive the direct and secondary images of the Schwarzschild string cloud BH. Our results show that an increase in the inclination angle leads to a more pronounced separation of the images. We consider the gravitational redshift and present the redshift distribution of the direct image while illustrating the flux distribution. We observe that the direct image exhibits blueshift and redshift simultaneously, and the asymmetry of the flux distribution increases with the inclination angle. Finally, we obtain the Schwarzschild string cloud BH image via a numerical simulation, which provides an approximate illustration of the EHT resolution.

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- Chinese Physics C Outstanding Reviewer Award 2023
- Impact factor of Chinese Physics C is 3.6 in 2022
- 2022 CPC Outstanding Reviewer Awards
- The 2023 Chinese New Year-Office closure
- ãChinese Physics CãBEST PAPER AWARDS 2022

Meet Editor