## 2020 Vol. 44, No. 6

Display Method: |

2020, 44(6): 061001. doi: 10.1088/1674-1137/44/6/061001

**Abstract:**

In the semi-constrained next-to minimal supersymmetric standard model (scNMSSM, or NMSSM with non-universal Higgs mass) under current constraints, we consider a scenario where

2020, 44(6): 063101. doi: 10.1088/1674-1137/44/6/063101

**Abstract:**

Using all experimentally measured charmless

*SU*(3) breaking effects of the topological diagram amplitudes of the decay modes by including the form factors and decay constants. The fit result for the CKM angle

2020, 44(6): 063102. doi: 10.1088/1674-1137/44/6/063102

**Abstract:**

Using the latest PandaX limits on the light dark matter (DM) with a light mediator, we check their implication on the parameter space of the general singlet extension of MSSM (without

*Z*

_{3}symmetry), which can have a sufficient DM self-interaction to solve the small-scale structure problem. We find that the PandaX limits can tightly constrain the parameter space, depending on the coupling

*λ*between the singlet and doublet Higgs fields. For the singlet extension of MSSM with

*Z*

_{3}symmetry, the so-called NMSSM, we also demonstrate the PandaX constraints on its parameter space, which gives a light DM with the correct relic density but without sufficient self-interaction to solve the small-scale structure problem. We find that in NMSSM, the GeV dark matter with a sub-GeV mediator is tightly constrained.

2020, 44(6): 063103. doi: 10.1088/1674-1137/44/6/063103

**Abstract:**

In a previous paper by several of the authors a number of predictions were made in a study pertaining to the anomalous production of multiple leptons at the Large Hadron Collider (LHC). Discrepancies in multi-lepton final states have become statistically compelling with the available Run 2 data. These could be connected with a heavy boson,

*H*, which predominantly decays into a standard model Higgs boson,

*h*, and a singlet scalar,

*S*, where

2020, 44(6): 063104. doi: 10.1088/1674-1137/44/6/063104

**Abstract:**

We revisit the heavy quarkonium leptonic decays

2020, 44(6): 063105. doi: 10.1088/1674-1137/44/6/063105

**Abstract:**

We construct the axialvector and tensor current operators to systematically investigate the ground and first radially excited tetraquark states with quantum numbers

2020, 44(6): 063106. doi: 10.1088/1674-1137/44/6/063106

**Abstract:**

The

2020, 44(6): 064101. doi: 10.1088/1674-1137/44/6/064101

**Abstract:**

Using the vector exchange interaction in the local hidden gauge approach, which in the light quark sector generates the chiral Lagrangians and has produced realistic results for

2020, 44(6): 064102. doi: 10.1088/1674-1137/44/6/064102

**Abstract:**

The exact solution of the

*U*(5)-

*O*(6) transitional description in the interacting boson model with two-particle and two-hole configuration mixing is derived based on the Bethe ansatz approach. The Bethe ansatz equations are provided to determine the model's eigenstates and corresponding eigen-energies.

*N*= 2 and

*N*= 4 cases are considered as examples to demonstrate the solution features. As an example of the application, some low-lying level energies and

*B*(

*E*2) ratios of

^{108}Cd are fitted and compared with the corresponding experimental data.

2020, 44(6): 064103. doi: 10.1088/1674-1137/44/6/064103

**Abstract:**

The constraints on tidal deformability

2020, 44(6): 064104. doi: 10.1088/1674-1137/44/6/064104

**Abstract:**

Because of the presence of modified warp factors in metric tensors, we use deformed

*AdS*

_{5}spaces to apply the AdS/CFT correspondence to calculate the spectra for even and odd glueballs, scalar and vector mesons, and baryons with different spins. For the glueball cases, we derive their Regge trajectories and compare them with those related to the pomeron and the odderon. For the scalar and vector mesons, as well as baryons, the determined masses are compatible with the PDG. In particular, for these hadrons we found Regge trajectories compatible with another holographic approach as well as with the hadronic spectroscopy, which present an universal Regge slope of approximately 1.1 GeV

^{2}.

2020, 44(6): 065001. doi: 10.1088/1674-1137/44/6/065001

**Abstract:**

The Water Cherenkov Detector Array (WCDA) is a major component of the Large High Altitude Air Shower Array Observatory (LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV

2020, 44(6): 065002. doi: 10.1088/1674-1137/44/6/065002

**Abstract:**

The precise measurement of cosmic-ray (CR) knees of different primaries is essential to reveal CR acceleration and propagation mechanisms, as well as to explore new physics. However, the classification of CR components is a difficult task, especially for groups with similar atomic numbers. Given that deep learning achieved remarkable breakthroughs in numerous fields, we seek to leverage this technology to improve the classification performance of the CR Proton and Light groups in the LHAASO-KM2A experiment. In this study, we propose a fused graph neural network model for KM2A arrays, where the activated detectors are structured into graphs. We find that the signal and background are effectively discriminated in this model, and its performance outperforms both the traditional physics-based method and the convolutional neural network (CNN)-based model across the entire energy range.

2020, 44(6): 065101. doi: 10.1088/1674-1137/44/6/065101

**Abstract:**

We study the spin precession frequency of a test gyroscope attached to a stationary observer in the five-dimensional rotating Kaluza-Klein black hole (RKKBH). We derive the conditions under which the test gyroscope moves along a timelike trajectory in this geometry, and the regions where the spin precession frequency diverges. The magnitude of the gyroscope precession frequency around the KK black hole diverges at two spatial locations outside the event horizon. However, in the static case, the behavior of the Lense-Thirring frequency of a gyroscope around the KK black hole is similar to the ordinary Schwarzschild black hole. Since a rotating Kaluza-Klein black hole is a generalization of the Kerr-Newman black hole, we present two mass-independent schemes to distinguish these two spacetimes.

2020, 44(6): 065102. doi: 10.1088/1674-1137/44/6/065102

**Abstract:**

Asymptotically safe gravity is an effective approach to quantum gravity. It is important to differentiate modified gravity, which is inspired by asymptotically safe gravity. In this study, we examine particle dynamics near the improved version of a Schwarzschild black hole. We assume that in the context of an asymptotically safe gravity scenario, the ambient matter surrounding the black hole is of isothermal nature, and we investigate the spherical accretion of matter by deriving solutions at critical points. The analysis of various values of the state parameter for isothermal test fluids, viz.,

*k*= 1, 1/2, 1/3, 1/4 show the possibility of accretion onto an asymptotically safe black hole. We formulate the accretion problem as Hamiltonian dynamical system and explain its phase flow in detail, which reveals interesting results in the asymptotically safe gravity theory.

2020, 44(6): 065103. doi: 10.1088/1674-1137/44/6/065103

**Abstract:**

We propose a cosmological scenario that describes the evolution of the universe based on particle creation and holographic equipartition. The model attempts to solve the inflation of the early universe and the accelerated expansion of the present universe without introducing the dark energy from the thermodynamical perspective. Throughout the evolution of the universe, we assume that the universe consistently creates particles, and that the holographic equipartition is always satisfied. Further, we set the creation rate of particles proportional to

*H*in the present and late universe, where

*H*depicts the Hubble parameter. Consequently, we obtain the solutions

2020, 44(6): 065104. doi: 10.1088/1674-1137/44/6/065104

**Abstract:**

We study the collision property of spinning particles near a Bañados-Teitelboim-Zanelli (BTZ) black hole. Our results show that although the center-of-mass energy of two ingoing particles diverges if one of the particles possesses a critical angular momentum, the particle with critical angular momentum cannot exist outside of the horizon due to violation of the timelike constraint. Further detailed investigation indicates that only a particle with a subcritical angular momentum is allowed to exist near an extremal rotating BTZ black hole, and the corresponding collision center-of-mass energy can be arbitrarily large in a critical angular momentum limit.

2020, 44(6): 065105. doi: 10.1088/1674-1137/44/6/065105

**Abstract:**

We discuss the

2020, 44(6): 065106. doi: 10.1088/1674-1137/44/6/065106

**Abstract:**

We study matter accretion onto Einstein-aether black holes by adopting the Hamiltonian approach. The general solution of accretion is discussed using the isothermal equation of state. Different types of fluids are considered, including ultra-relativistic, ultra-stiff, sub-relativistic, and radiation fluids, and the accretion process onto Einstein-aether black holes is analyzed. The behavior of the fluid flow and the existence of critical points is investigated for Einstein-aether black holes. We further discuss the general expression and behavior of polytropic fluid onto Einstein-aether black holes. The most important feature of this work is the investigation of the mass accretion rate of the above-mentioned fluids and the comparison of our findings with the Schwarzschild black hole, which generates particular signatures. Moreover, the maximum mass accretion rate occurs near the Killing and universal horizons, and the minimum accretion rate lies between them.

2020, 44(6): 069102. doi: 10.1088/1674-1137/44/6/069102

**Abstract:**

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- The 2023 Chinese New Year-Office closure
- 2022 National holiday- office closure
- The 2022 summer holiday-Office closure
- Impact factor of Chinese Physics C is 2.944 in 2021
- The 2022 Labor Day Holiday-Office closure

Meet Editor