## 2020 Vol. 44, No. 10

Display Method: |

2020, 44(10): 103001. doi: 10.1088/1674-1137/ababfa

**Abstract:**

The existence of light sterile neutrinos is a long-standing question in particle physics. Several experimental “anomalies” might be explained by introducing eV mass scaled light sterile neutrinos. Many experiments are actively searching for such light sterile neutrinos through neutrino oscillation. For long baseline experiments, the matter effect should be treated carefully for precise calculation of the neutrino oscillation probabilities. However, this is usually time-consuming or analytically complex. In this manuscript, we adopt a Jacobi-like method to diagonalize the Hermitian Hamiltonian matrix and derive analytically simplified neutrino oscillation probabilities for 3 (active) + 1 (sterile)-neutrino mixing for a constant matter density. These approximations can reach a considerably high numerical accuracy while retaining their analytical simplicity and fast computing speed. This would be useful for current and future long baseline neutrino oscillation experiments.

2020, 44(10): 103101. doi: 10.1088/1674-1137/abab90

**Abstract:**

We construct an improved soft-wall AdS/QCD model with a cubic coupling term of the dilaton and the bulk scalar field. The background fields in this model are solved by the Einstein-dilaton system with a nontrivial dilaton potential, which has been shown to reproduce the equation of state from the lattice QCD with two flavors. The chiral transition behaviors are investigated in the improved soft-wall AdS/QCD model with the solved gravitational background, and the crossover transition can be realized. Our study provides the possibility to address the deconfining and chiral phase transitions simultaneously in the bottom-up holographic framework.

2020, 44(10): 103102. doi: 10.1088/1674-1137/ababf7

**Abstract:**

In this article, we tentatively assign

2020, 44(10): 103103. doi: 10.1088/1674-1137/ababf8

**Abstract:**

This work presents the subtraction procedure and the Regge cut in the logarithmic Regge pole approach. The subtraction mechanism leads to the same asymptotic behavior as previously obtained in the non-subtraction case. The Regge cut, in contrast, introduces a clear role to the non-leading contributions for the asymptotic behavior of the total cross-section. From these results, some simple parameterization is introduced to fit the experimental data for the proton-proton and antiproton-proton total cross-section above some minimum value up to the cosmic-ray. The fit parameters obtained are used to present predictions for the

2020, 44(10): 103104. doi: 10.1088/1674-1137/abac00

**Abstract:**

In this work, we study the localized

*CP*violations and branching fractions of the

2020, 44(10): 104001. doi: 10.1088/1674-1137/ab97a9

**Abstract:**

High transverse momentum (

2020, 44(10): 104002. doi: 10.1088/1674-1137/abab8b

**Abstract:**

The ratio of

*p*-wave neutron radiative capture in

*p*-1

*h*doorway excitation leads to suppression of the

*p*-1

*h*configuration, which features the neutron capture mechanism in the vicinity of

*A*= 55.

2020, 44(10): 104003. doi: 10.1088/1674-1137/abab8d

**Abstract:**

To obtain the neutron spectroscopic amplitudes for

*A*= 90, 91, 92, 94, 96) were measured using the high-precision Q3D magnetic spectrometer in the Tandem accelerator. The São Paulo potential was used for the optical potential. The optical model and coupled channel calculations were compared with the experimental data. The theoretical results were found to be very close to the experimental data. In addition, the possible effects of the couplings to the inelastic channels of the

2020, 44(10): 104101. doi: 10.1088/1674-1137/aba5f8

**Abstract:**

We study the

^{12}C and

^{208}Pb target nuclei in the near-threshold center-of-mass beam energy region of 9.0-11.4 GeV by considering the respective incoherent direct (

2020, 44(10): 104102. doi: 10.1088/1674-1137/abab00

**Abstract:**

The

*Z*nuclei with

*Z*= 120, 122, 124, 126 are predicted. We employ the generalized liquid drop model (GLDM), Royer's formula, and universal decay law (UDL) to calculate the

*Z*= 120,

*N*= 184, and the peak vanishes when

*Z*= 122, 124, 126. Based on detailed analysis of the competition between

*N*= 184 undergo

2020, 44(10): 104103. doi: 10.1088/1674-1137/abab89

**Abstract:**

The angular distributions of elastic scattering of

^{14}N ions on

^{10}B targets have been measured at incident beam energies of 21.0 and 24.5 MeV. Angular distributions at higher energies 38–94.0 MeV (previously measured) were also included in the analysis. All data were analyzed within the framework of the optical model and the distorted waves Born approximation method. The observed rise in cross sections at large angles was interpreted as a possible contribution of the α-cluster exchange mechanism. Spectroscopic amplitudes

*SA*

_{2}and

*SA*

_{4}for the configuration

^{14}N→

^{10}B +

*α*were extracted. Their average values are 0.58±0.10 and 0.81±0.12 for

*SA*

_{2}and

*SA*

_{4}, respectively, suggesting that the exchange mechanism is a major component of the elastic scattering for this system. The energy dependence of the depths for the real and imaginary potentials was found.

2020, 44(10): 104104. doi: 10.1088/1674-1137/abab8c

**Abstract:**

We use an existing model of the

*H*-dibaryon channel,

*H*-dibaryon channel is not considered, the

*S*wave resonance disappears. Thus, the possible existence of a

2020, 44(10): 104105. doi: 10.1088/1674-1137/abab8f

**Abstract:**

In this study, the production of inclusive

*b*-jet and

*b*-jet and

*b*-jet

2020, 44(10): 104106. doi: 10.1088/1674-1137/ababf9

**Abstract:**

We studied the

2020, 44(10): 105101. doi: 10.1088/1674-1137/aba58d

**Abstract:**

Within the context of the Fermi-bounce curvaton mechanism, we analyze the one-loop radiative corrections to the four-fermion interaction, generated by the non-dynamical torsion field in the Einstein-Cartan-Holst-Sciama-Kibble theory. We show that contributions that arise from the one-loop radiative corrections modify the energy-momentum tensor,

*mimicking*an effective Ekpyrotic fluid contribution. Therefore, we call this effect

*quantum Ekpyrotic*mechanism. This leads to the dynamical washing out of anisotropic contributions to the energy-momentum tensor, without introducing any new extra Ekpyrotic fluid. We discuss the stability of the bouncing mechanism and derive the renormalization group flow of the dimensional coupling constant

*ξ*, checking whether any change of its sign takes place towards the bounce. This enforces the theoretical motivations in favor of the torsion curvaton bounce cosmology as an alternative candidate to the inflation paradigm.

2020, 44(10): 105102. doi: 10.1088/1674-1137/aba5f7

**Abstract:**

The present article reports the study of local anisotropic effects on Durgapal's fourth model in the context of gravitational decoupling via the minimal geometric deformation approach. To achieve this, the most general equation of state relating the components of the

2020, 44(10): 105103. doi: 10.1088/1674-1137/aba5f9

**Abstract:**

A scalar field with a pole in its kinetic term is often used to study cosmological inflation; it can also play the role of dark energy, which is called the pole dark energy model. We propose a generalized model where the scalar field may have two or even multiple poles in the kinetic term, and we call it the multi-pole dark energy. We find that the poles can place some restrictions on the values of the original scalar field with a non-canonical kinetic term. After the transformation to the canonical form, we get a flat potential for the transformed scalar field even if the original field has a steep one. The late-time evolution of the universe is obtained explicitly for the two pole model, while dynamical analysis is performed for the multiple pole model. We find that it does have a stable attractor solution, which corresponds to the universe dominated by the potential of the scalar field.

2020, 44(10): 105104. doi: 10.1088/1674-1137/abab86

**Abstract:**

We investigate observational constraints on the running vacuum model (RVM) of

2020, 44(10): 105105. doi: 10.1088/1674-1137/abab87

**Abstract:**

We study the effect of chemical potential and nonconformality on the jet quenching parameter in a holographic QCD model with conformal invariance broken by background dilaton. The presence of chemical potential and nonconformality both increase the jet quenching parameter, thus enhancing the energy loss, consistently with the findings of the drag force.

2020, 44(10): 105106. doi: 10.1088/1674-1137/abab88

**Abstract:**

Solving field equations exactly in

2020, 44(10): 105107. doi: 10.1088/1674-1137/abab8a

**Abstract:**

In this study, we apply two methods to consider the variation of massive black holes in both normal and extended thermodynamic phase spaces. The first method considers a charged particle being absorbed by the black hole, whereas the second considers a shell of dust falling into it. With the former method, the first and second laws of thermodynamics are always satisfied in the normal phase space; however, in the extended phase space, the first law is satisfied but the validity of the second law of thermodynamics depends upon the model parameters. With the latter method, both laws are valid. We argue that the former method's violation of the second law of thermodynamics may be attributable to the assumption that the change of internal energy of the black hole is equal to the energy of the particle. Finally, we demonstrate that the event horizon always ensures the validity of weak cosmic censorship in both phase spaces; this means that the violation of the second law of thermodynamics, arising under the aforementioned assumption, does not affect the weak cosmic censorship conjecture. This further supports our argument that the assumption in the first method is responsible for the violation and requires deeper treatment.

2020, 44(10): 105108. doi: 10.1088/1674-1137/abab8e

**Abstract:**

The effective vacuum energy density contributed by the non-trivial contortion distribution and the bare vacuum energy density can be viewed as the energy density of the auxiliary quintessence field potential. We find that the negative bare vacuum energy density from string landscape leads to a monotonically decreasing quintessence potential while the positive one from swampland leads to the metastable or stable de Sitter-like potential. Moreover, the non-trivial Brans-Dicke like coupling between the quintessence field and gravitation field is necessary in the latter case.

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- Notification of CPC website outage
- The 2021 summer holiday-Office closure
- The Most Influential Paper Award of Chinese Physics Society in 2021
- The 2021 Chinese New Year-Office closure
- 2020 CPC Top Reviewer Awards

Meet Editor