In-medium NNN∆ cross sections from constrained relativistic mean field models

Figures(5) / Tables(2)

Get Citation
Ying Cui, Enpei Liang, Xinyu Wang, Yuan Tian, Zhuxia Li and Yingxun Zhang. In-medium NNN∆ cross sections from constrained relativistic mean field models[J]. Chinese Physics C. doi: 10.1088/1674-1137/ae3072
Ying Cui, Enpei Liang, Xinyu Wang, Yuan Tian, Zhuxia Li and Yingxun Zhang. In-medium NNN∆ cross sections from constrained relativistic mean field models[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ae3072 shu
Milestone
Received: 2025-09-04
Article Metric

Article Views(26)
PDF Downloads(0)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

In-medium NNN∆ cross sections from constrained relativistic mean field models

    Corresponding author: Ying Cui, cuiying@ciae.ac.cn
    Corresponding author: Yingxun Zhang, zhyx@ciae.ac.cn
  • 1. China Institute of Atomic Energy, Beijing 102413, China
  • 2. Guangxi Normal University, Guilin 541004, P.R.China

Abstract: The theoretical prediction on the the in-medium $NN\rightarrow N\Delta$ cross sections based on a one boson exchange model involves significant parameter uncertainties. In this work, we reduce these uncertainties by employing relativistic mean field (RMF) models constrained by neutron star observations. Specifically, the range of the correction factors $R=\sigma^*_{NN\rightarrow N\Delta}/\sigma^{free}_{NN\rightarrow N\Delta}$ is significantly narrowed at nuclear densities above saturation.

    HTML

  • The medium $ NN $ cross sections in transport mode simulations play a crucial role in intermediate-energy heavy ion collisions (HIC), as they significantly influence the predictions of reaction dynamics, collective flow, stopping power, and particle productions [19]. In the transport model simulations, the in-medium $ NN\to N\Delta $ cross sections are a critical component of the $ \pi-N-\Delta $ loops, which can effect the pion multiplicity data. The $ \pi^-/\pi^+ $ ratio serves as a sensitive observable for probing the symmetry energy at suprasaturation density. For reproducing the pion multiplicity data, the in-medium $ NN\rightarrow N\Delta $ cross section ($ \sigma^*_{NN\rightarrow N\Delta} $) is one of the important ingredients because it will directly influence the first ∆ production which can decay into nucleon and pion or rescatter with nucleons.

    Many transport codes adopted the free space $ NN\rightarrow N\Delta $ cross section, i.e., the $ \sigma_{NN\rightarrow N\Delta}^{\text{free}} $ taken from Ref. [10], or phenomenological in-medium cross section, i.e., $ \sigma_{NN\rightarrow N\Delta}^{*}=R \sigma_{NN\rightarrow N\Delta}^{\text{free}} $, in the collision integral of transport models [11]. Recent transport model comparison studies by the transport model evaluation project (TMEP) collaboration highlight the large model dependence in pion yields and the need for improved in-medium inputs [1218]. The isospin independent microscopic approaches have been employed to investigate the in-medium $ NN\rightarrow N\Delta $ cross sections in symmetric nuclear matter [1925], where the medium correction factor R is the same for for all channels of the $ NN\rightarrow N\Delta $ process. For the isospin asymmetric nuclear matter, Li el at. studied the in-medium $ NN\to N\Delta $ cross section without considering the mass distribution of ∆ resonance and threshold effects by using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) microscopic transport theory based on the closed time-path Green's function technique in Ref. [26].

    In our previous work [27], the in-medium $ NN\rightarrow N\Delta $ cross section $ \sigma^*_{NN\rightarrow N\Delta} $ by considering the threshold effect and the mass distribution of the ∆ resonance in asymmetric nuclear matter. Further, the dependence of medium correction factor R on the relativistic mean field parameters was investigated in our previous work [28]. With 3 RMF models, i.e., NL$ \rho\delta $ [29], DDMEδ [30], DDRH$ \rho\delta $ [31], our results show that R increases with the slope parameter L when using δ parameter sets for a given isospin asymmetry. To better understand the influence of the δ meson on the in-medium $ NN\to N\Delta $ cross sections, we compared calculations of R performed with and without δ-meson parameter sets in our subsequent work [32]. The results indicate that, when using parameter sets without the δ meson, the cross-section factors satisfy $ R_{pp \to n\Delta ^{++}} < R_{nn \to p\Delta ^{-}} $ and $ R_{NN \to N\Delta ^{+}} <R_{NN \to N\Delta ^{0}} $, while the opposite trend is observed when the δ meson meson is included.

    However, with more than 300 available mean field models, there exists large uncertainty in these cross section results. Therefore, it is essential to reduce the in-medium $ NN\rightarrow N\Delta $ cross sections, especially because they are increasingly vital for improving transport models — particularly in the context of pion production and for further constraining the symmetry energy at suprasaturation densities. In this paper, we provide reductions on the range of values for the in-medium $ NN\rightarrow N\Delta $ cross sections in isospin asymmetric nuclear matter, based on a selected subset of RMF models that have been constrained by neutron star observations, as discussed in our previous work [33].

    The paper is organized as follows. First, we briefly describe the properties of nuclear matter for different RMF models. Next, we discuss the constraints on the in-medium correction factor R for $ NN\rightarrow N\Delta $ cross sections. Finally, we provide a summary of our findings.

    For the calculation of the in-medium $ NN\rightarrow N\Delta $cross section in nuclear matter, we employ a one-boson exchange model based on a relativistic Lagrangian that includes both nucleons and ∆. According to the structure of the Lagrangian, three types of RMF parameter sets are adopted to estimate the in-medium cross section, as discussed in Ref. [34]: (i) nonlinear models, (ii) density-dependent models, and (iii) point-coupling models. Detailed descriptions of these RMF models are provided in Appendix A. Subsequently, the in-medium $ NN\rightarrow N\Delta $ cross sections are calculated based on the respective RMF Lagrangians, and the detailed derivation of the cross sections can be found in Appendix B.

    We employ the same RMF Lagrangian to derive the nuclear matter properties, as detailed in Appendix A. Here, the binding energy per particle in asymmetric nuclear matter is expressed as follows:

    $ E(\rho,\alpha)=\frac{\epsilon}{\rho}-m_{N}=E_0(\rho)+S(\rho)\alpha^2+O(\alpha^4), $

    (1)

    where the $ E_0(\rho)=E(\rho,\alpha=0) $ is the binding energy in symmetric nuclear matter and $ S(\rho) $ denotes the symmetry energy. Here, $ \rho = \rho_n + \rho_p $ represents the total nuclear matter density, ϵ is the energy density, $ m_{N} $ is the nucleon mass, and $ \alpha = (\rho_n -\rho_p)/(\rho_n +\rho_p) $ is the isospin asymmetry. The nuclear symmetry energy $ S(\rho) $ is defined as

    $ S(\rho)=\frac{1}{2}\frac{\partial^{2}E(\rho,\alpha)}{\partial \alpha^{2}}\mid_{\alpha=0}. $

    (2)

    The symmetry energy is expanded in terms of $ (\rho-\rho_0)/3\rho_0 $:

    $ S(\rho)=J+\frac{L}{3\rho_0}(\rho-\rho_0)+\frac{K_{sym}}{2}\frac{(\rho-\rho_0)^2}{\rho^2_0}+\cdots . $

    (3)

    Here, $ J=S(\rho_0) $ represents the symmetry energy at saturation density $ \rho_0 $. The parameters $ L=3\rho_0\frac{\partial S}{\partial \rho}\mid_{\rho=\rho_0} $ and $ K_{sym}=9\rho^2_0\frac{\partial^2 S}{\partial \rho ^2}\mid_{\rho=\rho_0} $ denote the slope and curvature of the symmetry energy at saturation density, respectively.

    The coupling constants in RMF models are crucial for predicting the in-medium ∆ production cross section as well as for determining the equation of state (EOS) of nuclear matter. To reduce the uncertainty in the in-medium $ NN\to N\Delta $ cross sections, it is essential to select reasonable RMF models. In previous work [33], the EOS of nuclear matter was constrained using neutron star observations based on various RMF parameter sets. In this study, we calculate the in-medium $ NN\to N\Delta $ cross sections using 180 RMF interaction sets, as described in Refs. [33, 35].

    Furthermore, an important task is to further evaluate the in-medium $ NN\to N\Delta $ cross sections using the selected RMF parameter sets that have been refined based on multiple neutron star observables from Refs. [33, 36, 37]. The final constrained RMF models are: HC, FSUGZ03, IU-FSU, $ {\rm{G2}}^{*} $, BSR8, BSR9, FA3, FZ3, and DD-F. The EOS parameters (incompressibility $ K_0 $, symmetry energy J, slope of symmetry energy L, and curvature of symmetry $ K_{sym} $) used in this work from with and without NS observations are both listed in Table 1. Additionally, the properties of nuclear matter and related parameters of all RMF models used here are detailed in Table C1 of Appendix C.

    $ K_0 $(MeV) J (MeV) L(MeV) $ K_{sym} $(MeV)
    With neutron star constraint 216.87–297.75 29.70–31.62 29.08–69.86 -275.05–28.99
    Without neutron star constraint 199.92–300.67 17.37–43.54 29.08–140.37 -275.05–398.27

    Table 1.  Ranges of the EOS from the used RMF models.

    As a key step in calculating the in-medium cross sections (see Eq. 48 in Appendix B), it is first necessary to determine the Dirac effective masses of nucleons, the effective pole masses of ∆ resonances, and the channel-dependent changes in vector self-energies. These quantities must be obtained based on the RMF parameter sets that have been constrained as described earlier.

    In the Fig. 1, we plot the effective mass of the nucleon ($ m^*_{N}/m_{N} $) and effective pole masses of ∆ ($ m^*_{0,\Delta}/m_{0,\Delta} $) as function of $ \rho/\rho_0 $ in symmetric nuclear matter. Except for NL$ \rho\delta $A [29], NL$ \rho\delta $B [29], DDMEδ [30] and DDRH$ \rho\delta $ [31], all others included the constraint RMF models are without-δ models. Consequently, these models do not exhibit mass splitting between protons and neutrons (or among different ∆ isospin states). Therefore, we only show the effective masses in symmetric nuclear matter.

    Figure 1.  (Color online) The upper panels show the effective mass of the nucleon ($ m^*_{N}/m_{N} $) and effective pole masses of ∆ ($ m^*_{0,\Delta}/m_{0,\Delta} $) in symmetric nuclear matter as functions of $ \rho/\rho_0 $. The lower panels display the changes in vector self-energies $ \Delta \Sigma^{0}{pp \to n\Delta^{++}} $ and $ \Delta \Sigma^{0}{nn \to p\Delta^{-}} $ in asymmetric nuclear matter with $ \alpha = 0.2 $. The pure gray areas represent the ranges of all considered RMF models, and the hatched areas indicate the subset constrained by neutron star observations. The constrained shaded band denotes the model-ensemble envelope—range from minimal to maximal values across all RMF interactions that pass the neutron-star filters—and is not a statistical confidence interval.

    Because the most RMF models are adjusted to describe the nuclei and nuclear matter in the density region from near subsaturation density $ \rho\approx2/3\rho_0 $(which represents the average value between the central and surface densities [3843]) up to saturation density, significant uncertainties remain regarding RMF model properties—such as effective masses—at densities above $ \rho_0 $.

    From the results in Fig. 1, we can see that the uncertainty of the effective masses reduced, i.e., the range of $ \Delta m^*_{N}=\dfrac{m^*_{N, max}-m^*_{N,min}}{m_{N}}=0.196 $ (corresponding to $ m^*_{N}/m_{N}=0.551-0.747 $) at $ \rho_0 $, while $ m^*_{N}/m_{N}= 0.677- 0.709 $ (corresponding to $ \Delta m^*_{N} $=0.032) are deduced at 68% confidence level from just three types of momentum dependence of the optical potential model in Ref. [44]. Additionally, the range of $ \Delta m^*_{0,\Delta} $ are also decreased, especially at the density above saturation density.

    From our previous work [32], we observed that there remains a splitting among different channels of the in-medium $ NN\to N\Delta $ cross sections in asymmetric nuclear matter. To illustrate this effect, we present the vector self-energy changes for two representative channels in asymmetric matter at $ \alpha = 0.2 $:

    $ \Delta \Sigma^{0}_{pp\to n\Delta^{++}}=\Sigma^{0}_p+\Sigma^{0}_p-\Sigma^{0}_n-\Sigma^{0}_{\Delta^{++}}, $

    and

    $ \Delta \Sigma^{0}_{nn\to p\Delta^-}=\Sigma^{0}_n+\Sigma^{0}_n-\Sigma^{0}_p-\Sigma^{0}_{\Delta^-}. $

    These channels, $ pp \to n\Delta^{++} $ and $ nn \to p\Delta^{-} $, are highlighted because they are the main contributors to the $ NN \to N\Delta $ processes.

    The results indicate that the uncertainties in both the effective masses and the vector self-energy changes are significantly reduced when using the constrained RMF models, especially at higher densities. Consequently, the uncertainties in the in-medium $ NN\to N\Delta $ cross sections are expected to be correspondingly diminished.

    Fig. 2 displays the in-medium $pp\to n\Delta^{++}$ cross sections as a function of the total energy $\sqrt{s}$ in symmetric nuclear matter. The left panel compares the cross sections in free space and at saturation density, while the middle and right panels present the cross sections $\sigma^*_{pp\to n\Delta^{++}}$ at $\rho=2\rho_0$ and $3\rho_0$, respectively. Compared with the unconstrained results, the constrained in-medium cross sections show a notably reduced spread, particularly at densities above $\rho_0$. This reduction in uncertainty of in-medium cross section is consistent with the behaviors of the nucleon and $\Delta$ effective masses shown in Fig. 1. The in-medium $ NN \to N\Delta $ cross section depends explicitly on the effective masses ($ m^*_N $ and $ m^*_{0,\Delta} $) in symmetric nuclear matter (the channel-dependent vector self-energy changes $ \Delta \Sigma^0 $ should be also considered in asymmetric nuclear matter), which can be derived from Appendix B. Bulk “nuclear-matter properties” such as $ K_0 $, J, L and $ K_{sym} $ do not enter the cross-section formula directly, which are determined by RMF interactions. After applying neutron-star constraints, the surviving RMF sets develop similar trajectories of $ m^*(\rho) $ and $ \Delta \Sigma^0(\rho) $ at 2 to 3$ \rho_0 $, which lead to the observed narrowing of in-medium cross sections, even though the spread in incompressibility of the same sets may remain sizable (e.g. FA3 and FZ3).

    Figure 2.  (Color online) The in-medium $pp \to n\Delta^{++}$ cross section as function of $ \sqrt{s} $ in symmetric nuclear matter. The left panel shows the cross section in free space and at $\rho_0 $, while the middle and right panels present results at $ 2\rho_0 $ and $ 3\rho_0 $, respectively. The experimental data are taken from Ref. [45].

    Since there is no isospin splitting of effective masses in symmetric nuclear matter, the in-medium cross section for $ nn\rightarrow p\Delta^{-} $ is identical to that for $ pp\rightarrow n\Delta^{++} $. Cross sections for other channels can be obtained by applying the appropriate isospin Clebsch-Gordan coefficients, yielding values equal to $ \frac{1}{3}\sigma^*_{pp\rightarrow n\Delta^{++}} $. Consequently, the ratio $ R=\sigma^*_{NN\rightarrow N\Delta}/\sigma_{NN\rightarrow N\Delta} $ is the same for all channels of $ NN\rightarrow N\Delta $ in symmetric nuclear matter.

    Fig. 3 shows the medium correction factors R (top panels) and the corresponding range $\Delta R = R_{\max} - R_{\min}$ (bottom panels) as a function of $\rho/\rho_0$ for beam energies $E_{\mathrm{beam}} = 0.4, 0.8,$ and $1.2$ GeV in symmetric nuclear matter. The unconstrained $\Delta R$ increases with density, but once constraints are applied to the in-medium cross sections, the spread in R is notably reduced compared to the unconstrained results. For instance, at $E_{\mathrm{beam}} = 0.4$ GeV, $\Delta R$ decreases from $0.283$ to $0.219$ at $\rho_0$, from $0.648$ to $0.182$ at $2\rho_0$, and from $0.696$ to $0.125$ at $3\rho_0$. This reduction stems from the decreased uncertainty in effective masses (see Fig. 1).

    Figure 3.  (Color online) The upper panels are R as a function of density $\rho/\rho_0$ at beam energy $E_{beam}=0.4$, 0.8, and 1.2 GeV in symmetric nuclear matter. The lower panels display the corresponding range $\Delta R$.

    Here we take the $pp\to n\Delta^{++}$ and $nn\to p \Delta^{-}$ channels as examples to illustrate the in-medium cross sections in asymmetric nuclear matter. In Fig. 4, we plot R for $pp\to n\Delta^{++}$ (panels (a), (b), (c)) and $nn\to p \Delta^{-}$ (panels (d), (e), (f)), the constrained median values $R_{\mathrm{med}}$ (panels (g), (h), (i)), and the range $\Delta R$ (panels (j), (k), (l)) as functions of $\rho/\rho_0$ in asymmetric nuclear matter with $\alpha=0.2$ for $E_{\mathrm{beam}}=0.4$, 0.8, and 1.2 GeV.

    Figure 4.  (Color online) The in-medium correction factor R for $pp\to n\Delta^{++}$ (a, b, c panels) and $nn\to p \Delta^{-}$ (d,e,f panels), the constraint median values of correction factors $R_{med}$ (g, h, i panels), and $\Delta R$ (j, k, l panels) as function of density $\rho/\rho_0$ in asymmetric nuclear matter with $\alpha=0.2$.

    It is also evident that the constrained median values of the in-medium $NN\to N\Delta$ cross sections follow $ R_{pp\to n\Delta^{++}} < R_{nn\to p \Delta^{-}} $, consistent with Ref. [32].

    Furthermore, the constrained correction factors R in asymmetric nuclear matter are notably smaller than their unconstrained counterparts. For instance, at $\rho_0$, $\Delta R_{pp\to n\Delta^{++}}$ decreases from 0.347 to 0.202, while $\Delta R_{nn\to p\Delta^{-}}$ decreases from 0.427 to 0.238. Similar reductions are observed at $2\rho_0$ and $3\rho_0$. For example, at $2\rho_0$, $\Delta R_{pp\to n\Delta^{++}}$ decreases from 0.593 to 0.230, whereas $\Delta R_{nn\to p\Delta^{-}}$ decreases from 0.746 to 0.178. Overall, the restricted $\Delta R$ decreases by about 42%–44%, 61%–76%, and 76%–84% from $pp\to n\Delta^{++}$ to $nn\to p\Delta^{-}$ at at $ \rho_0 $, $ 2\rho_0 $ and $ 3\rho_0 $ respectively for $ E_{beam}=0.4 $ GeV, as well as for other beam energies.

    Evaluating the in-medium $NN \to N\Delta$ cross sections in asymmetric nuclear matter is crucial for heavy-ion collision studies, as it provides a potential avenue for reducing uncertainties in the symmetry energy at suprasaturation densities. To facilitate their application in transport models, we present parameterizations of the constrained in-medium cross section correction factors R for all $NN \to N\Delta$ channels at beam energies $E_{\mathrm{beam}}=0.4, 0.6, 0.8, 1.0,$ and $1.2$ GeV, both in symmetric and asymmetric nuclear matter.

    In summary, we present the evaluated the in-medium $NN\rightarrow N\Delta$ cross sections derived from RMF parameter sets constrained by neutron star observations [33]. Compared to the unconstrained results, our findings show that the ranges of $\sigma^*_{NN\rightarrow N\Delta}$ are significantly reduced over the density range $0 < \rho \leq 3\rho_0$ for beam energies of $E_{\mathrm{beam}} = 0.4,\, 0.8,$ and $1.2$ GeV in both symmetric and asymmetric nuclear matter, especially at densities above $\rho_0$. For completeness, the parameterized forms of the in-medium $NN\rightarrow N\Delta$ cross-section corrections are given in the supplemental material.

    We hope the constrained in-medium cross sections will help reduce the uncertainties of information on the symmetry energy at high densities by facilitating them in the prediction of pion observables in QMD models to simulate heavy-ion collision experiments, such as those performed by the HADES (Au+Au) [46] and MSU (Sn+Sn) [15]. However, matter created in heavy ion collisions is hot and in a non-equilibrium state, implying that the in-medium $ NN\to N\Delta $ cross section depends on temperature. Prior work has explored the temperature dependence of in-medium nucleon-nucleon scattering cross sections (see Ref. [47]), reporting a possible enhancement at finite temperature relative to the cold matter case. The explicit temperature dependence of in-medium $ NN\to N\Delta $ cross sections is rarely discussed, and we will investigate it in future work.

  • The medium $ NN $ cross sections in transport mode simulations play a crucial role in intermediate-energy heavy ion collisions (HIC), as they significantly influence the predictions of reaction dynamics, collective flow, stopping power, and particle productions [19]. In the transport model simulations, the in-medium $ NN\to N\Delta $ cross sections are a critical component of the $ \pi-N-\Delta $ loops, which can effect the pion multiplicity data. The $ \pi^-/\pi^+ $ ratio serves as a sensitive observable for probing the symmetry energy at suprasaturation density. For reproducing the pion multiplicity data, the in-medium $ NN\rightarrow N\Delta $ cross section ($ \sigma^*_{NN\rightarrow N\Delta} $) is one of the important ingredients because it will directly influence the first ∆ production which can decay into nucleon and pion or rescatter with nucleons.

    Many transport codes adopted the free space $ NN\rightarrow N\Delta $ cross section, i.e., the $ \sigma_{NN\rightarrow N\Delta}^{\text{free}} $ taken from Ref. [10], or phenomenological in-medium cross section, i.e., $ \sigma_{NN\rightarrow N\Delta}^{*}=R \sigma_{NN\rightarrow N\Delta}^{\text{free}} $, in the collision integral of transport models [11]. Recent transport model comparison studies by the transport model evaluation project (TMEP) collaboration highlight the large model dependence in pion yields and the need for improved in-medium inputs [1218]. The isospin independent microscopic approaches have been employed to investigate the in-medium $ NN\rightarrow N\Delta $ cross sections in symmetric nuclear matter [1925], where the medium correction factor R is the same for for all channels of the $ NN\rightarrow N\Delta $ process. For the isospin asymmetric nuclear matter, Li el at. studied the in-medium $ NN\to N\Delta $ cross section without considering the mass distribution of ∆ resonance and threshold effects by using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) microscopic transport theory based on the closed time-path Green's function technique in Ref. [26].

    In our previous work [27], the in-medium $ NN\rightarrow N\Delta $ cross section $ \sigma^*_{NN\rightarrow N\Delta} $ by considering the threshold effect and the mass distribution of the ∆ resonance in asymmetric nuclear matter. Further, the dependence of medium correction factor R on the relativistic mean field parameters was investigated in our previous work [28]. With 3 RMF models, i.e., NL$ \rho\delta $ [29], DDMEδ [30], DDRH$ \rho\delta $ [31], our results show that R increases with the slope parameter L when using δ parameter sets for a given isospin asymmetry. To better understand the influence of the δ meson on the in-medium $ NN\to N\Delta $ cross sections, we compared calculations of R performed with and without δ-meson parameter sets in our subsequent work [32]. The results indicate that, when using parameter sets without the δ meson, the cross-section factors satisfy $ R_{pp \to n\Delta ^{++}} < R_{nn \to p\Delta ^{-}} $ and $ R_{NN \to N\Delta ^{+}} <R_{NN \to N\Delta ^{0}} $, while the opposite trend is observed when the δ meson meson is included.

    However, with more than 300 available mean field models, there exists large uncertainty in these cross section results. Therefore, it is essential to reduce the in-medium $ NN\rightarrow N\Delta $ cross sections, especially because they are increasingly vital for improving transport models — particularly in the context of pion production and for further constraining the symmetry energy at suprasaturation densities. In this paper, we provide reductions on the range of values for the in-medium $ NN\rightarrow N\Delta $ cross sections in isospin asymmetric nuclear matter, based on a selected subset of RMF models that have been constrained by neutron star observations, as discussed in our previous work [33].

    The paper is organized as follows. First, we briefly describe the properties of nuclear matter for different RMF models. Next, we discuss the constraints on the in-medium correction factor R for $ NN\rightarrow N\Delta $ cross sections. Finally, we provide a summary of our findings.

    For the calculation of the in-medium $ NN\rightarrow N\Delta $cross section in nuclear matter, we employ a one-boson exchange model based on a relativistic Lagrangian that includes both nucleons and ∆. According to the structure of the Lagrangian, three types of RMF parameter sets are adopted to estimate the in-medium cross section, as discussed in Ref. [34]: (i) nonlinear models, (ii) density-dependent models, and (iii) point-coupling models. Detailed descriptions of these RMF models are provided in Appendix A. Subsequently, the in-medium $ NN\rightarrow N\Delta $ cross sections are calculated based on the respective RMF Lagrangians, and the detailed derivation of the cross sections can be found in Appendix B.

    We employ the same RMF Lagrangian to derive the nuclear matter properties, as detailed in Appendix A. Here, the binding energy per particle in asymmetric nuclear matter is expressed as follows:

    $ E(\rho,\alpha)=\frac{\epsilon}{\rho}-m_{N}=E_0(\rho)+S(\rho)\alpha^2+O(\alpha^4), $

    (1)

    where the $ E_0(\rho)=E(\rho,\alpha=0) $ is the binding energy in symmetric nuclear matter and $ S(\rho) $ denotes the symmetry energy. Here, $ \rho = \rho_n + \rho_p $ represents the total nuclear matter density, ϵ is the energy density, $ m_{N} $ is the nucleon mass, and $ \alpha = (\rho_n -\rho_p)/(\rho_n +\rho_p) $ is the isospin asymmetry. The nuclear symmetry energy $ S(\rho) $ is defined as

    $ S(\rho)=\frac{1}{2}\frac{\partial^{2}E(\rho,\alpha)}{\partial \alpha^{2}}\mid_{\alpha=0}. $

    (2)

    The symmetry energy is expanded in terms of $ (\rho-\rho_0)/3\rho_0 $:

    $ S(\rho)=J+\frac{L}{3\rho_0}(\rho-\rho_0)+\frac{K_{sym}}{2}\frac{(\rho-\rho_0)^2}{\rho^2_0}+\cdots . $

    (3)

    Here, $ J=S(\rho_0) $ represents the symmetry energy at saturation density $ \rho_0 $. The parameters $ L=3\rho_0\frac{\partial S}{\partial \rho}\mid_{\rho=\rho_0} $ and $ K_{sym}=9\rho^2_0\frac{\partial^2 S}{\partial \rho ^2}\mid_{\rho=\rho_0} $ denote the slope and curvature of the symmetry energy at saturation density, respectively.

    The coupling constants in RMF models are crucial for predicting the in-medium ∆ production cross section as well as for determining the equation of state (EOS) of nuclear matter. To reduce the uncertainty in the in-medium $ NN\to N\Delta $ cross sections, it is essential to select reasonable RMF models. In previous work [33], the EOS of nuclear matter was constrained using neutron star observations based on various RMF parameter sets. In this study, we calculate the in-medium $ NN\to N\Delta $ cross sections using 180 RMF interaction sets, as described in Refs. [33, 35].

    Furthermore, an important task is to further evaluate the in-medium $ NN\to N\Delta $ cross sections using the selected RMF parameter sets that have been refined based on multiple neutron star observables from Refs. [33, 36, 37]. The final constrained RMF models are: HC, FSUGZ03, IU-FSU, $ {\rm{G2}}^{*} $, BSR8, BSR9, FA3, FZ3, and DD-F. The EOS parameters (incompressibility $ K_0 $, symmetry energy J, slope of symmetry energy L, and curvature of symmetry $ K_{sym} $) used in this work from with and without NS observations are both listed in Table 1. Additionally, the properties of nuclear matter and related parameters of all RMF models used here are detailed in Table C1 of Appendix C.

    $ K_0 $(MeV) J (MeV) L(MeV) $ K_{sym} $(MeV)
    With neutron star constraint 216.87–297.75 29.70–31.62 29.08–69.86 -275.05–28.99
    Without neutron star constraint 199.92–300.67 17.37–43.54 29.08–140.37 -275.05–398.27

    Table 1.  Ranges of the EOS from the used RMF models.

    As a key step in calculating the in-medium cross sections (see Eq. 48 in Appendix B), it is first necessary to determine the Dirac effective masses of nucleons, the effective pole masses of ∆ resonances, and the channel-dependent changes in vector self-energies. These quantities must be obtained based on the RMF parameter sets that have been constrained as described earlier.

    In the Fig. 1, we plot the effective mass of the nucleon ($ m^*_{N}/m_{N} $) and effective pole masses of ∆ ($ m^*_{0,\Delta}/m_{0,\Delta} $) as function of $ \rho/\rho_0 $ in symmetric nuclear matter. Except for NL$ \rho\delta $A [29], NL$ \rho\delta $B [29], DDMEδ [30] and DDRH$ \rho\delta $ [31], all others included the constraint RMF models are without-δ models. Consequently, these models do not exhibit mass splitting between protons and neutrons (or among different ∆ isospin states). Therefore, we only show the effective masses in symmetric nuclear matter.

    Figure 1.  (Color online) The upper panels show the effective mass of the nucleon ($ m^*_{N}/m_{N} $) and effective pole masses of ∆ ($ m^*_{0,\Delta}/m_{0,\Delta} $) in symmetric nuclear matter as functions of $ \rho/\rho_0 $. The lower panels display the changes in vector self-energies $ \Delta \Sigma^{0}{pp \to n\Delta^{++}} $ and $ \Delta \Sigma^{0}{nn \to p\Delta^{-}} $ in asymmetric nuclear matter with $ \alpha = 0.2 $. The pure gray areas represent the ranges of all considered RMF models, and the hatched areas indicate the subset constrained by neutron star observations. The constrained shaded band denotes the model-ensemble envelope—range from minimal to maximal values across all RMF interactions that pass the neutron-star filters—and is not a statistical confidence interval.

    Because the most RMF models are adjusted to describe the nuclei and nuclear matter in the density region from near subsaturation density $ \rho\approx2/3\rho_0 $(which represents the average value between the central and surface densities [3843]) up to saturation density, significant uncertainties remain regarding RMF model properties—such as effective masses—at densities above $ \rho_0 $.

    From the results in Fig. 1, we can see that the uncertainty of the effective masses reduced, i.e., the range of $ \Delta m^*_{N}=\dfrac{m^*_{N, max}-m^*_{N,min}}{m_{N}}=0.196 $ (corresponding to $ m^*_{N}/m_{N}=0.551-0.747 $) at $ \rho_0 $, while $ m^*_{N}/m_{N}= 0.677- 0.709 $ (corresponding to $ \Delta m^*_{N} $=0.032) are deduced at 68% confidence level from just three types of momentum dependence of the optical potential model in Ref. [44]. Additionally, the range of $ \Delta m^*_{0,\Delta} $ are also decreased, especially at the density above saturation density.

    From our previous work [32], we observed that there remains a splitting among different channels of the in-medium $ NN\to N\Delta $ cross sections in asymmetric nuclear matter. To illustrate this effect, we present the vector self-energy changes for two representative channels in asymmetric matter at $ \alpha = 0.2 $:

    $ \Delta \Sigma^{0}_{pp\to n\Delta^{++}}=\Sigma^{0}_p+\Sigma^{0}_p-\Sigma^{0}_n-\Sigma^{0}_{\Delta^{++}}, $

    and

    $ \Delta \Sigma^{0}_{nn\to p\Delta^-}=\Sigma^{0}_n+\Sigma^{0}_n-\Sigma^{0}_p-\Sigma^{0}_{\Delta^-}. $

    These channels, $ pp \to n\Delta^{++} $ and $ nn \to p\Delta^{-} $, are highlighted because they are the main contributors to the $ NN \to N\Delta $ processes.

    The results indicate that the uncertainties in both the effective masses and the vector self-energy changes are significantly reduced when using the constrained RMF models, especially at higher densities. Consequently, the uncertainties in the in-medium $ NN\to N\Delta $ cross sections are expected to be correspondingly diminished.

    Fig. 2 displays the in-medium $pp\to n\Delta^{++}$ cross sections as a function of the total energy $\sqrt{s}$ in symmetric nuclear matter. The left panel compares the cross sections in free space and at saturation density, while the middle and right panels present the cross sections $\sigma^*_{pp\to n\Delta^{++}}$ at $\rho=2\rho_0$ and $3\rho_0$, respectively. Compared with the unconstrained results, the constrained in-medium cross sections show a notably reduced spread, particularly at densities above $\rho_0$. This reduction in uncertainty of in-medium cross section is consistent with the behaviors of the nucleon and $\Delta$ effective masses shown in Fig. 1. The in-medium $ NN \to N\Delta $ cross section depends explicitly on the effective masses ($ m^*_N $ and $ m^*_{0,\Delta} $) in symmetric nuclear matter (the channel-dependent vector self-energy changes $ \Delta \Sigma^0 $ should be also considered in asymmetric nuclear matter), which can be derived from Appendix B. Bulk “nuclear-matter properties” such as $ K_0 $, J, L and $ K_{sym} $ do not enter the cross-section formula directly, which are determined by RMF interactions. After applying neutron-star constraints, the surviving RMF sets develop similar trajectories of $ m^*(\rho) $ and $ \Delta \Sigma^0(\rho) $ at 2 to 3$ \rho_0 $, which lead to the observed narrowing of in-medium cross sections, even though the spread in incompressibility of the same sets may remain sizable (e.g. FA3 and FZ3).

    Figure 2.  (Color online) The in-medium $pp \to n\Delta^{++}$ cross section as function of $ \sqrt{s} $ in symmetric nuclear matter. The left panel shows the cross section in free space and at $\rho_0 $, while the middle and right panels present results at $ 2\rho_0 $ and $ 3\rho_0 $, respectively. The experimental data are taken from Ref. [45].

    Since there is no isospin splitting of effective masses in symmetric nuclear matter, the in-medium cross section for $ nn\rightarrow p\Delta^{-} $ is identical to that for $ pp\rightarrow n\Delta^{++} $. Cross sections for other channels can be obtained by applying the appropriate isospin Clebsch-Gordan coefficients, yielding values equal to $ \frac{1}{3}\sigma^*_{pp\rightarrow n\Delta^{++}} $. Consequently, the ratio $ R=\sigma^*_{NN\rightarrow N\Delta}/\sigma_{NN\rightarrow N\Delta} $ is the same for all channels of $ NN\rightarrow N\Delta $ in symmetric nuclear matter.

    Fig. 3 shows the medium correction factors R (top panels) and the corresponding range $\Delta R = R_{\max} - R_{\min}$ (bottom panels) as a function of $\rho/\rho_0$ for beam energies $E_{\mathrm{beam}} = 0.4, 0.8,$ and $1.2$ GeV in symmetric nuclear matter. The unconstrained $\Delta R$ increases with density, but once constraints are applied to the in-medium cross sections, the spread in R is notably reduced compared to the unconstrained results. For instance, at $E_{\mathrm{beam}} = 0.4$ GeV, $\Delta R$ decreases from $0.283$ to $0.219$ at $\rho_0$, from $0.648$ to $0.182$ at $2\rho_0$, and from $0.696$ to $0.125$ at $3\rho_0$. This reduction stems from the decreased uncertainty in effective masses (see Fig. 1).

    Figure 3.  (Color online) The upper panels are R as a function of density $\rho/\rho_0$ at beam energy $E_{beam}=0.4$, 0.8, and 1.2 GeV in symmetric nuclear matter. The lower panels display the corresponding range $\Delta R$.

    Here we take the $pp\to n\Delta^{++}$ and $nn\to p \Delta^{-}$ channels as examples to illustrate the in-medium cross sections in asymmetric nuclear matter. In Fig. 4, we plot R for $pp\to n\Delta^{++}$ (panels (a), (b), (c)) and $nn\to p \Delta^{-}$ (panels (d), (e), (f)), the constrained median values $R_{\mathrm{med}}$ (panels (g), (h), (i)), and the range $\Delta R$ (panels (j), (k), (l)) as functions of $\rho/\rho_0$ in asymmetric nuclear matter with $\alpha=0.2$ for $E_{\mathrm{beam}}=0.4$, 0.8, and 1.2 GeV.

    Figure 4.  (Color online) The in-medium correction factor R for $pp\to n\Delta^{++}$ (a, b, c panels) and $nn\to p \Delta^{-}$ (d,e,f panels), the constraint median values of correction factors $R_{med}$ (g, h, i panels), and $\Delta R$ (j, k, l panels) as function of density $\rho/\rho_0$ in asymmetric nuclear matter with $\alpha=0.2$.

    It is also evident that the constrained median values of the in-medium $NN\to N\Delta$ cross sections follow $ R_{pp\to n\Delta^{++}} < R_{nn\to p \Delta^{-}} $, consistent with Ref. [32].

    Furthermore, the constrained correction factors R in asymmetric nuclear matter are notably smaller than their unconstrained counterparts. For instance, at $\rho_0$, $\Delta R_{pp\to n\Delta^{++}}$ decreases from 0.347 to 0.202, while $\Delta R_{nn\to p\Delta^{-}}$ decreases from 0.427 to 0.238. Similar reductions are observed at $2\rho_0$ and $3\rho_0$. For example, at $2\rho_0$, $\Delta R_{pp\to n\Delta^{++}}$ decreases from 0.593 to 0.230, whereas $\Delta R_{nn\to p\Delta^{-}}$ decreases from 0.746 to 0.178. Overall, the restricted $\Delta R$ decreases by about 42%–44%, 61%–76%, and 76%–84% from $pp\to n\Delta^{++}$ to $nn\to p\Delta^{-}$ at at $ \rho_0 $, $ 2\rho_0 $ and $ 3\rho_0 $ respectively for $ E_{beam}=0.4 $ GeV, as well as for other beam energies.

    Evaluating the in-medium $NN \to N\Delta$ cross sections in asymmetric nuclear matter is crucial for heavy-ion collision studies, as it provides a potential avenue for reducing uncertainties in the symmetry energy at suprasaturation densities. To facilitate their application in transport models, we present parameterizations of the constrained in-medium cross section correction factors R for all $NN \to N\Delta$ channels at beam energies $E_{\mathrm{beam}}=0.4, 0.6, 0.8, 1.0,$ and $1.2$ GeV, both in symmetric and asymmetric nuclear matter.

    In summary, we present the evaluated the in-medium $NN\rightarrow N\Delta$ cross sections derived from RMF parameter sets constrained by neutron star observations [33]. Compared to the unconstrained results, our findings show that the ranges of $\sigma^*_{NN\rightarrow N\Delta}$ are significantly reduced over the density range $0 < \rho \leq 3\rho_0$ for beam energies of $E_{\mathrm{beam}} = 0.4,\, 0.8,$ and $1.2$ GeV in both symmetric and asymmetric nuclear matter, especially at densities above $\rho_0$. For completeness, the parameterized forms of the in-medium $NN\rightarrow N\Delta$ cross-section corrections are given in the supplemental material.

    We hope the constrained in-medium cross sections will help reduce the uncertainties of information on the symmetry energy at high densities by facilitating them in the prediction of pion observables in QMD models to simulate heavy-ion collision experiments, such as those performed by the HADES (Au+Au) [46] and MSU (Sn+Sn) [15]. However, matter created in heavy ion collisions is hot and in a non-equilibrium state, implying that the in-medium $ NN\to N\Delta $ cross section depends on temperature. Prior work has explored the temperature dependence of in-medium nucleon-nucleon scattering cross sections (see Ref. [47]), reporting a possible enhancement at finite temperature relative to the cold matter case. The explicit temperature dependence of in-medium $ NN\to N\Delta $ cross sections is rarely discussed, and we will investigate it in future work.

APPENDIX A: RELATIVISTIC MEAN FIELD
  • In this paper, we ignore the Fock term in the relativistic mean field, where models are all Hartree RMF model sets.

    1. Nonlinear relativistic mean field

    The Lagrangians are nonlinear RMF model are:

    $ {\cal{L}}_{NL}={\cal{L}}_F+{\cal{L}}_I, $

    (A1)

    where $ {\cal{L}}_F $ is,

    $ \begin{aligned}[b] {\cal{L}}_{F}=\;& \bar{\Psi}[i\gamma_{\mu}\partial^{\mu}-m_{N}]\Psi+\bar{\Delta}_{\lambda}[i\gamma_{\mu}\partial^{\mu}-m_{\Delta}]\Delta^{\lambda} \\& +\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\pi}}\partial^{\mu}{\boldsymbol{\pi}}-m^{2}_{\pi}{\boldsymbol{\pi}}^{2}\right)+\frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma-\frac{1}{2}m^{2}_{\sigma}\sigma^{2}-U(\sigma)\\& -\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu}+\frac{1}{2}m^{2}_{\omega}\omega_{\mu}\omega^{\mu}+\frac{1}{4}\zeta^{4}(\omega_{\mu}\omega^{\mu})^2\\& -\frac{1}{4}{\boldsymbol{\rho}}_{\mu\nu}{\boldsymbol{\rho}}^{\mu\nu}+\frac{1}{2}m^{2}_{\rho}{\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}+\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\delta}}\partial^{\mu}{\boldsymbol{\delta}}-m^{2}_{\delta}{\boldsymbol{\delta}}^{2}\right)\\& +g_{\sigma}g^2_{\omega}\sigma \omega_{\mu}\omega^{\mu}( \alpha_1+\frac{1}{2}\alpha^{\prime}_{1}g_{\sigma} ) + g_{\sigma}g^2_{\rho}\sigma {\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}( \alpha_2+\frac{1}{2}\alpha^{\prime}_{2}g_{\sigma} ) \\& +\frac{1}{2}\alpha^{\prime}_{3}g^2_{\omega}g^2_{\rho}\omega_{\mu}\omega^{\mu} {\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}\; . \end{aligned} $

    (A2)

    and $ {\cal{L}}_I $ is interaction part,

    $ \begin{aligned}[b]{\cal{L}}_I=\;& g_{\sigma NN}\bar{\Psi}\Psi\sigma-g_{\omega NN}\bar{\Psi}\gamma_{\mu}\Psi\omega^{\mu}-g_{\rho NN}\bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\rho}}^{\mu}\\& -\frac{f_{\pi NN}}{m_{\pi}}\bar{\Psi}\gamma_{\mu}\gamma_{5}{\boldsymbol{\tau}} \cdot\Psi\partial^{\mu}{\boldsymbol{\pi}}+g_{\delta NN}\bar{\Psi}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\delta}}\\& +g_{\sigma \Delta \Delta}\bar{\Delta}_{\mu}\Delta^{\mu}\sigma-g_{\omega \Delta \Delta}\bar{\Delta}_{\mu}\gamma_{\nu}\Delta^{\mu}\omega^{\nu} \\& -g_{\rho \Delta\Delta}\bar{\Delta}_{\mu}\gamma_{\nu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\rho}}^{\nu}+\frac{g_{\pi \Delta\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}\partial^{\nu}{\boldsymbol{\pi}}\\& +g_{\delta \Delta\Delta}\bar{\Delta}_{\mu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\delta}}+\frac{g_{\pi N\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}{{{\cal{T}}}}\cdot \Psi\partial^{\mu}{\boldsymbol{\pi}}\\& +\frac{ig_{\rho N\Delta}}{m_{\rho}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{{{\cal{T}}}}\cdot \Psi\left(\partial^{\nu}{\boldsymbol{\rho}}^{\mu}-\partial^{\mu}{\boldsymbol{\rho}}^{\nu}\right)+h.c. \end{aligned}$

    (A3)

    In Eq. (A2), $ \omega_{\mu\nu} $ and $ {\boldsymbol{\rho}}_{\mu\nu} $ are defined as $ \partial_{\mu}\omega_{\nu}-\partial_{\nu}\omega_{\mu} $ and $ \partial_{\mu}{\boldsymbol{\rho}}_{\nu}-\partial_{\nu}{\boldsymbol{\rho}}_{\mu} $, respectively. The nonlinear potential of the σ field is given by $ U(\sigma)=\frac{1}{3}g_{2}\sigma^{3}+\frac{1}{4}g_{3}\sigma^{4} $. Here $ {\boldsymbol{\tau}} $ and T are the isospin matrices for the nucleon and ∆ [48, 49], while $ {{{\cal{T}}}} $ is the isospin transition matrix between the isospin 1/2 and the 3/2 fields [10].

    In the uniform rest nuclear matter, the effective momentum can be written as $ {\bf{p}}_i^*={\bf{p}}_i $ since the spatial components of vector field vanish, i.e., $ {\bf{\Sigma}}=0 $. Thus, in the mean field approach, the effective energy is given by:

    $ p_i^{*0}=p^{0}_{i}-\Sigma^{0}_{i}, $

    (A4)

    The effective masses of nucleon and ∆ read as:

    $ m^{*}_{i}=m_{i}+\Sigma^{S}_{i}, $

    (A5)

    Here $ \Sigma^{0}_{i} $ and $ \Sigma^{S}_{i} $ represent the vector and scalar self-energy respectively for the RMF parameter sets.

    The vector and scalar potentials in the nonlinear(NL) RMF model are expressed as:

    $ \Sigma^0_{i,NL}=g_{\omega }\bar{\omega}^{0}+g_{\rho }t_{3,i}\bar{\rho}^{0}_3 $

    (A6)

    $ \Sigma^S_{i,NL} =-g_{\sigma }\bar{\sigma}- g_{\delta }t_{3,i}\bar{\delta}_3 $

    (A7)

    where $ t_{3,i} $ represents the third component of the isospin of the nucleon and ∆, with the following values: $ t_{3,n}=-1 $, $ t_{3,p}=1 $, $ t_{3,\Delta^{++}}=1 $, $ t_{3,\Delta^{+}}=\frac{1}{3} $, $ t_{3,\Delta^{0}}=-\frac{1}{3} $, $ t_{3,\Delta^{-}}=-1 $. The $ \bar{\omega}^{0} $, $ \bar{\rho}^{0}_3 $, $ \bar{\sigma} $ and $ \bar{\delta}_3 $ denote the expectation values of the mesons field in the mean-field approximation. In the RMF model, the equations of motion for the mesons are:

    $ \begin{aligned}[b] m^{2}\bar{\sigma} =\;& g_{\sigma}\rho_{s}-g_2\bar{\sigma}^2-g_3\bar{\sigma}^3+g_{\sigma}g^2_{\omega}(\bar{\omega}^{0})^2(\alpha_1+\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\ & +g_{\sigma}g^2_{\rho}(\bar{\rho}_{3}^{0})^2(\alpha_2+\alpha^{\prime}_2 g_{\sigma}\bar{\sigma}) \end{aligned} $

    (A8)

    $\begin{aligned}[b] m^{2}_{\omega}\bar{\omega}^{0} =\;& g_{\omega}\rho-\zeta g_{\omega}^4(\bar{\omega}^{0})^3-g_{\sigma}g^2_{\omega}\bar{\sigma}\bar{\omega}^{0}(2\alpha_1+\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\& -\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\rho}_{3}^{0})^2\bar{\omega}^{0} \end{aligned}$

    (A9)

    $ \begin{aligned}[b] m^{2}_{\rho}\bar{\rho}_{3}^{0} =\;& g_{\rho}\rho_{3}-g_{\sigma}g^2_{\rho}\bar{\sigma}\bar{\rho}_{3}^{0}(2\alpha_2+\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})\\ &-\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}\bar{\rho}_{3}^{0}(\bar{\omega}^{0})^2 \end{aligned} $

    (A10)

    $ m^{2}_{\delta}\bar{\delta}_{3} = g_{\delta}\rho_{s3} $

    (A11)

    The nucleon densities are (assuming no ∆ density):

    $ \rho_s=\langle \bar{\Psi}\Psi \rangle= \rho_{s n}+\rho_{s p} $

    (A12)

    $ \rho=\langle \bar{\Psi}\gamma^0 \Psi \rangle= \rho_{n}+\rho_{p} $

    (A13)

    $ \rho_{s3}=\langle \bar{\Psi}\tau_3 \Psi \rangle= \rho_{s p}-\rho_{s n} $

    (A14)

    $ \rho_3=\langle \bar{\Psi}\gamma^0 \tau_3 \Psi \rangle= \rho_{p}-\rho_{n} $

    (A15)

    With Fermi momenta $ k_{F,i} $ for i = n or p, the scalar and vector densities are:

    $ \begin{aligned}[b] \rho_{si} =\;& \frac{C(i)}{(2\pi)^{3}}\int_{k<k_{F i}} d^{3}{\bf{k}} \frac{m^{*}_{i}}{\sqrt{k^{2}+m^{*2}_{i}}} \\ =\;& \frac{m^{*}_{i}}{2\pi^{2}}\left[k_{F i}E^*_{F i}-m^{*2}_{i}\rm{ln} \frac{k_{Fi}+E^*_{Fi}}{m^{*}_{i}}\right] \end{aligned} $

    (A16)

    $ \rho_{i} = \frac{C(i)}{(2\pi)^{3}}\int_{k<k_{F i}} d^{3}{\bf{k}} =\frac{k_{F i}^{3}}{3\pi^{2}} $

    (A17)

    where the degeneracy factor $ C(i=n,p)=2 $, and $ E^*_{F i}=\sqrt{k_{F i}^{2}+m^{2*}_{i}} $ is the Fermi energy of neutrons and protons.

    The eigenvalues of neutron and proton from the Dirac equation are:

    $ e_{n}=g_{\omega}\bar{\omega}^{0}-g_{\rho}\bar{\rho}_{3}^{0}+\sqrt{k^{2*}_{n}+m^{*2}_{n}}, $

    (A18)

    $ e_{p}=g_{\omega}\bar{\omega}^{0}+g_{\rho}\bar{\rho}_{3}^{0}+\sqrt{k^{2*}_{p}+m^{*2}_{p}}. $

    (A19)

    The expression for the energy density and pressure are obtained from the given Lagrangian using energy momentum tensor relation given by,

    $ T^{\mu\nu}=\sum\limits_{i}\frac{\partial {\cal{L}}}{\partial (\partial_{\mu} \phi_{i})}\partial^{\nu} \phi_{i}-g^{\mu\nu} {\cal{L}}, $

    (A20)

    where $ \phi_{i} $ runs over all possible fields. The energy density ϵ and pressure P can be obtain from the energy-momentum tensor:

    $\begin{aligned}[b] \epsilon_{NL} =\;& \langle T^{00} \rangle = \frac{1}{2}m^{2}_{\sigma}\bar{\sigma}^{2}+\frac{1}{3}g_{2}\bar{\sigma}^{3}+\frac{1}{4}g_{3}\bar{\sigma}^{4} -\frac{1}{2}m^{2}_{\omega}(\bar{\omega}^{0})^{2}\\ & -\frac{\zeta}{4} g_{\omega}^4(\bar{\omega}^{0})^4+g_{\omega}\bar{\omega}^{0}\rho-\frac{1}{2}m^{2}_{\rho}(\bar{\rho}^{0}_{3})^2+g_{\rho}\bar{\rho}^{0}_{3}\rho_{3}\\&+\frac{1}{2}m^{2}_{\delta}\bar{\delta}_{3}^2 -g_{\sigma}g^2_{\omega}\bar{\sigma}(\bar{\omega}^{0})^2(\alpha_1+\frac{1}{2}\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\ & -g_{\sigma}g^2_{\rho}\bar{\sigma}(\bar{\rho}_{3}^{0})^2(\alpha_2+\frac{1}{2}\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})-\frac{1}{2}\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\rho}_{3}^{0})^2(\bar{\omega}^{0})^2\\&+\frac{1}{4}[3E^*_{F n}\rho_{n}+m^{*}_{n}\rho_{s n}]+\frac{1}{4}[3E^*_{F p}\rho_{p}+m^{*}_{p}\rho_{s p}], \end{aligned}$

    (A21)

    and

    $ \begin{aligned}[b] P_{NL} =\;& \frac{1}{3}\sum\limits_{i=1}^{3}\langle T^{ii} \rangle= -\frac{1}{2}m^{2}_{\sigma}\bar{\sigma}^{2}-\frac{1}{3}g_{2}\bar{\sigma}^{3}-\frac{1}{4}g_{3}\bar{\sigma}^{4}\\ & +\frac{1}{2}m^{2}_{\omega}(\bar{\omega}^{0})^{2}+\frac{\zeta}{4} g_{\omega}^4(\bar{\omega}^{0})^4+\frac{1}{2}m^{2}_{\rho}(\bar{\rho}^{0}_{3})^2\\ & -\frac{1}{2}m^{2}_{\delta}\bar{\delta}_{3}^2+g_{\sigma}g^2_{\omega}\bar{\sigma}(\bar{\omega}^{0})^2(\alpha_1+\frac{1}{2}\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\ & +g_{\sigma}g^2_{\rho}\bar{\sigma}(\bar{\rho}_{3}^{0})^2(\alpha_2+\frac{1}{2}\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})+\frac{1}{2}\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\rho}_{3}^{0})^2(\bar{\omega}^{0})^2\\ & +\frac{1}{4}[E^*_{F n}\rho_{n}-m^{*}_{n}\rho_{s n}]+\frac{1}{4}[E^*_{F p}\rho_{p}-m^{*}_{p}\rho_{s p}]. \end{aligned} $

    (A22)

    The same calculations for density-dependence and point-coupling models can be found in Refs.[30, 31, 5052].

    For symmetric nuclear matter, $ m^{*}_{n}=m^{*}_{p}=m^{*}_{N} $ since $ \bar{\delta}_{3} $ vanishes.

    The expressions of the symmetry energy and slope of symmetry energy L for nonlinear RMF models are:

    $ \begin{aligned}[b] S(\rho)_{NL}=\;& \frac{k_{F}^{2}}{6E^*_{F}}+\frac{1}{2}\rho\frac{g^2_{\rho}}{m^{*2}_{\rho}}\\ &-\frac{1}{2}\rho\left(\frac{\dfrac{g^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{g^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right), \end{aligned} $

    (A23)

    where $ m^{*2}_{\rho}=m^{2}_{\rho}+g_{\sigma}g^2_{\rho}\bar{\sigma}(2\alpha_2+\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})+\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\omega}^{0})^2 $, and

    $ A(\rho,m^*_{N})=3\left( \frac{\rho_s}{m^*_{N}} -\frac{\rho}{E^*_{F}} \right) . $

    (A24)

    $ \begin{aligned}[b] L_{NL} =\;& \frac{k^{2}_{F}}{3E^{*}_{F}}\left( 1-\frac{k^{2}_{F}}{2E^{*2}_{F}} -\frac{k^{3}_{F}m^*_{N}}{E^{*2}_{F}\pi^2}\frac{\partial m^*_{N}}{\partial \rho}\right) \\ & +\frac{3g^{2}_{\rho}}{2m^{*2}_\rho}\rho\left( 1-\frac{1}{m^{*2}_{\rho}}\frac{\partial m^{*2}_{\rho}}{\partial \rho}\rho\right) \\ & -\frac{1}{2}\rho\left(\frac{\dfrac{g^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{g^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right)\\ &\times\Bigg\{3-\frac{2k^{2}_{F}}{E^{*2}_{F}}+6\left(1-\frac{m^{*2}_{N}}{E^{*2}_{F}}\right)\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\\ & -3\frac{g^2_{\delta}}{m^2_{\delta}}\frac{1}{1+\dfrac{g^2_{\delta}}{m^2_{\delta}}A}\Bigg[2A\Bigg(\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\\ & +\rho\frac{k^{2}_{F}}{E^{*3}_{F}}\Bigg(1-3\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\Bigg]\Bigg\}, \end{aligned} $

    (A25)

    2. Density dependence relativistic mean field

    The Lagrangian density of the density dependence model is:

    $ {\cal{L}}_{DD}={\cal{L}}_I+{\cal{L}}_F, $

    (A26)

    where $ {\cal{L}}_F $ is

    $ \begin{aligned}[b] {\cal{L}}_{F}=\;& \bar{\Psi}[i\gamma_{\mu}\partial^{\mu}-m_{N}]\Psi+\bar{\Delta}_{\lambda}[i\gamma_{\mu}\partial^{\mu}-m_{\Delta}]\Delta^{\lambda}\\& +\frac{1}{2}\left(\partial_{\mu}\sigma\partial^{\mu}\sigma-m_{\sigma}^2\sigma^2\right)\\ & -\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu}+\frac{1}{2}m^{2}_{\omega}\omega_{\mu}\omega^{\mu}\\ & +\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\pi}}\partial^{\mu}{\boldsymbol{\pi}}-m^{2}_{\pi}{\boldsymbol{\pi}}^{2}\right)-\frac{1}{4}{\boldsymbol{\rho}}_{\mu\nu}{\boldsymbol{\rho}}^{\mu\nu}+\frac{1}{2}m^{2}_{\rho}{\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}\\ & +\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\delta}}\partial^{\mu}{\boldsymbol{\delta}}-m^{2}_{\delta}{\boldsymbol{\delta}}^{2}\right), \end{aligned} $

    (A27)

    where $ {\cal{L}}_I $ is

    $ \begin{aligned}[b] {\cal{L}}_I =\;& {\cal{L}}_{NN}+{\cal{L}}_{\Delta \Delta}+{\cal{L}}_{N\Delta}\\ =\;& \Gamma_{\sigma}(\rho)\bar{\Psi}\Psi\sigma-\Gamma_{\omega}(\rho)\bar{\Psi}\gamma_{\mu}\Psi\omega^{\mu}-\Gamma_{\rho}(\rho)\bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\rho}}^{\mu}\\& +\frac{g_{\pi NN}}{m_{\pi}}\bar{\Psi}\gamma_{\mu}\gamma_{5}{\boldsymbol{\tau}} \cdot\Psi\partial^{\mu}{\boldsymbol{\pi}}+\Gamma_{\delta}(\rho)\bar{\Psi}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\delta}}\\ & +\Gamma_{\sigma}(\rho)\bar{\Delta}_{\mu}\Delta^{\mu}\sigma-\Gamma_{\omega}(\rho)\bar{\Delta}_{\mu}\gamma_{\nu}\Delta^{\mu}\omega^{\nu} \\ & -\Gamma_{\rho}(\rho)\bar{\Delta}_{\mu}\gamma_{\nu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\rho}}^{\nu}+\frac{g_{\pi \Delta\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}\partial^{\nu}{\boldsymbol{\pi}}\\& +\Gamma_{\delta}(\rho)\bar{\Delta}_{\mu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\delta}}+\frac{g_{\pi N\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}{{{\cal{T}}}}\cdot \Psi\partial^{\mu}{\boldsymbol{\pi}}\\ & +\frac{ig_{\rho N\Delta}}{m_{\rho}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{{{\cal{T}}}}\cdot \Psi\left(\partial^{\nu}{\boldsymbol{\rho}}^{\mu}-\partial^{\mu}{\boldsymbol{\rho}}^{\nu}\right)+h.c. \; \end{aligned} $

    (A28)

    The vector and scalar potentials can be written as:

    $ \Sigma^0_{i,DD}=\Gamma_{\omega }\bar{\omega}^{0}+\Gamma_{\rho }t_{3,i}\bar{\rho}^{0}_3 +\Sigma^{r} $

    (A29)

    $ \Sigma^S_{i,DD} =-\Gamma_{\sigma }\bar{\sigma}- \Gamma_{\delta }t_{3,i}\bar{\delta}_3 $

    (A30)

    Here $ \Sigma^{r} $ is the rearrangement term of the vector self-energy, its express is:

    $ \Sigma^{r}=\frac{\partial\Gamma_{\omega }}{\rho}\bar{\omega}^{0}\rho+\frac{\partial \Gamma_{\rho }}{\partial\rho}\bar{\rho}^{0}_3\rho_3-\frac{\partial\Gamma_{\sigma }}{\rho}\bar{\sigma}\rho_s-\frac{\partial\Gamma_{\delta }}{\rho}\bar{\delta}_3\rho_{s3} $

    (A31)

    The expressions of the symmetry energy and slope of symmetry energy L for density-dependent RMF models are:

    $\begin{aligned}[b] S(\rho)_{DD}=\;&\frac{k_{F}^{2}}{6E^*_{F}}+\frac{1}{2}\rho\frac{\Gamma^2_{\rho}}{m^{2}_{\rho}}-\frac{1}{2}\rho\\&\times\left(\frac{\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right),\end{aligned} $

    (A32)

    $ \begin{aligned}[b] L_{DD} =\;& \frac{k^{2}_{F}}{3E^{*}_{F}}\left( 1-\frac{k^{2}_{F}}{2E^{*2}_{F}} -\frac{k^{3}_{F}m^*_{N}}{E^{*2}_{F}\pi^2}\frac{\partial m^*_{N}}{\partial \rho}\right)\\ & +\frac{3\Gamma^{2}_{\rho}}{2m^{2}_\rho}\rho\left( 1+6\frac{\rho}{\Gamma_{\rho } }\frac{\partial \Gamma_{\rho }}{\partial \rho}\right)\\& -\frac{1}{2}\rho\left(\frac{\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right)\\& \times\Bigg\{3+6\frac{\rho}{\Gamma_{\delta} }\frac{\partial \Gamma_{\delta }}{\partial \rho}-\frac{2k^{2}_{F}}{E^{*2}_{F}}+6\left(1-\frac{m^{*2}_{N}}{E^{*2}_{F}}\right)\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho} \end{aligned} $

    $ \begin{aligned}[b] & -3\frac{\Gamma^2_{\delta}}{m^2_{\delta}}\frac{1}{1+\dfrac{\Gamma^2_{\delta}}{m^2_{\delta}}A}\Bigg[2A\Bigg(\frac{\rho}{\Gamma_{\delta} }\frac{\partial \Gamma_{\delta }}{\partial \rho}+\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\\ & +\rho\frac{k^{2}_{F}}{E^{*3}_{F}}\Bigg(1-3\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\Bigg]\Bigg\}, \end{aligned} $

    (A33)

    3. Point coupling model

    Lagrangian density of the point coupling mean field model is:

    $ {\cal{L}}_{PC}={\cal{L}}_{F}+{\cal{L}}_{I}, $

    (A34)

    where $ {\cal{L}}_{F} $ is :

    $ {\cal{L}}_{F}= \bar{\Psi}[i\gamma_{\mu}\partial^{\mu}-m_{N}]\Psi +\bar{\Delta}_{\lambda}[i\gamma_{\mu}\partial^{\mu}-m_{\Delta}]\Delta^{\lambda}, $

    (A35)

    where $ {\cal{L}}_{I} $ is :

    $ \begin{aligned}[b] {\cal{L}}_{I} =\;& -\frac{\alpha_S}{2}\left (\bar{\Psi}\Psi \right)^2-\frac{\alpha_V}{2}\left (\bar{\Psi}\gamma_{\mu}\Psi\right)\left (\bar{\Psi}\gamma^{\mu}\Psi\right)\\ & -\frac{\alpha_{TV}}{2} \left ( \bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi \right)\cdot \left( \bar{\Psi}\gamma^{\mu}{\boldsymbol{\tau}} \Psi \right)\\ & -\frac{f_{\pi NN}}{m_{\pi}}\left(\bar{\Psi}\gamma_{\mu}\gamma_{5}{\boldsymbol{\tau}} \Psi\right) \cdot \partial^{\mu} \left( \bar{\Psi}\gamma_{5}{\boldsymbol{\tau}} \Psi\right)\\& -\frac{\alpha_{TS}}{2} \left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)\cdot\left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)\\ & -\frac{\beta_S}{3}\left (\bar{\Psi}\Psi \right)^3-\frac{\gamma_S}{4}\left (\bar{\Psi}\Psi \right)^4 -\frac{\gamma_V}{4}\left (\bar{\Psi}\gamma_{\mu}\Psi\bar{\Psi}\gamma^{\mu}\Psi\right)^2 \\ & -\frac{\alpha_{TV}}{4} \left ( \bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\mu}{\boldsymbol{\tau}} \Psi \right)^2\\ & + [\eta_1+\eta_2\left (\bar{\Psi}\Psi \right)]\left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\mu}\Psi\right)\left (\bar{\Psi}\gamma^{\mu}\Psi\right)\\ & -\eta_3\left (\bar{\Psi}\Psi \right)\left ( \bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi \right)\cdot \left( \bar{\Psi}\gamma^{\mu}{\boldsymbol{\tau}} \Psi \right)\\ & -\frac{\alpha_S}{2}[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)+\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)]\\ & -\frac{\alpha_V}{2}[\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)+\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)]\\& -\frac{\alpha_{TV}}{2} [\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)\cdot \left( \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & +\left( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}} \Psi \right)\cdot\left ( \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)] \\ & -\frac{\alpha_{TS}}{2}[ \left (\bar{\Delta}_\mu{\boldsymbol{\rm{T}}} \Delta^\mu \right)\cdot\left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)+\left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)\cdot\left (\bar{\Delta}_\mu{\boldsymbol{\rm{T}}} \Delta^\mu \right)]\\&-\frac{\beta_S}{3}[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)^2+\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)\\ & +\left (\bar{\Psi}\Psi \right)^2\left (\bar{\Delta}_\mu\Delta^\mu \right)]\\ & -\frac{\gamma_S}{4}[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)^3 +\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)^2\\ & +\left (\bar{\Psi}\Psi \right)^2\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)+\left (\bar{\Psi}\Psi \right)^3\left (\bar{\Delta}_\mu\Delta^\mu \right)] \\ &-\frac{\gamma_V}{4}[\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\bar{\Psi}\gamma^{\nu}\Psi\right)\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right) \\& +\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right) \end{aligned} $

    $ \begin{aligned}[b] & +\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right)\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right) \\&+\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\bar{\Psi}\gamma^{\nu}\Psi\right)]\\ & -\frac{\alpha_{TV}}{4} [\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right) \\ & + \left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & + \left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & + \left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)]\\ & - \eta_1[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\& + \left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ &+ \left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)]\\ & - \eta_2[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ & + \left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ &+ \left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ & + \left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)]\\&-\eta_3[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \right)\cdot \left( \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & +\left (\bar{\Psi}\Psi \right)\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \right)\cdot \left( \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & +\left (\bar{\Psi}\Psi \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \right)\cdot \left ( \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \right)]\\ & -\frac{f_{\pi NN}}{m_{\pi}}\left(\bar{\Delta}_\mu\gamma_{\nu}\gamma_{5}{\boldsymbol{\tau}} \Delta^\nu\right) \cdot \partial^{\mu} \left( \bar{\Psi}\gamma_{5}{\boldsymbol{\tau}} \Psi\right)\\ & +\frac{g_{\pi N\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}{{{\cal{T}}}}\cdot \Psi\partial^{\mu}\left( \bar{\Psi}\gamma_{5}{\boldsymbol{\tau}} \Psi\right)\\& +\frac{ig_{\rho N\Delta}}{m_{\rho}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{{{\cal{T}}}}\cdot \Psi\left(\partial^{\nu}(\bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi)-\partial^{\mu}(\bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi)\right) \\&+h.c. \; \end{aligned}\tag{A36} $

    (A36)

    The vector and scalar potentials can be expressed as:

    $ \begin{aligned}[b] \Sigma^0_{i,PC} =\;& \alpha_{V}\rho+\alpha_{TV}\rho_3t_{3,i}+\gamma_{TV}\rho^3+ \gamma_{TV}\rho^3_3t_{3,i} \\ & +2(\eta_1+\eta_2\rho_s)\rho_s\rho+2\eta_3\rho_s\rho_3t_{3,i} \end{aligned} $

    (A37)

    $ \begin{aligned}[b] \Sigma^S_{i,PC} =\;& \alpha_{S}\rho_S+\beta_{S}\rho^2_s+\gamma_{S}\rho^3_s+\eta_{1}\rho^2+ 2\eta_{2}\rho_s\rho^2 \\ &+\eta_3\rho^2_3+\alpha_{TS}\rho_{s3}t_{3,i} \end{aligned} $

    (A38)

    The expressions of the symmetry energy and slope of symmetry energy L for point-coupling RMF models are:

    $ \begin{aligned}[b] S(\rho)_{PC} =\;& \frac{k_{F}^{2}}{6E^*_{F}}+\frac{1}{2}\alpha_{V}\rho+\eta_3\rho_s\rho \\ & +\frac{1}{2}\alpha_{TS}\rho\left(\frac{m^{* 2}_{N}}{E^{*2}_{F}[1-\alpha_{TS}A(\rho,m^*_{N})]}\right), \end{aligned} $

    (A39)

    $ \begin{aligned}[b] L_{PC} =\;& \frac{k^{2}_{F}}{3E^{*}_{F}}\left( 1-\frac{k^{2}_{F}}{2E^{*2}_{F}} -\frac{k^{3}_{F}m^*_{N}}{E^{*2}_{F}\pi^2}\frac{\partial m^*_{N}}{\partial \rho}\right)\\& +\frac{3}{2}\alpha_{V}\rho+3\eta_3\rho_s\rho+3\eta_3\rho^2 \frac{\partial \rho_s}{\partial \rho} \\ & +\frac{1}{2}\alpha_{TS}\rho\left(\frac{m^{* 2}_{N}}{E^{*2}_{F}[1-\alpha_{TS}A(\rho,m^*_{N})]}\right)\\ & \times\Bigg\{3-\frac{2k^{2}_{F}}{E^{*2}_{F}}+6\Bigg(1-\frac{m^{*2}_{N}}{E^{*2}_{F}}\Bigg)\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\\ & +3\alpha_{TS}\frac{1}{1-\alpha_{TS}A}\Bigg[2A\Bigg(\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\\ & +\rho\frac{k^{2}_{F}}{E^{*3}_{F}}\Bigg(1-3\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\Bigg]\Bigg\}. \end{aligned} $

    (A40)
APPENDIX A: RELATIVISTIC MEAN FIELD
  • In this paper, we ignore the Fock term in the relativistic mean field, where models are all Hartree RMF model sets.

    1. Nonlinear relativistic mean field

    The Lagrangians are nonlinear RMF model are:

    $ {\cal{L}}_{NL}={\cal{L}}_F+{\cal{L}}_I, $

    (A1)

    where $ {\cal{L}}_F $ is,

    $ \begin{aligned}[b] {\cal{L}}_{F}=\;& \bar{\Psi}[i\gamma_{\mu}\partial^{\mu}-m_{N}]\Psi+\bar{\Delta}_{\lambda}[i\gamma_{\mu}\partial^{\mu}-m_{\Delta}]\Delta^{\lambda} \\& +\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\pi}}\partial^{\mu}{\boldsymbol{\pi}}-m^{2}_{\pi}{\boldsymbol{\pi}}^{2}\right)+\frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma-\frac{1}{2}m^{2}_{\sigma}\sigma^{2}-U(\sigma)\\& -\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu}+\frac{1}{2}m^{2}_{\omega}\omega_{\mu}\omega^{\mu}+\frac{1}{4}\zeta^{4}(\omega_{\mu}\omega^{\mu})^2\\& -\frac{1}{4}{\boldsymbol{\rho}}_{\mu\nu}{\boldsymbol{\rho}}^{\mu\nu}+\frac{1}{2}m^{2}_{\rho}{\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}+\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\delta}}\partial^{\mu}{\boldsymbol{\delta}}-m^{2}_{\delta}{\boldsymbol{\delta}}^{2}\right)\\& +g_{\sigma}g^2_{\omega}\sigma \omega_{\mu}\omega^{\mu}( \alpha_1+\frac{1}{2}\alpha^{\prime}_{1}g_{\sigma} ) + g_{\sigma}g^2_{\rho}\sigma {\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}( \alpha_2+\frac{1}{2}\alpha^{\prime}_{2}g_{\sigma} ) \\& +\frac{1}{2}\alpha^{\prime}_{3}g^2_{\omega}g^2_{\rho}\omega_{\mu}\omega^{\mu} {\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}\; . \end{aligned} $

    (A2)

    and $ {\cal{L}}_I $ is interaction part,

    $ \begin{aligned}[b]{\cal{L}}_I=\;& g_{\sigma NN}\bar{\Psi}\Psi\sigma-g_{\omega NN}\bar{\Psi}\gamma_{\mu}\Psi\omega^{\mu}-g_{\rho NN}\bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\rho}}^{\mu}\\& -\frac{f_{\pi NN}}{m_{\pi}}\bar{\Psi}\gamma_{\mu}\gamma_{5}{\boldsymbol{\tau}} \cdot\Psi\partial^{\mu}{\boldsymbol{\pi}}+g_{\delta NN}\bar{\Psi}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\delta}}\\& +g_{\sigma \Delta \Delta}\bar{\Delta}_{\mu}\Delta^{\mu}\sigma-g_{\omega \Delta \Delta}\bar{\Delta}_{\mu}\gamma_{\nu}\Delta^{\mu}\omega^{\nu} \\& -g_{\rho \Delta\Delta}\bar{\Delta}_{\mu}\gamma_{\nu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\rho}}^{\nu}+\frac{g_{\pi \Delta\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}\partial^{\nu}{\boldsymbol{\pi}}\\& +g_{\delta \Delta\Delta}\bar{\Delta}_{\mu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\delta}}+\frac{g_{\pi N\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}{{{\cal{T}}}}\cdot \Psi\partial^{\mu}{\boldsymbol{\pi}}\\& +\frac{ig_{\rho N\Delta}}{m_{\rho}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{{{\cal{T}}}}\cdot \Psi\left(\partial^{\nu}{\boldsymbol{\rho}}^{\mu}-\partial^{\mu}{\boldsymbol{\rho}}^{\nu}\right)+h.c. \end{aligned}$

    (A3)

    In Eq. (A2), $ \omega_{\mu\nu} $ and $ {\boldsymbol{\rho}}_{\mu\nu} $ are defined as $ \partial_{\mu}\omega_{\nu}-\partial_{\nu}\omega_{\mu} $ and $ \partial_{\mu}{\boldsymbol{\rho}}_{\nu}-\partial_{\nu}{\boldsymbol{\rho}}_{\mu} $, respectively. The nonlinear potential of the σ field is given by $ U(\sigma)=\frac{1}{3}g_{2}\sigma^{3}+\frac{1}{4}g_{3}\sigma^{4} $. Here $ {\boldsymbol{\tau}} $ and T are the isospin matrices for the nucleon and ∆ [48, 49], while $ {{{\cal{T}}}} $ is the isospin transition matrix between the isospin 1/2 and the 3/2 fields [10].

    In the uniform rest nuclear matter, the effective momentum can be written as $ {\bf{p}}_i^*={\bf{p}}_i $ since the spatial components of vector field vanish, i.e., $ {\bf{\Sigma}}=0 $. Thus, in the mean field approach, the effective energy is given by:

    $ p_i^{*0}=p^{0}_{i}-\Sigma^{0}_{i}, $

    (A4)

    The effective masses of nucleon and ∆ read as:

    $ m^{*}_{i}=m_{i}+\Sigma^{S}_{i}, $

    (A5)

    Here $ \Sigma^{0}_{i} $ and $ \Sigma^{S}_{i} $ represent the vector and scalar self-energy respectively for the RMF parameter sets.

    The vector and scalar potentials in the nonlinear(NL) RMF model are expressed as:

    $ \Sigma^0_{i,NL}=g_{\omega }\bar{\omega}^{0}+g_{\rho }t_{3,i}\bar{\rho}^{0}_3 $

    (A6)

    $ \Sigma^S_{i,NL} =-g_{\sigma }\bar{\sigma}- g_{\delta }t_{3,i}\bar{\delta}_3 $

    (A7)

    where $ t_{3,i} $ represents the third component of the isospin of the nucleon and ∆, with the following values: $ t_{3,n}=-1 $, $ t_{3,p}=1 $, $ t_{3,\Delta^{++}}=1 $, $ t_{3,\Delta^{+}}=\frac{1}{3} $, $ t_{3,\Delta^{0}}=-\frac{1}{3} $, $ t_{3,\Delta^{-}}=-1 $. The $ \bar{\omega}^{0} $, $ \bar{\rho}^{0}_3 $, $ \bar{\sigma} $ and $ \bar{\delta}_3 $ denote the expectation values of the mesons field in the mean-field approximation. In the RMF model, the equations of motion for the mesons are:

    $ \begin{aligned}[b] m^{2}\bar{\sigma} =\;& g_{\sigma}\rho_{s}-g_2\bar{\sigma}^2-g_3\bar{\sigma}^3+g_{\sigma}g^2_{\omega}(\bar{\omega}^{0})^2(\alpha_1+\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\ & +g_{\sigma}g^2_{\rho}(\bar{\rho}_{3}^{0})^2(\alpha_2+\alpha^{\prime}_2 g_{\sigma}\bar{\sigma}) \end{aligned} $

    (A8)

    $\begin{aligned}[b] m^{2}_{\omega}\bar{\omega}^{0} =\;& g_{\omega}\rho-\zeta g_{\omega}^4(\bar{\omega}^{0})^3-g_{\sigma}g^2_{\omega}\bar{\sigma}\bar{\omega}^{0}(2\alpha_1+\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\& -\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\rho}_{3}^{0})^2\bar{\omega}^{0} \end{aligned}$

    (A9)

    $ \begin{aligned}[b] m^{2}_{\rho}\bar{\rho}_{3}^{0} =\;& g_{\rho}\rho_{3}-g_{\sigma}g^2_{\rho}\bar{\sigma}\bar{\rho}_{3}^{0}(2\alpha_2+\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})\\ &-\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}\bar{\rho}_{3}^{0}(\bar{\omega}^{0})^2 \end{aligned} $

    (A10)

    $ m^{2}_{\delta}\bar{\delta}_{3} = g_{\delta}\rho_{s3} $

    (A11)

    The nucleon densities are (assuming no ∆ density):

    $ \rho_s=\langle \bar{\Psi}\Psi \rangle= \rho_{s n}+\rho_{s p} $

    (A12)

    $ \rho=\langle \bar{\Psi}\gamma^0 \Psi \rangle= \rho_{n}+\rho_{p} $

    (A13)

    $ \rho_{s3}=\langle \bar{\Psi}\tau_3 \Psi \rangle= \rho_{s p}-\rho_{s n} $

    (A14)

    $ \rho_3=\langle \bar{\Psi}\gamma^0 \tau_3 \Psi \rangle= \rho_{p}-\rho_{n} $

    (A15)

    With Fermi momenta $ k_{F,i} $ for i = n or p, the scalar and vector densities are:

    $ \begin{aligned}[b] \rho_{si} =\;& \frac{C(i)}{(2\pi)^{3}}\int_{k<k_{F i}} d^{3}{\bf{k}} \frac{m^{*}_{i}}{\sqrt{k^{2}+m^{*2}_{i}}} \\ =\;& \frac{m^{*}_{i}}{2\pi^{2}}\left[k_{F i}E^*_{F i}-m^{*2}_{i}\rm{ln} \frac{k_{Fi}+E^*_{Fi}}{m^{*}_{i}}\right] \end{aligned} $

    (A16)

    $ \rho_{i} = \frac{C(i)}{(2\pi)^{3}}\int_{k<k_{F i}} d^{3}{\bf{k}} =\frac{k_{F i}^{3}}{3\pi^{2}} $

    (A17)

    where the degeneracy factor $ C(i=n,p)=2 $, and $ E^*_{F i}=\sqrt{k_{F i}^{2}+m^{2*}_{i}} $ is the Fermi energy of neutrons and protons.

    The eigenvalues of neutron and proton from the Dirac equation are:

    $ e_{n}=g_{\omega}\bar{\omega}^{0}-g_{\rho}\bar{\rho}_{3}^{0}+\sqrt{k^{2*}_{n}+m^{*2}_{n}}, $

    (A18)

    $ e_{p}=g_{\omega}\bar{\omega}^{0}+g_{\rho}\bar{\rho}_{3}^{0}+\sqrt{k^{2*}_{p}+m^{*2}_{p}}. $

    (A19)

    The expression for the energy density and pressure are obtained from the given Lagrangian using energy momentum tensor relation given by,

    $ T^{\mu\nu}=\sum\limits_{i}\frac{\partial {\cal{L}}}{\partial (\partial_{\mu} \phi_{i})}\partial^{\nu} \phi_{i}-g^{\mu\nu} {\cal{L}}, $

    (A20)

    where $ \phi_{i} $ runs over all possible fields. The energy density ϵ and pressure P can be obtain from the energy-momentum tensor:

    $\begin{aligned}[b] \epsilon_{NL} =\;& \langle T^{00} \rangle = \frac{1}{2}m^{2}_{\sigma}\bar{\sigma}^{2}+\frac{1}{3}g_{2}\bar{\sigma}^{3}+\frac{1}{4}g_{3}\bar{\sigma}^{4} -\frac{1}{2}m^{2}_{\omega}(\bar{\omega}^{0})^{2}\\ & -\frac{\zeta}{4} g_{\omega}^4(\bar{\omega}^{0})^4+g_{\omega}\bar{\omega}^{0}\rho-\frac{1}{2}m^{2}_{\rho}(\bar{\rho}^{0}_{3})^2+g_{\rho}\bar{\rho}^{0}_{3}\rho_{3}\\&+\frac{1}{2}m^{2}_{\delta}\bar{\delta}_{3}^2 -g_{\sigma}g^2_{\omega}\bar{\sigma}(\bar{\omega}^{0})^2(\alpha_1+\frac{1}{2}\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\ & -g_{\sigma}g^2_{\rho}\bar{\sigma}(\bar{\rho}_{3}^{0})^2(\alpha_2+\frac{1}{2}\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})-\frac{1}{2}\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\rho}_{3}^{0})^2(\bar{\omega}^{0})^2\\&+\frac{1}{4}[3E^*_{F n}\rho_{n}+m^{*}_{n}\rho_{s n}]+\frac{1}{4}[3E^*_{F p}\rho_{p}+m^{*}_{p}\rho_{s p}], \end{aligned}$

    (A21)

    and

    $ \begin{aligned}[b] P_{NL} =\;& \frac{1}{3}\sum\limits_{i=1}^{3}\langle T^{ii} \rangle= -\frac{1}{2}m^{2}_{\sigma}\bar{\sigma}^{2}-\frac{1}{3}g_{2}\bar{\sigma}^{3}-\frac{1}{4}g_{3}\bar{\sigma}^{4}\\ & +\frac{1}{2}m^{2}_{\omega}(\bar{\omega}^{0})^{2}+\frac{\zeta}{4} g_{\omega}^4(\bar{\omega}^{0})^4+\frac{1}{2}m^{2}_{\rho}(\bar{\rho}^{0}_{3})^2\\ & -\frac{1}{2}m^{2}_{\delta}\bar{\delta}_{3}^2+g_{\sigma}g^2_{\omega}\bar{\sigma}(\bar{\omega}^{0})^2(\alpha_1+\frac{1}{2}\alpha^{\prime}_1 g_{\sigma}\bar{\sigma})\\ & +g_{\sigma}g^2_{\rho}\bar{\sigma}(\bar{\rho}_{3}^{0})^2(\alpha_2+\frac{1}{2}\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})+\frac{1}{2}\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\rho}_{3}^{0})^2(\bar{\omega}^{0})^2\\ & +\frac{1}{4}[E^*_{F n}\rho_{n}-m^{*}_{n}\rho_{s n}]+\frac{1}{4}[E^*_{F p}\rho_{p}-m^{*}_{p}\rho_{s p}]. \end{aligned} $

    (A22)

    The same calculations for density-dependence and point-coupling models can be found in Refs.[30, 31, 5052].

    For symmetric nuclear matter, $ m^{*}_{n}=m^{*}_{p}=m^{*}_{N} $ since $ \bar{\delta}_{3} $ vanishes.

    The expressions of the symmetry energy and slope of symmetry energy L for nonlinear RMF models are:

    $ \begin{aligned}[b] S(\rho)_{NL}=\;& \frac{k_{F}^{2}}{6E^*_{F}}+\frac{1}{2}\rho\frac{g^2_{\rho}}{m^{*2}_{\rho}}\\ &-\frac{1}{2}\rho\left(\frac{\dfrac{g^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{g^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right), \end{aligned} $

    (A23)

    where $ m^{*2}_{\rho}=m^{2}_{\rho}+g_{\sigma}g^2_{\rho}\bar{\sigma}(2\alpha_2+\alpha^{\prime}_2 g_{\sigma}\bar{\sigma})+\alpha^{\prime}_3 g^2_{\omega}g^2_{\rho}(\bar{\omega}^{0})^2 $, and

    $ A(\rho,m^*_{N})=3\left( \frac{\rho_s}{m^*_{N}} -\frac{\rho}{E^*_{F}} \right) . $

    (A24)

    $ \begin{aligned}[b] L_{NL} =\;& \frac{k^{2}_{F}}{3E^{*}_{F}}\left( 1-\frac{k^{2}_{F}}{2E^{*2}_{F}} -\frac{k^{3}_{F}m^*_{N}}{E^{*2}_{F}\pi^2}\frac{\partial m^*_{N}}{\partial \rho}\right) \\ & +\frac{3g^{2}_{\rho}}{2m^{*2}_\rho}\rho\left( 1-\frac{1}{m^{*2}_{\rho}}\frac{\partial m^{*2}_{\rho}}{\partial \rho}\rho\right) \\ & -\frac{1}{2}\rho\left(\frac{\dfrac{g^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{g^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right)\\ &\times\Bigg\{3-\frac{2k^{2}_{F}}{E^{*2}_{F}}+6\left(1-\frac{m^{*2}_{N}}{E^{*2}_{F}}\right)\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\\ & -3\frac{g^2_{\delta}}{m^2_{\delta}}\frac{1}{1+\dfrac{g^2_{\delta}}{m^2_{\delta}}A}\Bigg[2A\Bigg(\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\\ & +\rho\frac{k^{2}_{F}}{E^{*3}_{F}}\Bigg(1-3\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\Bigg]\Bigg\}, \end{aligned} $

    (A25)

    2. Density dependence relativistic mean field

    The Lagrangian density of the density dependence model is:

    $ {\cal{L}}_{DD}={\cal{L}}_I+{\cal{L}}_F, $

    (A26)

    where $ {\cal{L}}_F $ is

    $ \begin{aligned}[b] {\cal{L}}_{F}=\;& \bar{\Psi}[i\gamma_{\mu}\partial^{\mu}-m_{N}]\Psi+\bar{\Delta}_{\lambda}[i\gamma_{\mu}\partial^{\mu}-m_{\Delta}]\Delta^{\lambda}\\& +\frac{1}{2}\left(\partial_{\mu}\sigma\partial^{\mu}\sigma-m_{\sigma}^2\sigma^2\right)\\ & -\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu}+\frac{1}{2}m^{2}_{\omega}\omega_{\mu}\omega^{\mu}\\ & +\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\pi}}\partial^{\mu}{\boldsymbol{\pi}}-m^{2}_{\pi}{\boldsymbol{\pi}}^{2}\right)-\frac{1}{4}{\boldsymbol{\rho}}_{\mu\nu}{\boldsymbol{\rho}}^{\mu\nu}+\frac{1}{2}m^{2}_{\rho}{\boldsymbol{\rho}}_{\mu}{\boldsymbol{\rho}}^{\mu}\\ & +\frac{1}{2}\left(\partial_{\mu}{\boldsymbol{\delta}}\partial^{\mu}{\boldsymbol{\delta}}-m^{2}_{\delta}{\boldsymbol{\delta}}^{2}\right), \end{aligned} $

    (A27)

    where $ {\cal{L}}_I $ is

    $ \begin{aligned}[b] {\cal{L}}_I =\;& {\cal{L}}_{NN}+{\cal{L}}_{\Delta \Delta}+{\cal{L}}_{N\Delta}\\ =\;& \Gamma_{\sigma}(\rho)\bar{\Psi}\Psi\sigma-\Gamma_{\omega}(\rho)\bar{\Psi}\gamma_{\mu}\Psi\omega^{\mu}-\Gamma_{\rho}(\rho)\bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\rho}}^{\mu}\\& +\frac{g_{\pi NN}}{m_{\pi}}\bar{\Psi}\gamma_{\mu}\gamma_{5}{\boldsymbol{\tau}} \cdot\Psi\partial^{\mu}{\boldsymbol{\pi}}+\Gamma_{\delta}(\rho)\bar{\Psi}{\boldsymbol{\tau}} \cdot\Psi{\boldsymbol{\delta}}\\ & +\Gamma_{\sigma}(\rho)\bar{\Delta}_{\mu}\Delta^{\mu}\sigma-\Gamma_{\omega}(\rho)\bar{\Delta}_{\mu}\gamma_{\nu}\Delta^{\mu}\omega^{\nu} \\ & -\Gamma_{\rho}(\rho)\bar{\Delta}_{\mu}\gamma_{\nu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\rho}}^{\nu}+\frac{g_{\pi \Delta\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}\partial^{\nu}{\boldsymbol{\pi}}\\& +\Gamma_{\delta}(\rho)\bar{\Delta}_{\mu}{\boldsymbol{\rm{T}}} \cdot\Delta^{\mu}{\boldsymbol{\delta}}+\frac{g_{\pi N\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}{{{\cal{T}}}}\cdot \Psi\partial^{\mu}{\boldsymbol{\pi}}\\ & +\frac{ig_{\rho N\Delta}}{m_{\rho}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{{{\cal{T}}}}\cdot \Psi\left(\partial^{\nu}{\boldsymbol{\rho}}^{\mu}-\partial^{\mu}{\boldsymbol{\rho}}^{\nu}\right)+h.c. \; \end{aligned} $

    (A28)

    The vector and scalar potentials can be written as:

    $ \Sigma^0_{i,DD}=\Gamma_{\omega }\bar{\omega}^{0}+\Gamma_{\rho }t_{3,i}\bar{\rho}^{0}_3 +\Sigma^{r} $

    (A29)

    $ \Sigma^S_{i,DD} =-\Gamma_{\sigma }\bar{\sigma}- \Gamma_{\delta }t_{3,i}\bar{\delta}_3 $

    (A30)

    Here $ \Sigma^{r} $ is the rearrangement term of the vector self-energy, its express is:

    $ \Sigma^{r}=\frac{\partial\Gamma_{\omega }}{\rho}\bar{\omega}^{0}\rho+\frac{\partial \Gamma_{\rho }}{\partial\rho}\bar{\rho}^{0}_3\rho_3-\frac{\partial\Gamma_{\sigma }}{\rho}\bar{\sigma}\rho_s-\frac{\partial\Gamma_{\delta }}{\rho}\bar{\delta}_3\rho_{s3} $

    (A31)

    The expressions of the symmetry energy and slope of symmetry energy L for density-dependent RMF models are:

    $\begin{aligned}[b] S(\rho)_{DD}=\;&\frac{k_{F}^{2}}{6E^*_{F}}+\frac{1}{2}\rho\frac{\Gamma^2_{\rho}}{m^{2}_{\rho}}-\frac{1}{2}\rho\\&\times\left(\frac{\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right),\end{aligned} $

    (A32)

    $ \begin{aligned}[b] L_{DD} =\;& \frac{k^{2}_{F}}{3E^{*}_{F}}\left( 1-\frac{k^{2}_{F}}{2E^{*2}_{F}} -\frac{k^{3}_{F}m^*_{N}}{E^{*2}_{F}\pi^2}\frac{\partial m^*_{N}}{\partial \rho}\right)\\ & +\frac{3\Gamma^{2}_{\rho}}{2m^{2}_\rho}\rho\left( 1+6\frac{\rho}{\Gamma_{\rho } }\frac{\partial \Gamma_{\rho }}{\partial \rho}\right)\\& -\frac{1}{2}\rho\left(\frac{\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}m^{* 2}_{N}}{E^{*2}_{F}\left[1+\dfrac{\Gamma^2_{\delta}}{m^{2}_{\delta}}A(\rho,m^*_{N})\right]}\right)\\& \times\Bigg\{3+6\frac{\rho}{\Gamma_{\delta} }\frac{\partial \Gamma_{\delta }}{\partial \rho}-\frac{2k^{2}_{F}}{E^{*2}_{F}}+6\left(1-\frac{m^{*2}_{N}}{E^{*2}_{F}}\right)\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho} \end{aligned} $

    $ \begin{aligned}[b] & -3\frac{\Gamma^2_{\delta}}{m^2_{\delta}}\frac{1}{1+\dfrac{\Gamma^2_{\delta}}{m^2_{\delta}}A}\Bigg[2A\Bigg(\frac{\rho}{\Gamma_{\delta} }\frac{\partial \Gamma_{\delta }}{\partial \rho}+\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\\ & +\rho\frac{k^{2}_{F}}{E^{*3}_{F}}\Bigg(1-3\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\Bigg]\Bigg\}, \end{aligned} $

    (A33)

    3. Point coupling model

    Lagrangian density of the point coupling mean field model is:

    $ {\cal{L}}_{PC}={\cal{L}}_{F}+{\cal{L}}_{I}, $

    (A34)

    where $ {\cal{L}}_{F} $ is :

    $ {\cal{L}}_{F}= \bar{\Psi}[i\gamma_{\mu}\partial^{\mu}-m_{N}]\Psi +\bar{\Delta}_{\lambda}[i\gamma_{\mu}\partial^{\mu}-m_{\Delta}]\Delta^{\lambda}, $

    (A35)

    where $ {\cal{L}}_{I} $ is :

    $ \begin{aligned}[b] {\cal{L}}_{I} =\;& -\frac{\alpha_S}{2}\left (\bar{\Psi}\Psi \right)^2-\frac{\alpha_V}{2}\left (\bar{\Psi}\gamma_{\mu}\Psi\right)\left (\bar{\Psi}\gamma^{\mu}\Psi\right)\\ & -\frac{\alpha_{TV}}{2} \left ( \bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi \right)\cdot \left( \bar{\Psi}\gamma^{\mu}{\boldsymbol{\tau}} \Psi \right)\\ & -\frac{f_{\pi NN}}{m_{\pi}}\left(\bar{\Psi}\gamma_{\mu}\gamma_{5}{\boldsymbol{\tau}} \Psi\right) \cdot \partial^{\mu} \left( \bar{\Psi}\gamma_{5}{\boldsymbol{\tau}} \Psi\right)\\& -\frac{\alpha_{TS}}{2} \left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)\cdot\left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)\\ & -\frac{\beta_S}{3}\left (\bar{\Psi}\Psi \right)^3-\frac{\gamma_S}{4}\left (\bar{\Psi}\Psi \right)^4 -\frac{\gamma_V}{4}\left (\bar{\Psi}\gamma_{\mu}\Psi\bar{\Psi}\gamma^{\mu}\Psi\right)^2 \\ & -\frac{\alpha_{TV}}{4} \left ( \bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\mu}{\boldsymbol{\tau}} \Psi \right)^2\\ & + [\eta_1+\eta_2\left (\bar{\Psi}\Psi \right)]\left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\mu}\Psi\right)\left (\bar{\Psi}\gamma^{\mu}\Psi\right)\\ & -\eta_3\left (\bar{\Psi}\Psi \right)\left ( \bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi \right)\cdot \left( \bar{\Psi}\gamma^{\mu}{\boldsymbol{\tau}} \Psi \right)\\ & -\frac{\alpha_S}{2}[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)+\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)]\\ & -\frac{\alpha_V}{2}[\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)+\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)]\\& -\frac{\alpha_{TV}}{2} [\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)\cdot \left( \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & +\left( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}} \Psi \right)\cdot\left ( \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)] \\ & -\frac{\alpha_{TS}}{2}[ \left (\bar{\Delta}_\mu{\boldsymbol{\rm{T}}} \Delta^\mu \right)\cdot\left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)+\left (\bar{\Psi}{\boldsymbol{\tau}} \Psi \right)\cdot\left (\bar{\Delta}_\mu{\boldsymbol{\rm{T}}} \Delta^\mu \right)]\\&-\frac{\beta_S}{3}[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)^2+\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)\\ & +\left (\bar{\Psi}\Psi \right)^2\left (\bar{\Delta}_\mu\Delta^\mu \right)]\\ & -\frac{\gamma_S}{4}[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)^3 +\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)^2\\ & +\left (\bar{\Psi}\Psi \right)^2\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)+\left (\bar{\Psi}\Psi \right)^3\left (\bar{\Delta}_\mu\Delta^\mu \right)] \\ &-\frac{\gamma_V}{4}[\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\bar{\Psi}\gamma^{\nu}\Psi\right)\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right) \\& +\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right) \end{aligned} $

    $ \begin{aligned}[b] & +\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right)\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right) \\&+\left (\bar{\Psi}\gamma_{\nu}\Psi\bar{\Psi}\gamma^{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\bar{\Psi}\gamma^{\nu}\Psi\right)]\\ & -\frac{\alpha_{TV}}{4} [\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right) \\ & + \left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & + \left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & + \left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \cdot \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}} \Delta^\mu \right)]\\ & - \eta_1[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\& + \left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ &+ \left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)]\\ & - \eta_2[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ & + \left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\Delta^\mu \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ &+ \left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\Psi \right)\left (\bar{\Delta}_\mu\gamma_{\nu}\Delta^\mu\right)\left (\bar{\Psi}\gamma^{\nu}\Psi\right)\\ & + \left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\Psi \right)\left (\bar{\Psi}\gamma_{\nu}\Psi\right)\left (\bar{\Delta}_\mu\gamma^{\nu}\Delta^\mu\right)]\\&-\eta_3[\left (\bar{\Delta}_\mu\Delta^\mu \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \right)\cdot \left( \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & +\left (\bar{\Psi}\Psi \right)\left ( \bar{\Delta}_\mu\gamma_{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \right)\cdot \left( \bar{\Psi}\gamma^{\nu}{\boldsymbol{\tau}} \Psi \right)\\ & +\left (\bar{\Psi}\Psi \right)\left ( \bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi \right)\cdot \left ( \bar{\Delta}_\mu\gamma^{\nu}{\boldsymbol{\rm{T}}}\Delta^\mu \right)]\\ & -\frac{f_{\pi NN}}{m_{\pi}}\left(\bar{\Delta}_\mu\gamma_{\nu}\gamma_{5}{\boldsymbol{\tau}} \Delta^\nu\right) \cdot \partial^{\mu} \left( \bar{\Psi}\gamma_{5}{\boldsymbol{\tau}} \Psi\right)\\ & +\frac{g_{\pi N\Delta}}{m_{\pi}}\bar{\Delta}_{\mu}{{{\cal{T}}}}\cdot \Psi\partial^{\mu}\left( \bar{\Psi}\gamma_{5}{\boldsymbol{\tau}} \Psi\right)\\& +\frac{ig_{\rho N\Delta}}{m_{\rho}}\bar{\Delta}_{\mu}\gamma_{\nu}\gamma_{5}{{{\cal{T}}}}\cdot \Psi\left(\partial^{\nu}(\bar{\Psi}\gamma_{\mu}{\boldsymbol{\tau}}\Psi)-\partial^{\mu}(\bar{\Psi}\gamma_{\nu}{\boldsymbol{\tau}}\Psi)\right) \\&+h.c. \; \end{aligned}\tag{A36} $

    (A36)

    The vector and scalar potentials can be expressed as:

    $ \begin{aligned}[b] \Sigma^0_{i,PC} =\;& \alpha_{V}\rho+\alpha_{TV}\rho_3t_{3,i}+\gamma_{TV}\rho^3+ \gamma_{TV}\rho^3_3t_{3,i} \\ & +2(\eta_1+\eta_2\rho_s)\rho_s\rho+2\eta_3\rho_s\rho_3t_{3,i} \end{aligned} $

    (A37)

    $ \begin{aligned}[b] \Sigma^S_{i,PC} =\;& \alpha_{S}\rho_S+\beta_{S}\rho^2_s+\gamma_{S}\rho^3_s+\eta_{1}\rho^2+ 2\eta_{2}\rho_s\rho^2 \\ &+\eta_3\rho^2_3+\alpha_{TS}\rho_{s3}t_{3,i} \end{aligned} $

    (A38)

    The expressions of the symmetry energy and slope of symmetry energy L for point-coupling RMF models are:

    $ \begin{aligned}[b] S(\rho)_{PC} =\;& \frac{k_{F}^{2}}{6E^*_{F}}+\frac{1}{2}\alpha_{V}\rho+\eta_3\rho_s\rho \\ & +\frac{1}{2}\alpha_{TS}\rho\left(\frac{m^{* 2}_{N}}{E^{*2}_{F}[1-\alpha_{TS}A(\rho,m^*_{N})]}\right), \end{aligned} $

    (A39)

    $ \begin{aligned}[b] L_{PC} =\;& \frac{k^{2}_{F}}{3E^{*}_{F}}\left( 1-\frac{k^{2}_{F}}{2E^{*2}_{F}} -\frac{k^{3}_{F}m^*_{N}}{E^{*2}_{F}\pi^2}\frac{\partial m^*_{N}}{\partial \rho}\right)\\& +\frac{3}{2}\alpha_{V}\rho+3\eta_3\rho_s\rho+3\eta_3\rho^2 \frac{\partial \rho_s}{\partial \rho} \\ & +\frac{1}{2}\alpha_{TS}\rho\left(\frac{m^{* 2}_{N}}{E^{*2}_{F}[1-\alpha_{TS}A(\rho,m^*_{N})]}\right)\\ & \times\Bigg\{3-\frac{2k^{2}_{F}}{E^{*2}_{F}}+6\Bigg(1-\frac{m^{*2}_{N}}{E^{*2}_{F}}\Bigg)\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\\ & +3\alpha_{TS}\frac{1}{1-\alpha_{TS}A}\Bigg[2A\Bigg(\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\\ & +\rho\frac{k^{2}_{F}}{E^{*3}_{F}}\Bigg(1-3\frac{\rho}{m^{*}_{N}}\frac{\partial m^{*}_{N}}{\partial \rho}\Bigg)\Bigg]\Bigg\}. \end{aligned} $

    (A40)
APPENDIX B: IN-MEDIUM $ NN\rightarrow N\Delta $ CROSS SECTION
  • Applying quasiparticle approximation [53], the in-medium cross sections are introduced via the replacement of the vacuum plane waves of the initial and final particles by the plane waves obtained by solution of the nucleon and ∆ equations of motion with scalar and vector fields. In detail, the matrix elements $ {\cal{M}}^* $ for the inelastic scattering process $ NN\rightarrow N\Delta $ are obtained by replacing the nucleon and ∆ masses and momenta in free space with their effective masses and kinetic momenta [24], i.e., $ m \to m^* $ and $ p^{\mu}\to p^{* \mu} $. As in Ref. [24], all the calculations performed in this work are are performed for colliding nucleons with their center-of-mass frame coinciding with the nuclear matter rest frame.

    The Feynmann diagrams corresponding to the inelastic-scattering $ NN\rightarrow N\Delta $ processes are shown in Fig. B1, which include the direct and exchange processes. The $ {\cal{M}}^* $-matrix derived from the interaction Lagrangian Eq. (A3) can be written by using the standard procedure [10],

    Figure B1.  The left diagram is the direct term and the right is the exchange term of the Feynmann diagram.

    $ {\cal{M}}^*={\cal{M}}_d^{*\pi}-{\cal{M}}_e^{*\pi}+{\cal{M}}_d^{*\rho}-{\cal{M}}_e^{*\rho}, $

    (B1)

    where

    $ \begin{aligned}[b] {\cal{M}}_d^{*\pi} =\;& -i\frac{g_{\pi NN} g_{\pi N\Delta} I_d }{ m_{\pi}^{2}( Q^{*2}_{d}- m_{\pi}^{2})}[\bar{\Psi}(p_3^* ) \gamma_{\mu}\gamma_5 Q_{d}^{*\mu} \Psi(p_1^*)]\\ & \times[\bar{\Delta}_{\nu} (p_4^* ) Q_d^{*\nu} \Psi(p_2^* )] \end{aligned} $

    (B2)

    $ \begin{aligned}[b] {\cal{M}}_d^{*\rho} =\;& i\frac{\Gamma_{\rho NN} g_{\rho N\Delta}I_d}{m_{\rho} }[\bar{\Psi}(p_3^* ) \gamma_{\mu} \Psi(p_1^* )] \\ & \times\frac{g^{\mu\tau}-Q_d^{*\mu} Q_d^{*\tau}/m^{2}_{\rho}}{Q_d^{*2}-m^{2}_{\rho}}\\ & \nonumber \times[\bar{\Delta}_{\sigma} (p_4^* ) \gamma_{\lambda} \gamma_{5} (Q_d^{*\lambda} \delta_{\sigma\tau}-Q_d^{*\sigma} \delta_{\lambda\tau}) \Psi(p_2^* )]\; . \end{aligned} $

    (B3)

    For the direct term, $ Q_{d}^{*\mu}=p_{3}^{*\mu}-p_{1}^{*\mu} $, while the exchange term $ {\cal{M}}^*_e $ is obtained by swapping $ p_{1}^{*\mu}\longleftrightarrow p_{2}^{*\mu} $ and $ Q_{e}^{*\mu}=p_{3}^{*\mu}-p_{2}^{*\mu} $. The isospin factors $ I_d $, $ I_e $ are given in Ref. [10].

    The in-medium $ NN\rightarrow N\Delta $ cross section is the averaged two-body cross section, taking into account the mass distribution of the ∆ resonance as a short-lived state. It can be expressed as:

    $ \sigma^*_{NN\rightarrow N\Delta}=\int_{m^*_{\Delta,\text{min}}}^{m^*_{\Delta,\text{max}}} dm^*_{\Delta}f(m^*_{\Delta})\tilde{\sigma}^*(m^*_{\Delta}), $

    (B4)

    where $ \tilde{\sigma}^*( m^*_{\Delta}) $ is the in-medium elementary two-body cross section. In the center-of-mass frame of colliding nucleons, it reads

    $ \tilde{\sigma}^*( m^*_{\Delta}) =\frac{1}{64\pi^2}\int \frac{|{\bf{p}}^{*}_{\text{out, c.m.}}|}{\sqrt{s^*_{\text{in}}}\sqrt{s^*_{\text{out}}}|{\bf{p}}^{*}_{\text{in, c.m.}}|} \overline{|{\cal{M}}^*|^2} d\Omega, $

    (B5)

    where $ {\bf{p}}^{*}_{\text{in, c.m.}} $ and $ {\bf{p}}^{*}_{\text{out, c.m.}} $ are the momenta of incoming (1 and 2) and outgoing particles (3 and 4), and $ s^*_{\text{in}}=(p^*_1+p^*_2)^2 $, and $ s^*_{\text{out}}=(p^*_3+p^*_4)^2 $.

    Here $ \overline{|{\cal{M}}^*|^2}=\dfrac{1}{(2s_{1}+1)(2s_2+1)}\sum\limits_{s_{1}s_{2}s_{3}s_{4}}|{\cal{M}}^*|^2 $ is,

    $ \begin{aligned}[b]& \sum\limits_{s_{1}s_{2}s_{3}s_{4}}|{\cal{M}}^*|^2 \\ =\;&\sum\limits_{s_{1}s_{2}s_{3}s_{4}} \{ |{\cal{M}}_d^{*\pi}|^2-{\cal{M}}_d^{*\pi \dagger}{\cal{M}}_e^{*\pi}-{\cal{M}}_e^{*\pi \dagger}{\cal{M}}_d^{*\pi}+|{\cal{M}}_e^{*\pi}|^2\\ &+|{\cal{M}}_d^{*\rho}|^2-{\cal{M}}_d^{*\rho \dagger}{\cal{M}}_e^{*\rho}-{\cal{M}}_e^{*\rho \dagger}{\cal{M}}_d^{*\rho}+|{\cal{M}}_e^{*\rho}|^2 \\& +{\cal{M}}_d^{*\pi \dagger}{\cal{M}}_d^{*\rho}-{\cal{M}}_d^{*\pi \dagger}{\cal{M}}_e^{*\rho}-{\cal{M}}_e^{*\pi \dagger}{\cal{M}}_d^{*\rho}+{\cal{M}}_e^{*\pi \dagger}{\cal{M}}_e^{*\rho} \\& +{\cal{M}}_d^{*\rho \dagger}{\cal{M}}_d^{*\pi}-{\cal{M}}_d^{*\rho \dagger}{\cal{M}}_e^{*\pi}-{\cal{M}}_e^{*\rho \dagger}{\cal{M}}_d^{*\pi}+{\cal{M}}_e^{*\rho \dagger}{\cal{M}}_e^{*\pi}\}. \end{aligned} $

    (B6)

    where the $ {\cal{M}}^* $-matrix is from exchange by π and ρ mesons, and the detail calculations can be found in Ref. [27]. Here, we show the calculation of $ \sum\limits_{s_{1}s_{2}s_{3}s_{4}} |{\cal{M}}_d^{*\pi}|^2 $ as an example in the following:

    $ \begin{aligned}[b]& \sum\limits_{s_{1}s_{2}s_{3}s_{4}} |{\cal{M}}_d^{*\pi}|^2 =\left(\frac{g_{\pi NN} g_{\pi N\Delta} I_d }{ m_{\pi}^{2}( Q^{*2}_{d}- m_{\pi}^{2})}\right)^2\\& \times\sum\limits_{s_{1}s_{2}s_{3}s_{4}}[\Psi(p_1^*)\bar{\Psi}(p_1^* ) \gamma_{\mu}\gamma_5 Q_{d}^{*\mu} \Psi(p_3^*)\bar{\Psi}(p_3^* )\gamma_{\sigma}\gamma_5 Q_{d}^{*\sigma}]\\& \times[\Psi(p_2^* )\bar{\Psi} (p_2^* ) Q_d^{*\nu} \Delta_{\nu} (p_4^* )\bar{\Delta}_{\tau} (p_4^* ) Q_d^{*\tau}]\\ =\;&\left(\frac{g_{\pi NN} g_{\pi N\Delta} I_d }{ m_{\pi}^{2}( t^{*}- m_{\pi}^{2})}\right)^2\\& \times\frac{2 (m^*_{N_{1}} + m^{*}_{N_{3}})^2((m^{*}_{N_{1}} - m^{*}_{N_{3}})^2 - t^*)}{3 m^{*2}_{\Delta_{4}}}\\& \times\left((m^{*}_{\Delta_{4}}-m^{*}_{N_{2}})^2 - t^*\right) \left((m^{*}_{N_{2}} + m^{*}_{\Delta_{4}})^2 - t^*\right)^2 \end{aligned} $

    (B7)

    where $ t=Q^{*2}_{d} $, for $ |{\cal{M}}_e^{*\pi}|^2 $ is $ N_{1}\longleftrightarrow N_{2} $. In Eq. (B5),the key element for the calculation of the cross section is the energy-momentum conservation in terms of the incoming ($ p^\mu_{1,2} $) and outgoing momenta ($ p^\mu_{3,4} $) of the particles. From the viewpoint of kinetic momentum, the energy-momentum conservation can be written as: $ p^\mu_{1}+p^\mu_{2}= p^\mu_{3}+p^\mu_{4} $ can be expressed as $ p^{*\mu}_{1}+\Sigma^{*\mu}_{1}+ p^{*\mu}_{2}+\Sigma^{*\mu}_{2}= p^{*\mu}_{3}+\Sigma^{*\mu}_{3}+p^{*\mu}_{4}+\Sigma^{*\mu}_{4} $, $ p^{*\mu}_{1}+ p^{*\mu}_{2}= p^{*\mu}_{3}+p^{*\mu}_{4}-\Delta\Sigma^{\mu} $, where $ \Delta\Sigma^{\mu}=\Sigma^{\mu}_{1}+\Sigma^{\mu}_{2}-\Sigma^{\mu}_{3}-\Sigma^{\mu}_{4} $ is the kinetic momentum change between the initial and final states. The change in effective energy is expressed as $ \Delta \Sigma^0=\Sigma^{0}_{1}+\Sigma^{0}_{2}-\Sigma^{0}_{3}-\Sigma^{0}_{4} $, which is the same the formula in Ref. [27, 54]. The similar issue also exists in the calculation of $ m^{*}_{\text{min}} $, $ m^{*}_{\text{max}} $ and $ \Gamma(m^{*}_{\Delta}) $ which are described in the following. Consequently, $ p^{*0}_1+p^{*0}_2 $ may differ from $ p^{*0}_3+p^{*0}_4 $, and $ s^*_{in}\ne s^*_{out} $ in Eq. (B5), and they are related according to the following relationship,

    $ \sqrt{s}=\sqrt{s^*_{in}}+\Sigma^0_{N_1}+\Sigma^0_{N_2}=\sqrt{s^*_{out}}+\Sigma^0_{N_3}+\Sigma^0_{\Delta_4}. $

    (B8)

    It is derived from

    $ \begin{aligned}[b] s =\;& (p_{N_{1}}+p_{N_{2}})^2\\ =\;& (\sqrt{m^{*2}_{N_{1}}+{\bf{p}}^{*2}_{N_{1}}}+\sqrt{m^{*2}_{N_{2}}+{\bf{p}}^{*2}_{N_{2}}}+\Sigma^0_{N_1}+\Sigma^0_{N_2})^2\\ & -({\bf{p}}^*_{N_{1}}+{\bf{p}}^*_{N_2})^2 \\ =\;& (p_{N_{3}}+p_{\Delta_4})^2\\ =\;& (\sqrt{m^{*2}_{N_{3}}+{\bf{p}}^{*2}_{N_{3}}}+\sqrt{m^{*2}_{\Delta_4}+{\bf{p}}^{*2}_{\Delta_4}}+\Sigma^0_{N_3}+\Sigma^0_{\Delta_4})^2\\& -({\bf{p}}^*_{N_{3}}+{\bf{p}}^*_{\Delta_4})^2 \end{aligned} $

    (B9)

    where $ {\bf{p}}^*_{N_1}=-{\bf{p}}^*_{N_2} $ and $ {\bf{p}}^*_{N_3}=-{\bf{p}}^*_{\Delta_4} $ in the center-of-mass frame.

    The value of $ m^*_{\Delta,\text{min}} $ in the cross-section formula is determined by the $ \Delta \rightarrow N+ \pi $ in isospin asymmetric nuclear matter as in Refs. [27, 55], where both the N and π are at rest. Additionally, the modification of the scalar and vector self-energies in this isospin exchange process must also be taken into account. Thus,

    $ m^*_{\Delta,\text{min}}=m^*_{N}+m_\pi-\Delta\Sigma_d^0, $

    (B10)

    with $ \Delta\Sigma_d^0=\Sigma_\Delta^0-\Sigma_{N}^0 $. The $ m^*_{\Delta,\text{max}} $ is evaluated from $ NN\to N\Delta $ for producing N and ∆ at rest. This leads to:

    $ m^*_{\Delta,\text{max}}=\sqrt{s}-m^*_{N_{3}}-\Sigma^0_{N_{3}}-\Sigma^0_{\Delta_4}. $

    (B11)

    The in-medium ∆ mass distribution $ f(m^*_\Delta) $ is another crucial component of in-medium $ NN\rightarrow N\Delta $ cross section, for which proper energy conservation is also required, as $ f(m^*_\Delta) $ is related to the $ \Delta\rightarrow N+\pi $ process in isospin asymmetric nuclear matter. In this paper, the spectral function of ∆ is taken from Ref. [24],

    $ f(m^*_{\Delta})=\frac{2}{\pi}\frac{m^{* 2}_{\Delta}\Gamma(m^{*}_{\Delta})}{(m^{*2}_{0,\Delta}-m^{*2}_{\Delta})^2+m^{*2}_{\Delta}\Gamma^2(m^{*}_{\Delta}) }. $

    (B12)

    Here, $ m^*_{0,\Delta} $ is the effective pole mass of ∆. The decay width $ \Gamma(m^*_\Delta) $ is taken as the parameterization form [24]

    $ \Gamma(m^{*}_{\Delta})= \Gamma_{0}\frac{q^{3}(m^{* }_{\Delta},m^*_N,m^*_\pi)}{q^{3}(m^{*}_{0,\Delta},m^*_N,m^*_\pi)}\frac{q^{3}(m^{*}_{0,\Delta},m^*_N,m^*_\pi)+\eta^2}{q^{3}(m^{* }_{\Delta},m^*_N,m^*_\pi)+\eta^2}\frac{m^{*}_{0,\Delta}}{m^{*}_{\Delta}}, $

    (B13)

    where

    $ q(m^{*}_\Delta,m^*_{N},m^*_\pi)= \sqrt{\frac{\left((m^*_\Delta+\Sigma^{0}_{\Delta}-\Sigma^{0}_{N})^2+m_{N}^{*2}-m_{\pi}^{* 2}\right)^2} {4(m^{*}_\Delta+\Sigma^{0}_{\Delta}-\Sigma^{0}_{N})^2}-m_{N}^{*2}}. $

    (B14)

    The coefficients of $ \Gamma_0 $=0.118 GeV and η=0.2 GeV/c are used in the above parameterization formula.

    The form factors are adopted to effectively consider the contributions from high-order terms and the finite size of baryons [10, 56], which read

    $ F_N (t^*)=\frac{\Lambda_N^2}{\Lambda_N^2-t^*} exp\left(-b\sqrt{s^*-4m_N^{* 2}}\right) $

    (B15)

    $ F_{\Delta}(t^*)=\frac{\Lambda_{\Delta}^2}{\Lambda_{\Delta}^2-t^*}. $

    (B16)

    Here $ F_N (t^* ) $ is the form factor for nucleon-meson-nucleon, and $ F_\Delta (t^*) $ for nucleon-meson-∆ coupling, b=0.046 GeV−1 for both $ \rho NN $ and $ \pi NN $ coupling. The cutoff parameter $ \Lambda_{\pi N N}\approx 1 $ GeV, $ \Lambda_{\rho N N} $ and $ \Lambda_{\pi N \Delta} $ are determined by best fitting the data of $ NN\rightarrow N\Delta $ cross section in free space ranging from $ \sqrt{s} $=2.0 to 5 GeV [45]. Here, $ \Lambda_{\rho N \Delta} $ is determined based on the relationship $ \Lambda_{\rho N \Delta}=\Lambda_{\rho NN}\dfrac{\Lambda_{\pi N\Delta}}{\Lambda_{\pi NN}} $ as in [10]. Concerning the coupling constant $ g_{\rho N\Delta} $, we use $ g_{\rho N\Delta}\approx\dfrac{\sqrt{3}}{2} \Gamma_{\rho NN} \dfrac{m_{\rho}}{m_N} $ which are derived from the static quark model [10]. The cutoff parameters used in calculations of in-medium $ NN\rightarrow N\Delta $ cross sections are listed in Table C1 in Appendix C.

APPENDIX B: IN-MEDIUM $ NN\rightarrow N\Delta $ CROSS SECTION
  • Applying quasiparticle approximation [53], the in-medium cross sections are introduced via the replacement of the vacuum plane waves of the initial and final particles by the plane waves obtained by solution of the nucleon and ∆ equations of motion with scalar and vector fields. In detail, the matrix elements $ {\cal{M}}^* $ for the inelastic scattering process $ NN\rightarrow N\Delta $ are obtained by replacing the nucleon and ∆ masses and momenta in free space with their effective masses and kinetic momenta [24], i.e., $ m \to m^* $ and $ p^{\mu}\to p^{* \mu} $. As in Ref. [24], all the calculations performed in this work are are performed for colliding nucleons with their center-of-mass frame coinciding with the nuclear matter rest frame.

    The Feynmann diagrams corresponding to the inelastic-scattering $ NN\rightarrow N\Delta $ processes are shown in Fig. B1, which include the direct and exchange processes. The $ {\cal{M}}^* $-matrix derived from the interaction Lagrangian Eq. (A3) can be written by using the standard procedure [10],

    Figure B1.  The left diagram is the direct term and the right is the exchange term of the Feynmann diagram.

    $ {\cal{M}}^*={\cal{M}}_d^{*\pi}-{\cal{M}}_e^{*\pi}+{\cal{M}}_d^{*\rho}-{\cal{M}}_e^{*\rho}, $

    (B1)

    where

    $ \begin{aligned}[b] {\cal{M}}_d^{*\pi} =\;& -i\frac{g_{\pi NN} g_{\pi N\Delta} I_d }{ m_{\pi}^{2}( Q^{*2}_{d}- m_{\pi}^{2})}[\bar{\Psi}(p_3^* ) \gamma_{\mu}\gamma_5 Q_{d}^{*\mu} \Psi(p_1^*)]\\ & \times[\bar{\Delta}_{\nu} (p_4^* ) Q_d^{*\nu} \Psi(p_2^* )] \end{aligned} $

    (B2)

    $ \begin{aligned}[b] {\cal{M}}_d^{*\rho} =\;& i\frac{\Gamma_{\rho NN} g_{\rho N\Delta}I_d}{m_{\rho} }[\bar{\Psi}(p_3^* ) \gamma_{\mu} \Psi(p_1^* )] \\ & \times\frac{g^{\mu\tau}-Q_d^{*\mu} Q_d^{*\tau}/m^{2}_{\rho}}{Q_d^{*2}-m^{2}_{\rho}}\\ & \nonumber \times[\bar{\Delta}_{\sigma} (p_4^* ) \gamma_{\lambda} \gamma_{5} (Q_d^{*\lambda} \delta_{\sigma\tau}-Q_d^{*\sigma} \delta_{\lambda\tau}) \Psi(p_2^* )]\; . \end{aligned} $

    (B3)

    For the direct term, $ Q_{d}^{*\mu}=p_{3}^{*\mu}-p_{1}^{*\mu} $, while the exchange term $ {\cal{M}}^*_e $ is obtained by swapping $ p_{1}^{*\mu}\longleftrightarrow p_{2}^{*\mu} $ and $ Q_{e}^{*\mu}=p_{3}^{*\mu}-p_{2}^{*\mu} $. The isospin factors $ I_d $, $ I_e $ are given in Ref. [10].

    The in-medium $ NN\rightarrow N\Delta $ cross section is the averaged two-body cross section, taking into account the mass distribution of the ∆ resonance as a short-lived state. It can be expressed as:

    $ \sigma^*_{NN\rightarrow N\Delta}=\int_{m^*_{\Delta,\text{min}}}^{m^*_{\Delta,\text{max}}} dm^*_{\Delta}f(m^*_{\Delta})\tilde{\sigma}^*(m^*_{\Delta}), $

    (B4)

    where $ \tilde{\sigma}^*( m^*_{\Delta}) $ is the in-medium elementary two-body cross section. In the center-of-mass frame of colliding nucleons, it reads

    $ \tilde{\sigma}^*( m^*_{\Delta}) =\frac{1}{64\pi^2}\int \frac{|{\bf{p}}^{*}_{\text{out, c.m.}}|}{\sqrt{s^*_{\text{in}}}\sqrt{s^*_{\text{out}}}|{\bf{p}}^{*}_{\text{in, c.m.}}|} \overline{|{\cal{M}}^*|^2} d\Omega, $

    (B5)

    where $ {\bf{p}}^{*}_{\text{in, c.m.}} $ and $ {\bf{p}}^{*}_{\text{out, c.m.}} $ are the momenta of incoming (1 and 2) and outgoing particles (3 and 4), and $ s^*_{\text{in}}=(p^*_1+p^*_2)^2 $, and $ s^*_{\text{out}}=(p^*_3+p^*_4)^2 $.

    Here $ \overline{|{\cal{M}}^*|^2}=\dfrac{1}{(2s_{1}+1)(2s_2+1)}\sum\limits_{s_{1}s_{2}s_{3}s_{4}}|{\cal{M}}^*|^2 $ is,

    $ \begin{aligned}[b]& \sum\limits_{s_{1}s_{2}s_{3}s_{4}}|{\cal{M}}^*|^2 \\ =\;&\sum\limits_{s_{1}s_{2}s_{3}s_{4}} \{ |{\cal{M}}_d^{*\pi}|^2-{\cal{M}}_d^{*\pi \dagger}{\cal{M}}_e^{*\pi}-{\cal{M}}_e^{*\pi \dagger}{\cal{M}}_d^{*\pi}+|{\cal{M}}_e^{*\pi}|^2\\ &+|{\cal{M}}_d^{*\rho}|^2-{\cal{M}}_d^{*\rho \dagger}{\cal{M}}_e^{*\rho}-{\cal{M}}_e^{*\rho \dagger}{\cal{M}}_d^{*\rho}+|{\cal{M}}_e^{*\rho}|^2 \\& +{\cal{M}}_d^{*\pi \dagger}{\cal{M}}_d^{*\rho}-{\cal{M}}_d^{*\pi \dagger}{\cal{M}}_e^{*\rho}-{\cal{M}}_e^{*\pi \dagger}{\cal{M}}_d^{*\rho}+{\cal{M}}_e^{*\pi \dagger}{\cal{M}}_e^{*\rho} \\& +{\cal{M}}_d^{*\rho \dagger}{\cal{M}}_d^{*\pi}-{\cal{M}}_d^{*\rho \dagger}{\cal{M}}_e^{*\pi}-{\cal{M}}_e^{*\rho \dagger}{\cal{M}}_d^{*\pi}+{\cal{M}}_e^{*\rho \dagger}{\cal{M}}_e^{*\pi}\}. \end{aligned} $

    (B6)

    where the $ {\cal{M}}^* $-matrix is from exchange by π and ρ mesons, and the detail calculations can be found in Ref. [27]. Here, we show the calculation of $ \sum\limits_{s_{1}s_{2}s_{3}s_{4}} |{\cal{M}}_d^{*\pi}|^2 $ as an example in the following:

    $ \begin{aligned}[b]& \sum\limits_{s_{1}s_{2}s_{3}s_{4}} |{\cal{M}}_d^{*\pi}|^2 =\left(\frac{g_{\pi NN} g_{\pi N\Delta} I_d }{ m_{\pi}^{2}( Q^{*2}_{d}- m_{\pi}^{2})}\right)^2\\& \times\sum\limits_{s_{1}s_{2}s_{3}s_{4}}[\Psi(p_1^*)\bar{\Psi}(p_1^* ) \gamma_{\mu}\gamma_5 Q_{d}^{*\mu} \Psi(p_3^*)\bar{\Psi}(p_3^* )\gamma_{\sigma}\gamma_5 Q_{d}^{*\sigma}]\\& \times[\Psi(p_2^* )\bar{\Psi} (p_2^* ) Q_d^{*\nu} \Delta_{\nu} (p_4^* )\bar{\Delta}_{\tau} (p_4^* ) Q_d^{*\tau}]\\ =\;&\left(\frac{g_{\pi NN} g_{\pi N\Delta} I_d }{ m_{\pi}^{2}( t^{*}- m_{\pi}^{2})}\right)^2\\& \times\frac{2 (m^*_{N_{1}} + m^{*}_{N_{3}})^2((m^{*}_{N_{1}} - m^{*}_{N_{3}})^2 - t^*)}{3 m^{*2}_{\Delta_{4}}}\\& \times\left((m^{*}_{\Delta_{4}}-m^{*}_{N_{2}})^2 - t^*\right) \left((m^{*}_{N_{2}} + m^{*}_{\Delta_{4}})^2 - t^*\right)^2 \end{aligned} $

    (B7)

    where $ t=Q^{*2}_{d} $, for $ |{\cal{M}}_e^{*\pi}|^2 $ is $ N_{1}\longleftrightarrow N_{2} $. In Eq. (B5),the key element for the calculation of the cross section is the energy-momentum conservation in terms of the incoming ($ p^\mu_{1,2} $) and outgoing momenta ($ p^\mu_{3,4} $) of the particles. From the viewpoint of kinetic momentum, the energy-momentum conservation can be written as: $ p^\mu_{1}+p^\mu_{2}= p^\mu_{3}+p^\mu_{4} $ can be expressed as $ p^{*\mu}_{1}+\Sigma^{*\mu}_{1}+ p^{*\mu}_{2}+\Sigma^{*\mu}_{2}= p^{*\mu}_{3}+\Sigma^{*\mu}_{3}+p^{*\mu}_{4}+\Sigma^{*\mu}_{4} $, $ p^{*\mu}_{1}+ p^{*\mu}_{2}= p^{*\mu}_{3}+p^{*\mu}_{4}-\Delta\Sigma^{\mu} $, where $ \Delta\Sigma^{\mu}=\Sigma^{\mu}_{1}+\Sigma^{\mu}_{2}-\Sigma^{\mu}_{3}-\Sigma^{\mu}_{4} $ is the kinetic momentum change between the initial and final states. The change in effective energy is expressed as $ \Delta \Sigma^0=\Sigma^{0}_{1}+\Sigma^{0}_{2}-\Sigma^{0}_{3}-\Sigma^{0}_{4} $, which is the same the formula in Ref. [27, 54]. The similar issue also exists in the calculation of $ m^{*}_{\text{min}} $, $ m^{*}_{\text{max}} $ and $ \Gamma(m^{*}_{\Delta}) $ which are described in the following. Consequently, $ p^{*0}_1+p^{*0}_2 $ may differ from $ p^{*0}_3+p^{*0}_4 $, and $ s^*_{in}\ne s^*_{out} $ in Eq. (B5), and they are related according to the following relationship,

    $ \sqrt{s}=\sqrt{s^*_{in}}+\Sigma^0_{N_1}+\Sigma^0_{N_2}=\sqrt{s^*_{out}}+\Sigma^0_{N_3}+\Sigma^0_{\Delta_4}. $

    (B8)

    It is derived from

    $ \begin{aligned}[b] s =\;& (p_{N_{1}}+p_{N_{2}})^2\\ =\;& (\sqrt{m^{*2}_{N_{1}}+{\bf{p}}^{*2}_{N_{1}}}+\sqrt{m^{*2}_{N_{2}}+{\bf{p}}^{*2}_{N_{2}}}+\Sigma^0_{N_1}+\Sigma^0_{N_2})^2\\ & -({\bf{p}}^*_{N_{1}}+{\bf{p}}^*_{N_2})^2 \\ =\;& (p_{N_{3}}+p_{\Delta_4})^2\\ =\;& (\sqrt{m^{*2}_{N_{3}}+{\bf{p}}^{*2}_{N_{3}}}+\sqrt{m^{*2}_{\Delta_4}+{\bf{p}}^{*2}_{\Delta_4}}+\Sigma^0_{N_3}+\Sigma^0_{\Delta_4})^2\\& -({\bf{p}}^*_{N_{3}}+{\bf{p}}^*_{\Delta_4})^2 \end{aligned} $

    (B9)

    where $ {\bf{p}}^*_{N_1}=-{\bf{p}}^*_{N_2} $ and $ {\bf{p}}^*_{N_3}=-{\bf{p}}^*_{\Delta_4} $ in the center-of-mass frame.

    The value of $ m^*_{\Delta,\text{min}} $ in the cross-section formula is determined by the $ \Delta \rightarrow N+ \pi $ in isospin asymmetric nuclear matter as in Refs. [27, 55], where both the N and π are at rest. Additionally, the modification of the scalar and vector self-energies in this isospin exchange process must also be taken into account. Thus,

    $ m^*_{\Delta,\text{min}}=m^*_{N}+m_\pi-\Delta\Sigma_d^0, $

    (B10)

    with $ \Delta\Sigma_d^0=\Sigma_\Delta^0-\Sigma_{N}^0 $. The $ m^*_{\Delta,\text{max}} $ is evaluated from $ NN\to N\Delta $ for producing N and ∆ at rest. This leads to:

    $ m^*_{\Delta,\text{max}}=\sqrt{s}-m^*_{N_{3}}-\Sigma^0_{N_{3}}-\Sigma^0_{\Delta_4}. $

    (B11)

    The in-medium ∆ mass distribution $ f(m^*_\Delta) $ is another crucial component of in-medium $ NN\rightarrow N\Delta $ cross section, for which proper energy conservation is also required, as $ f(m^*_\Delta) $ is related to the $ \Delta\rightarrow N+\pi $ process in isospin asymmetric nuclear matter. In this paper, the spectral function of ∆ is taken from Ref. [24],

    $ f(m^*_{\Delta})=\frac{2}{\pi}\frac{m^{* 2}_{\Delta}\Gamma(m^{*}_{\Delta})}{(m^{*2}_{0,\Delta}-m^{*2}_{\Delta})^2+m^{*2}_{\Delta}\Gamma^2(m^{*}_{\Delta}) }. $

    (B12)

    Here, $ m^*_{0,\Delta} $ is the effective pole mass of ∆. The decay width $ \Gamma(m^*_\Delta) $ is taken as the parameterization form [24]

    $ \Gamma(m^{*}_{\Delta})= \Gamma_{0}\frac{q^{3}(m^{* }_{\Delta},m^*_N,m^*_\pi)}{q^{3}(m^{*}_{0,\Delta},m^*_N,m^*_\pi)}\frac{q^{3}(m^{*}_{0,\Delta},m^*_N,m^*_\pi)+\eta^2}{q^{3}(m^{* }_{\Delta},m^*_N,m^*_\pi)+\eta^2}\frac{m^{*}_{0,\Delta}}{m^{*}_{\Delta}}, $

    (B13)

    where

    $ q(m^{*}_\Delta,m^*_{N},m^*_\pi)= \sqrt{\frac{\left((m^*_\Delta+\Sigma^{0}_{\Delta}-\Sigma^{0}_{N})^2+m_{N}^{*2}-m_{\pi}^{* 2}\right)^2} {4(m^{*}_\Delta+\Sigma^{0}_{\Delta}-\Sigma^{0}_{N})^2}-m_{N}^{*2}}. $

    (B14)

    The coefficients of $ \Gamma_0 $=0.118 GeV and η=0.2 GeV/c are used in the above parameterization formula.

    The form factors are adopted to effectively consider the contributions from high-order terms and the finite size of baryons [10, 56], which read

    $ F_N (t^*)=\frac{\Lambda_N^2}{\Lambda_N^2-t^*} exp\left(-b\sqrt{s^*-4m_N^{* 2}}\right) $

    (B15)

    $ F_{\Delta}(t^*)=\frac{\Lambda_{\Delta}^2}{\Lambda_{\Delta}^2-t^*}. $

    (B16)

    Here $ F_N (t^* ) $ is the form factor for nucleon-meson-nucleon, and $ F_\Delta (t^*) $ for nucleon-meson-∆ coupling, b=0.046 GeV−1 for both $ \rho NN $ and $ \pi NN $ coupling. The cutoff parameter $ \Lambda_{\pi N N}\approx 1 $ GeV, $ \Lambda_{\rho N N} $ and $ \Lambda_{\pi N \Delta} $ are determined by best fitting the data of $ NN\rightarrow N\Delta $ cross section in free space ranging from $ \sqrt{s} $=2.0 to 5 GeV [45]. Here, $ \Lambda_{\rho N \Delta} $ is determined based on the relationship $ \Lambda_{\rho N \Delta}=\Lambda_{\rho NN}\dfrac{\Lambda_{\pi N\Delta}}{\Lambda_{\pi NN}} $ as in [10]. Concerning the coupling constant $ g_{\rho N\Delta} $, we use $ g_{\rho N\Delta}\approx\dfrac{\sqrt{3}}{2} \Gamma_{\rho NN} \dfrac{m_{\rho}}{m_N} $ which are derived from the static quark model [10]. The cutoff parameters used in calculations of in-medium $ NN\rightarrow N\Delta $ cross sections are listed in Table C1 in Appendix C.

APPENDIX C: THE PARAMETERS FOR DIFFERENT RMF MODELS
  • For the coupling constant parameters of $ g_{m\Delta\Delta} $(where $ m=\sigma, \omega, \rho, \delta $), we adopt $ g_{m}=g_{m\Delta\Delta}=g_{mNN} $ consistent with the approach used in many studies involving transport models [11, 24, 26]. The parameters used in the effective Lagrangian, $ g_{\pi NN} $=1.008, $ g_{\pi N\Delta} $=2.202, $ m_{\pi} $=138 MeV, $ m_{N} $=939 MeV, $ m_{0,\Delta} $=1232 MeV.

    Model $E_0$ $\rho_{0}$ $K_0$ J L $K_{sym}$ $m^{*}_{N}/m_{N}$ $m^{*}_{0,\Delta}/m_{0,\Delta}$ $\Lambda_{\pi N\Delta}$
    Nonlinear models
    E [57]−16.350.150210.9538.58124.69133.520.5780.679417
    ER [57]−16.250.149215.9139.41126.63128.120.5820.682416
    NL1 [58]−16.420.152212.3543.54140.37143.390.5720.674415
    NL3 [59]−16.240.148269.9137.34118.32100.530.5960.692417
    NL3-II [59]−16.260.149270.6237.67119.57103.190.5930.690417
    NL3* [60]−16.310.150258.7638.70122.72105.720.5940.690417
    NL4 [61]−16.160.148273.3336.34115.31100.410.5950.692417
    NLC [62]−15.770.148221.7635.23108.5276.140.6330.720417
    NLB1 [58]−15.800.162276.7332.94102.1275.610.6210.711420
    NLB2 [58]−15.800.162239.9632.93110.57157.150.5570.662421
    NLRA1 [63]−16.150.147284.4236.44115.3195.560.5970.693417
    NLS [64]−16.450.150262.9842.08131.6194.270.6040.698415
    P-067 [65]−16.310.160245.7241.80124.8148.930.6650.745416
    P-070 [65]−16.250.160228.2341.04119.7426.040.7020.773416
    P-075 [65]−16.510.170253.3342.17119.16−2.190.7550.813416
    P-080 [65]−15.840.160251.7139.28108.78−14.060.8000.847416
    GL1 [66]−16.300.153200.0832.5094.6833.080.7000.772418
    GL2 [66]−16.310.153199.9232.5091.528.740.7500.810418
    GL3 [66]−16.310.153199.8732.5089.03−8.430.8000.848417
    GL4 [66]−16.310.153249.8832.5094.3125.230.7000.772418
    GL5 [66]−16.310.153249.8132.5091.192.630.7500.810418
    GL6 [66]−16.310.153249.9032.5088.73−12.930.8000.848417
    GL7 [66]−16.300.153299.9932.5093.9417.940.7000.772418
    GL8 [66]−16.310.153299.8432.5090.86−2.910.7500.810418
    GL82 [67]−16.000.145285.4136.22101.28−8.060.7730.827416
    GL9 [66]−16.310.153299.8932.5088.44−16.840.8000.848417
    GM1 [68]−16.340.153299.8532.5093.9617.960.7000.772418
    GM2 [68]−16.310.153299.9432.5089.34−11.990.7800.832418
    GM3 [68]−16.300.153239.9332.5089.71−6.460.7800.832418
    GPS1 [69]−15.980.150250.4632.5288.96−12.540.8000.848417
    GPS2 [69]−15.960.150300.6732.5288.66−16.420.8000.848417
    NLρA [29]−16.000.160240.1630.3484.523.380.7500.809419
    NLρB [29]−16.300.148271.5533.70106.8795.850.6000.695418
    RMF301 [70]−16.300.153253.7932.5089.87−6.240.7750.829418
    RMF302 [70]−16.300.153249.6432.5089.65−7.350.7800.832418
    RMF303 [70]−16.300.153248.8032.5089.61−7.570.7810.833418
    RMF304 [70]−16.300.153247.9732.5089.57−7.780.7820.834418
    RMF305 [70]−16.300.153246.3032.5089.49−8.210.7840.835418
    RMF306 [70]−16.300.153244.6232.5089.40−8.630.7860.837418
    RMF307 [70]−16.300.153243.7732.5089.36−8.830.7870.838418
    RMF308 [70]−16.300.153242.9432.5089.32−9.040.7880.838418
    RMF309 [70]−16.300.153241.2432.5089.24−9.450.7900.840418
    RMF310 [70]−16.300.153238.6832.5089.12−10.040.7930.842418
    RMF311 [70]−16.300.153237.8232.5089.08−10.240.7940.843417
    RMF312 [70]−16.300.153236.9632.5089.04−10.430.7950.844417
    RMF313 [70]−16.300.153235.2432.5088.96−10.820.7970.845417
    RMF314 [70]−16.300.153234.3932.5088.92−11.010.7980.846417
    RMF315 [70]−16.300.153233.9432.5088.90−11.100.7990.846417
    RMF316 [70]−16.300.153233.5132.5088.88−11.200.7990.847417
    RMF317 [70]−16.300.153232.6532.5088.84−11.380.8000.848417
    RMF401 [70]−16.310.153229.8732.5093.7823.040.7100.779418
    RMF402 [70]−16.310.153231.8732.5093.7722.740.7100.779418
    RMF403 [70]−16.310.153229.8832.5093.1218.060.7200.787418
    RMF404 [70]−16.470.153230.4232.5093.1417.860.7200.786418
    RMF405 [70]−16.310.153233.8832.5093.0917.500.7200.787418
    RMF406 [70]−16.310.153233.9232.5089.75−5.800.7800.832418
    RMF407 [70]−16.310.153229.8932.5092.5013.420.7300.794418
    RMF408 [70]−16.310.153231.8932.5092.4813.150.7300.794418
    RMF409 [70]−16.310.153233.8932.5092.4712.880.7300.794418
    RMF410 [70]−16.310.153235.8932.5092.4512.620.7300.794418
    RMF411 [70]−16.310.153229.9032.5091.909.090.7400.802418
    RMF412 [70]−16.310.153231.9032.5091.888.840.7400.802418
    RMF413 [70]−16.310.153233.9032.5091.878.580.7400.802418
    RMF414 [70]−16.310.153235.9032.5091.868.330.7400.802418
    RMF415 [70]−16.300.153229.9132.5091.335.060.7500.809418
    RMF416 [70]−16.300.153231.9132.5091.314.820.7500.809418
    RMF417 [70]−16.300.153233.9132.5091.304.580.7500.809418
    RMF418 [70]−16.300.153235.9132.5091.294.340.7500.809418
    RMF419 [70]−16.310.153229.9132.5090.791.310.7600.817418
    RMF420 [70]−16.310.153231.9132.5090.771.090.7600.817418
    RMF421 [70]−16.310.153233.9132.5090.760.860.7600.817418
    RMF422 [70]−16.310.153229.9232.5090.27−2.170.7700.825418
    RMF423 [70]−16.310.153231.9132.5090.26−2.380.7700.825418
    RMF424 [70]−16.300.153245.9332.5089.21−9.880.7900.840418
    RMF425 [70]−16.300.153247.9432.5089.20−10.060.7900.840418
    RMF426 [70]−16.300.153249.9432.5089.19−10.240.7900.840418
    RMF427 [70]−16.300.153235.9432.5088.83−11.670.8000.848417
    RMF428 [70]−16.300.153237.9432.5088.81−11.850.8000.848417
    RMF429 [70]−16.300.153239.9432.5088.80−12.020.8000.848417
    RMF430 [70]−16.300.153241.9432.5088.79−12.190.8000.848417
    RMF431 [70]−16.300.153243.9432.5088.78−12.360.8000.848417
    RMF432 [70]−16.300.153245.9432.5088.77−12.530.8000.848417
    RMF433 [70]−16.300.153247.9432.5088.75−12.700.8000.848417
    RMF434 [70]−16.300.153249.9432.5088.74−12.870.8000.848417
    Q1 [71]−16.100.148242.1936.46115.77105.770.5970.693417
    SMFT2 [72]−13.850.162210.0217.3752.7260.280.6560.738430
    S271 [38]−16.240.148270.9435.03101.9122.280.7000.771417
    SRK3M5 [73]−16.000.150299.9523.5082.46146.790.5500.657425
    DJM [72]−14.810.172245.7120.2363.0332.620.5690.671430
    HD [74]−16.220.177283.5035.67105.8644.510.6660.746419
    MS1 [75]−15.750.148249.9735.00106.7638.560.6000.695418
    MS3 [76]−15.750.148247.8034.91102.11−0.100.6010.696418
    NLSV1 [77]−16.260.149269.4937.28114.6158.910.6130.705417
    NLSV2 [77]−16.240.147293.9536.84111.7839.600.6180.709417
    TM1 [78]−16.260.145279.5536.84110.6133.550.6350.722416
    PK1 [79]−16.220.148283.3937.61115.7855.170.6050.700417
    Z271 [38]−16.240.148270.9633.3091.02−16.400.8000.848417
    hybrid [80]−16.240.148228.7537.24118.41110.500.5960.692417
    Z271* [81]−16.240.148268.6940.1883.52−197.690.8000.848413
    HC [74]−15.750.169233.8831.0658.60−98.750.6790.756417
    XS [76]−16.300.148228.1131.7854.85−28.760.6010.696410
    BKA20 [82]−16.090.146236.8932.2475.39−15.040.6420.727412
    BKA22 [82]−16.080.147223.0933.1378.67−8.840.6080.701410
    BKA24 [82]−16.130.147225.9734.1884.77−14.950.6030.698413
    FSUGOLD [83]−16.280.148228.5632.5460.38−51.450.6110.703413
    FSUGOLD4 [84]−16.530.148228.9531.4751.98−16.120.6100.703410
    FSUGOLD5 [84]−16.920.148229.5330.5645.6623.280.6100.703413
    FSUGZ00 [85]−16.030.149241.7431.4762.27−3.220.6050.699410
    FSUGZ03 [85]−16.070.147230.7331.5063.86−11.750.6030.698410
    FSUGZ06 [85]−16.050.146226.4831.2262.53−24.490.6070.700410
    IU-FSU [86]−16.400.155233.3931.3447.3528.990.6090.702410
    NL3V1 [87]−16.240.148269.6036.01101.080.620.5960.692416
    NL3V2 [87]−16.240.148269.6034.9387.64−46.250.5960.692416
    NL3V3 [87]−16.240.148269.6034.4381.97−56.290.5960.692416
    NL3V4 [87]−16.240.148269.6033.9876.87−60.120.5960.692415
    NL3V5 [87]−16.240.148269.6033.1268.15−53.400.5960.692415
    NL3V6 [87]−16.240.148269.6032.3561.05−34.300.5960.692414
    S271V1 [87]−16.240.148270.9835.7395.92−44.060.7000.771416
    S271V2 [87]−16.240.148270.9835.0586.87−90.330.7000.771416
    S271V3 [87]−16.240.148270.9834.4278.86−120.990.7000.771416
    S271V4 [87]−16.240.148270.9833.8271.75−139.520.7000.771415
    S271V5 [87]−16.240.148270.9833.2765.44−148.630.7000.771415
    S271V6 [87]−16.240.148270.9832.7459.81−150.450.7000.771415
    Z271S1 [87]−16.240.148270.9534.9586.86−64.860.8000.848415
    Z271S2 [87]−16.240.148270.9534.0776.62−92.280.8000.848415
    Z271S3 [87]−16.240.148270.9533.2767.81−104.570.8000.848414
    Z271S4 [87]−16.240.148270.9532.5360.18−106.040.8000.848414
    Z271S5 [87]−16.240.148270.9531.8453.57−99.820.8000.848413
    Z271S6 [87]−16.240.148270.9531.2047.80−88.220.8000.848412
    Z271V1 [87]−16.240.148270.9535.3490.86−66.360.8000.848416
    Z271V2 [87]−16.240.148270.9534.8083.61−104.830.8000.848416
    Z271V3 [87]−16.240.148270.9534.5480.23−120.380.8000.848415
    Z271V4 [87]−16.240.148270.9534.2876.99−133.750.8000.848415
    Z271V5 [87]−16.240.148270.9534.0473.90−145.140.8000.848415
    Z271V6 [87]−16.240.148270.9533.8070.94−154.730.8000.848415
    G1 [71]−16.140.153215.3438.51123.3097.030.6330.721417
    G2 [71]−16.070.154215.0036.40100.71−7.480.6640.744416
    G2* [81]−16.070.154216.8730.4669.87−21.860.6630.743413
    TM1* [88]−16.330.145281.1336.87101.72−13.780.6340.721415
    BSR1 [89]−16.020.148239.6031.0359.3912.920.6050.699410
    BSR2 [89]−16.030.149241.8131.5462.14−2.870.6050.699410
    BSR3 [89]−16.090.150232.8432.8170.63−7.450.6040.698410
    BSR4 [89]−16.080.150236.4733.1273.09−20.920.6070.700412
    BSR5 [89]−16.120.151237.3334.5183.51−14.000.6070.700413
    BSR6 [89]−16.130.149233.8835.5785.54−49.590.6020.697414
    BSR7 [89]−16.180.149229.7637.1998.93−17.040.6020.697415
    BSR8 [89]−16.040.147231.4431.0960.29−0.680.6060.699410
    BSR9 [89]−16.080.147230.7031.5763.76−11.420.6030.698410
    BSR10 [89]−16.070.147224.9032.6570.64−16.620.6010.696410
    BSR11 [89]−16.080.147227.9833.7378.89−24.710.6050.699412
    BSR12 [89]−16.100.147230.1433.9377.73−44.280.6080.701414
    BSR13 [89]−16.130.147227.2535.7790.94−41.620.6040.698415
    BSR14 [89]−16.180.147233.2936.2493.64−41.830.6090.702415
    BSR15 [89]−16.030.146229.1431.0461.96−21.360.6070.700410
    BSR16 [89]−16.050.146226.5731.2962.45−24.160.6070.700410
    BSR17 [89]−16.050.146219.6231.9267.28−31.570.6090.702410
    BSR18 [89]−16.050.146221.6332.7672.69−42.250.6060.700412
    BSR19 [89]−16.080.147222.0633.8379.58−50.190.6080.701414
    BSR20 [89]−16.090.146222.6934.5187.97−39.860.6060.700415
    BSR21 [89]−16.120.145219.4735.9292.86−45.940.6020.697415
    SVI-1 [90]−16.300.149261.3436.94116.1295.110.6170.708417
    SVI-2 [90]−16.310.149273.6137.13116.3991.950.6200.710417
    SIG-OM [91]−16.310.149262.5836.91111.6240.960.6230.713417
    NL$\rho\delta$A [29]−16.000.160240.1630.71102.67127.370.7500.809410
    NL$\rho\delta$B [29]−16.300.148271.5534.06138.90398.270.6000.695410
    Density-dependent models
    DD-ME2 [52]−16.140.152251.2732.3151.27−87.220.5720.674410
    DD-ME1 [92]−16.230.152243.8433.0655.43−101.030.5780.678410
    TW99 [93]−16.250.153240.1632.7655.31−124.690.5550.661412
    DD-F [94]−16.040.147222.8731.6255.97−139.710.5560.662413
    DD2 [95]−16.030.149242.4131.6755.03−93.210.5630.667412
    DD [96]−16.020.149239.8831.6455.97−95.290.5650.668412
    PKDD [79]−16.270.150261.9436.7990.20−80.540.5710.673415
    DDMEδ [30]−16.080.152219.5932.3452.80−118.130.6090.702416
    DDRH$\rho\delta$ [31]−16.250.153240.1625.0947.8181.150.5550.661417
    Point-coupling models
    FA3 [50]−16.020.152275.9029.6929.08−275.050.6760.753430
    FA4 [50]−16.090.152293.7929.7730.65−257.830.6800.756430
    FZ3 [50]−15.930.152297.7529.9633.78−262.690.7420.803430
    VZ3 [50]−16.040.148282.0934.03121.49151.250.6260.715430
    PC-F1 [51]−16.180.151255.2037.78117.1574.680.6100.703430
    PC-F3 [51]−16.180.151254.9938.26118.5774.740.6100.703430

    Table C1.  The saturation properties of all RMF models are used in this work. Excepting for $m^{*}_{N}/m_{N}$ and $m^{*}_{0,\Delta}/m_{0,\Delta}$ in dimensionless, and $\rho_{0}$ in fm−3, all entries are in MeV. All $\Lambda_{\rho NN}=1000$ MeV, except for $\Lambda_{\rho NN}=798$, 650 and 580 MeV for FSUGOLD5, DDMEδ and DDRH$\rho\delta$.

APPENDIX C: THE PARAMETERS FOR DIFFERENT RMF MODELS
  • For the coupling constant parameters of $ g_{m\Delta\Delta} $(where $ m=\sigma, \omega, \rho, \delta $), we adopt $ g_{m}=g_{m\Delta\Delta}=g_{mNN} $ consistent with the approach used in many studies involving transport models [11, 24, 26]. The parameters used in the effective Lagrangian, $ g_{\pi NN} $=1.008, $ g_{\pi N\Delta} $=2.202, $ m_{\pi} $=138 MeV, $ m_{N} $=939 MeV, $ m_{0,\Delta} $=1232 MeV.

    Model $E_0$ $\rho_{0}$ $K_0$ J L $K_{sym}$ $m^{*}_{N}/m_{N}$ $m^{*}_{0,\Delta}/m_{0,\Delta}$ $\Lambda_{\pi N\Delta}$
    Nonlinear models
    E [57]−16.350.150210.9538.58124.69133.520.5780.679417
    ER [57]−16.250.149215.9139.41126.63128.120.5820.682416
    NL1 [58]−16.420.152212.3543.54140.37143.390.5720.674415
    NL3 [59]−16.240.148269.9137.34118.32100.530.5960.692417
    NL3-II [59]−16.260.149270.6237.67119.57103.190.5930.690417
    NL3* [60]−16.310.150258.7638.70122.72105.720.5940.690417
    NL4 [61]−16.160.148273.3336.34115.31100.410.5950.692417
    NLC [62]−15.770.148221.7635.23108.5276.140.6330.720417
    NLB1 [58]−15.800.162276.7332.94102.1275.610.6210.711420
    NLB2 [58]−15.800.162239.9632.93110.57157.150.5570.662421
    NLRA1 [63]−16.150.147284.4236.44115.3195.560.5970.693417
    NLS [64]−16.450.150262.9842.08131.6194.270.6040.698415
    P-067 [65]−16.310.160245.7241.80124.8148.930.6650.745416
    P-070 [65]−16.250.160228.2341.04119.7426.040.7020.773416
    P-075 [65]−16.510.170253.3342.17119.16−2.190.7550.813416
    P-080 [65]−15.840.160251.7139.28108.78−14.060.8000.847416
    GL1 [66]−16.300.153200.0832.5094.6833.080.7000.772418
    GL2 [66]−16.310.153199.9232.5091.528.740.7500.810418
    GL3 [66]−16.310.153199.8732.5089.03−8.430.8000.848417
    GL4 [66]−16.310.153249.8832.5094.3125.230.7000.772418
    GL5 [66]−16.310.153249.8132.5091.192.630.7500.810418
    GL6 [66]−16.310.153249.9032.5088.73−12.930.8000.848417
    GL7 [66]−16.300.153299.9932.5093.9417.940.7000.772418
    GL8 [66]−16.310.153299.8432.5090.86−2.910.7500.810418
    GL82 [67]−16.000.145285.4136.22101.28−8.060.7730.827416
    GL9 [66]−16.310.153299.8932.5088.44−16.840.8000.848417
    GM1 [68]−16.340.153299.8532.5093.9617.960.7000.772418
    GM2 [68]−16.310.153299.9432.5089.34−11.990.7800.832418
    GM3 [68]−16.300.153239.9332.5089.71−6.460.7800.832418
    GPS1 [69]−15.980.150250.4632.5288.96−12.540.8000.848417
    GPS2 [69]−15.960.150300.6732.5288.66−16.420.8000.848417
    NLρA [29]−16.000.160240.1630.3484.523.380.7500.809419
    NLρB [29]−16.300.148271.5533.70106.8795.850.6000.695418
    RMF301 [70]−16.300.153253.7932.5089.87−6.240.7750.829418
    RMF302 [70]−16.300.153249.6432.5089.65−7.350.7800.832418
    RMF303 [70]−16.300.153248.8032.5089.61−7.570.7810.833418
    RMF304 [70]−16.300.153247.9732.5089.57−7.780.7820.834418
    RMF305 [70]−16.300.153246.3032.5089.49−8.210.7840.835418
    RMF306 [70]−16.300.153244.6232.5089.40−8.630.7860.837418
    RMF307 [70]−16.300.153243.7732.5089.36−8.830.7870.838418
    RMF308 [70]−16.300.153242.9432.5089.32−9.040.7880.838418
    RMF309 [70]−16.300.153241.2432.5089.24−9.450.7900.840418
    RMF310 [70]−16.300.153238.6832.5089.12−10.040.7930.842418
    RMF311 [70]−16.300.153237.8232.5089.08−10.240.7940.843417
    RMF312 [70]−16.300.153236.9632.5089.04−10.430.7950.844417
    RMF313 [70]−16.300.153235.2432.5088.96−10.820.7970.845417
    RMF314 [70]−16.300.153234.3932.5088.92−11.010.7980.846417
    RMF315 [70]−16.300.153233.9432.5088.90−11.100.7990.846417
    RMF316 [70]−16.300.153233.5132.5088.88−11.200.7990.847417
    RMF317 [70]−16.300.153232.6532.5088.84−11.380.8000.848417
    RMF401 [70]−16.310.153229.8732.5093.7823.040.7100.779418
    RMF402 [70]−16.310.153231.8732.5093.7722.740.7100.779418
    RMF403 [70]−16.310.153229.8832.5093.1218.060.7200.787418
    RMF404 [70]−16.470.153230.4232.5093.1417.860.7200.786418
    RMF405 [70]−16.310.153233.8832.5093.0917.500.7200.787418
    RMF406 [70]−16.310.153233.9232.5089.75−5.800.7800.832418
    RMF407 [70]−16.310.153229.8932.5092.5013.420.7300.794418
    RMF408 [70]−16.310.153231.8932.5092.4813.150.7300.794418
    RMF409 [70]−16.310.153233.8932.5092.4712.880.7300.794418
    RMF410 [70]−16.310.153235.8932.5092.4512.620.7300.794418
    RMF411 [70]−16.310.153229.9032.5091.909.090.7400.802418
    RMF412 [70]−16.310.153231.9032.5091.888.840.7400.802418
    RMF413 [70]−16.310.153233.9032.5091.878.580.7400.802418
    RMF414 [70]−16.310.153235.9032.5091.868.330.7400.802418
    RMF415 [70]−16.300.153229.9132.5091.335.060.7500.809418
    RMF416 [70]−16.300.153231.9132.5091.314.820.7500.809418
    RMF417 [70]−16.300.153233.9132.5091.304.580.7500.809418
    RMF418 [70]−16.300.153235.9132.5091.294.340.7500.809418
    RMF419 [70]−16.310.153229.9132.5090.791.310.7600.817418
    RMF420 [70]−16.310.153231.9132.5090.771.090.7600.817418
    RMF421 [70]−16.310.153233.9132.5090.760.860.7600.817418
    RMF422 [70]−16.310.153229.9232.5090.27−2.170.7700.825418
    RMF423 [70]−16.310.153231.9132.5090.26−2.380.7700.825418
    RMF424 [70]−16.300.153245.9332.5089.21−9.880.7900.840418
    RMF425 [70]−16.300.153247.9432.5089.20−10.060.7900.840418
    RMF426 [70]−16.300.153249.9432.5089.19−10.240.7900.840418
    RMF427 [70]−16.300.153235.9432.5088.83−11.670.8000.848417
    RMF428 [70]−16.300.153237.9432.5088.81−11.850.8000.848417
    RMF429 [70]−16.300.153239.9432.5088.80−12.020.8000.848417
    RMF430 [70]−16.300.153241.9432.5088.79−12.190.8000.848417
    RMF431 [70]−16.300.153243.9432.5088.78−12.360.8000.848417
    RMF432 [70]−16.300.153245.9432.5088.77−12.530.8000.848417
    RMF433 [70]−16.300.153247.9432.5088.75−12.700.8000.848417
    RMF434 [70]−16.300.153249.9432.5088.74−12.870.8000.848417
    Q1 [71]−16.100.148242.1936.46115.77105.770.5970.693417
    SMFT2 [72]−13.850.162210.0217.3752.7260.280.6560.738430
    S271 [38]−16.240.148270.9435.03101.9122.280.7000.771417
    SRK3M5 [73]−16.000.150299.9523.5082.46146.790.5500.657425
    DJM [72]−14.810.172245.7120.2363.0332.620.5690.671430
    HD [74]−16.220.177283.5035.67105.8644.510.6660.746419
    MS1 [75]−15.750.148249.9735.00106.7638.560.6000.695418
    MS3 [76]−15.750.148247.8034.91102.11−0.100.6010.696418
    NLSV1 [77]−16.260.149269.4937.28114.6158.910.6130.705417
    NLSV2 [77]−16.240.147293.9536.84111.7839.600.6180.709417
    TM1 [78]−16.260.145279.5536.84110.6133.550.6350.722416
    PK1 [79]−16.220.148283.3937.61115.7855.170.6050.700417
    Z271 [38]−16.240.148270.9633.3091.02−16.400.8000.848417
    hybrid [80]−16.240.148228.7537.24118.41110.500.5960.692417
    Z271* [81]−16.240.148268.6940.1883.52−197.690.8000.848413
    HC [74]−15.750.169233.8831.0658.60−98.750.6790.756417
    XS [76]−16.300.148228.1131.7854.85−28.760.6010.696410
    BKA20 [82]−16.090.146236.8932.2475.39−15.040.6420.727412
    BKA22 [82]−16.080.147223.0933.1378.67−8.840.6080.701410
    BKA24 [82]−16.130.147225.9734.1884.77−14.950.6030.698413
    FSUGOLD [83]−16.280.148228.5632.5460.38−51.450.6110.703413
    FSUGOLD4 [84]−16.530.148228.9531.4751.98−16.120.6100.703410
    FSUGOLD5 [84]−16.920.148229.5330.5645.6623.280.6100.703413
    FSUGZ00 [85]−16.030.149241.7431.4762.27−3.220.6050.699410
    FSUGZ03 [85]−16.070.147230.7331.5063.86−11.750.6030.698410
    FSUGZ06 [85]−16.050.146226.4831.2262.53−24.490.6070.700410
    IU-FSU [86]−16.400.155233.3931.3447.3528.990.6090.702410
    NL3V1 [87]−16.240.148269.6036.01101.080.620.5960.692416
    NL3V2 [87]−16.240.148269.6034.9387.64−46.250.5960.692416
    NL3V3 [87]−16.240.148269.6034.4381.97−56.290.5960.692416
    NL3V4 [87]−16.240.148269.6033.9876.87−60.120.5960.692415
    NL3V5 [87]−16.240.148269.6033.1268.15−53.400.5960.692415
    NL3V6 [87]−16.240.148269.6032.3561.05−34.300.5960.692414
    S271V1 [87]−16.240.148270.9835.7395.92−44.060.7000.771416
    S271V2 [87]−16.240.148270.9835.0586.87−90.330.7000.771416
    S271V3 [87]−16.240.148270.9834.4278.86−120.990.7000.771416
    S271V4 [87]−16.240.148270.9833.8271.75−139.520.7000.771415
    S271V5 [87]−16.240.148270.9833.2765.44−148.630.7000.771415
    S271V6 [87]−16.240.148270.9832.7459.81−150.450.7000.771415
    Z271S1 [87]−16.240.148270.9534.9586.86−64.860.8000.848415
    Z271S2 [87]−16.240.148270.9534.0776.62−92.280.8000.848415
    Z271S3 [87]−16.240.148270.9533.2767.81−104.570.8000.848414
    Z271S4 [87]−16.240.148270.9532.5360.18−106.040.8000.848414
    Z271S5 [87]−16.240.148270.9531.8453.57−99.820.8000.848413
    Z271S6 [87]−16.240.148270.9531.2047.80−88.220.8000.848412
    Z271V1 [87]−16.240.148270.9535.3490.86−66.360.8000.848416
    Z271V2 [87]−16.240.148270.9534.8083.61−104.830.8000.848416
    Z271V3 [87]−16.240.148270.9534.5480.23−120.380.8000.848415
    Z271V4 [87]−16.240.148270.9534.2876.99−133.750.8000.848415
    Z271V5 [87]−16.240.148270.9534.0473.90−145.140.8000.848415
    Z271V6 [87]−16.240.148270.9533.8070.94−154.730.8000.848415
    G1 [71]−16.140.153215.3438.51123.3097.030.6330.721417
    G2 [71]−16.070.154215.0036.40100.71−7.480.6640.744416
    G2* [81]−16.070.154216.8730.4669.87−21.860.6630.743413
    TM1* [88]−16.330.145281.1336.87101.72−13.780.6340.721415
    BSR1 [89]−16.020.148239.6031.0359.3912.920.6050.699410
    BSR2 [89]−16.030.149241.8131.5462.14−2.870.6050.699410
    BSR3 [89]−16.090.150232.8432.8170.63−7.450.6040.698410
    BSR4 [89]−16.080.150236.4733.1273.09−20.920.6070.700412
    BSR5 [89]−16.120.151237.3334.5183.51−14.000.6070.700413
    BSR6 [89]−16.130.149233.8835.5785.54−49.590.6020.697414
    BSR7 [89]−16.180.149229.7637.1998.93−17.040.6020.697415
    BSR8 [89]−16.040.147231.4431.0960.29−0.680.6060.699410
    BSR9 [89]−16.080.147230.7031.5763.76−11.420.6030.698410
    BSR10 [89]−16.070.147224.9032.6570.64−16.620.6010.696410
    BSR11 [89]−16.080.147227.9833.7378.89−24.710.6050.699412
    BSR12 [89]−16.100.147230.1433.9377.73−44.280.6080.701414
    BSR13 [89]−16.130.147227.2535.7790.94−41.620.6040.698415
    BSR14 [89]−16.180.147233.2936.2493.64−41.830.6090.702415
    BSR15 [89]−16.030.146229.1431.0461.96−21.360.6070.700410
    BSR16 [89]−16.050.146226.5731.2962.45−24.160.6070.700410
    BSR17 [89]−16.050.146219.6231.9267.28−31.570.6090.702410
    BSR18 [89]−16.050.146221.6332.7672.69−42.250.6060.700412
    BSR19 [89]−16.080.147222.0633.8379.58−50.190.6080.701414
    BSR20 [89]−16.090.146222.6934.5187.97−39.860.6060.700415
    BSR21 [89]−16.120.145219.4735.9292.86−45.940.6020.697415
    SVI-1 [90]−16.300.149261.3436.94116.1295.110.6170.708417
    SVI-2 [90]−16.310.149273.6137.13116.3991.950.6200.710417
    SIG-OM [91]−16.310.149262.5836.91111.6240.960.6230.713417
    NL$\rho\delta$A [29]−16.000.160240.1630.71102.67127.370.7500.809410
    NL$\rho\delta$B [29]−16.300.148271.5534.06138.90398.270.6000.695410
    Density-dependent models
    DD-ME2 [52]−16.140.152251.2732.3151.27−87.220.5720.674410
    DD-ME1 [92]−16.230.152243.8433.0655.43−101.030.5780.678410
    TW99 [93]−16.250.153240.1632.7655.31−124.690.5550.661412
    DD-F [94]−16.040.147222.8731.6255.97−139.710.5560.662413
    DD2 [95]−16.030.149242.4131.6755.03−93.210.5630.667412
    DD [96]−16.020.149239.8831.6455.97−95.290.5650.668412
    PKDD [79]−16.270.150261.9436.7990.20−80.540.5710.673415
    DDMEδ [30]−16.080.152219.5932.3452.80−118.130.6090.702416
    DDRH$\rho\delta$ [31]−16.250.153240.1625.0947.8181.150.5550.661417
    Point-coupling models
    FA3 [50]−16.020.152275.9029.6929.08−275.050.6760.753430
    FA4 [50]−16.090.152293.7929.7730.65−257.830.6800.756430
    FZ3 [50]−15.930.152297.7529.9633.78−262.690.7420.803430
    VZ3 [50]−16.040.148282.0934.03121.49151.250.6260.715430
    PC-F1 [51]−16.180.151255.2037.78117.1574.680.6100.703430
    PC-F3 [51]−16.180.151254.9938.26118.5774.740.6100.703430

    Table C1.  The saturation properties of all RMF models are used in this work. Excepting for $m^{*}_{N}/m_{N}$ and $m^{*}_{0,\Delta}/m_{0,\Delta}$ in dimensionless, and $\rho_{0}$ in fm−3, all entries are in MeV. All $\Lambda_{\rho NN}=1000$ MeV, except for $\Lambda_{\rho NN}=798$, 650 and 580 MeV for FSUGOLD5, DDMEδ and DDRH$\rho\delta$.

Reference (96)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return