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Abstract: The  theoretical  prediction  on  the  the  in-medium  cross sections  based  on  a  one  boson  ex-
change model involves significant parameter uncertainties. In this work, we reduce these uncertainties by employing
relativistic mean field (RMF) models constrained by neutron star observations. Specifically, the range of the correc-
tion factors  is significantly narrowed at nuclear densities above saturation.
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The  medium  cross  sections  in  transport  mode
simulations  play  a  crucial  role  in  intermediate-energy
heavy ion  collisions  (HIC),  as  they  significantly  influ-
ence  the  predictions  of  reaction  dynamics,  collective
flow,  stopping power,  and particle  productions  [1−9].  In
the  transport  model  simulations,  the  in-medium

 cross  sections  are  a  critical  component  of  the
 loops,  which  can  effect  the  pion  multiplicity

data. The  ratio serves as a sensitive observable for
probing  the  symmetry  energy  at  suprasaturation  density.
For  reproducing  the  pion  multiplicity  data,  the  in-medi-
um  cross  section  ( ) is  one  of  the  im-
portant  ingredients  because  it  will  directly  influence  the
first ∆ production which can decay into nucleon and pion
or rescatter with nucleons.

NN→ N∆ σfree
NN→N∆

σ∗NN→N∆ = Rσfree
NN→N∆

NN→ N∆

Many  transport  codes  adopted  the  free  space
 cross section, i.e., the  taken from Ref.

[10],  or  phenomenological  in-medium cross  section,  i.e.,
,  in  the  collision  integral  of  transport

models  [11].  Recent  transport  model  comparison  studies
by the transport model evaluation project (TMEP) collab-
oration  highlight  the  large  model  dependence  in  pion
yields  and  the  need  for  improved  in-medium  inputs
[12−18]. The  isospin  independent  microscopic  ap-
proaches have been employed to investigate the in-medi-
um  cross sections in symmetric nuclear matter

NN→ N∆

NN→ N∆

[19−25],  where  the  medium  correction  factor R is  the
same  for  for  all  channels  of  the  process.  For
the  isospin  asymmetric  nuclear  matter,  Li  el  at.  studied
the in-medium  cross section without consider-
ing the mass distribution of ∆ resonance and threshold ef-
fects by using the relativistic Boltzmann-Uehling-Uhlen-
beck (RBUU) microscopic transport  theory based on the
closed time-path Green's function technique in Ref. [26].

NN→ N∆
σ∗NN→N∆

ρδ ρδ

NN→ N∆

Rpp→n∆++ < Rnn→p∆− RNN→N∆+ < RNN→N∆0

In our previous work [27],  the in-medium 
cross section  by considering the threshold effect
and the mass distribution of the ∆ resonance in asymmet-
ric  nuclear  matter.  Further,  the  dependence  of  medium
correction factor R on the relativistic mean field paramet-
ers  was  investigated  in  our  previous  work  [28].  With  3
RMF  models,  i.e.,  NL  [29],  DDMEδ [30],  DDRH
[31],  our  results  show  that R increases  with  the  slope
parameter L when  using δ parameter  sets  for  a  given
isospin asymmetry. To better understand the influence of
the δ meson on the in-medium  cross sections,
we  compared  calculations  of R performed  with  and
without δ-meson  parameter  sets  in  our  subsequent  work
[32]. The results indicate that, when using parameter sets
without  the δ meson,  the  cross-section  factors  satisfy

 and , while the op-
posite  trend  is  observed  when  the δ meson meson  is  in-
cluded.
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NN→ N∆

NN→ N∆

However,  with  more  than  300  available  mean  field
models, there  exists  large  uncertainty  in  these  cross  sec-
tion results. Therefore, it is essential to reduce the in-me-
dium  cross  sections,  especially  because  they
are  increasingly  vital  for  improving transport  models  —
particularly in the context of pion production and for fur-
ther constraining the symmetry energy at suprasaturation
densities.  In  this  paper,  we  provide  reductions  on  the
range  of  values  for  the  in-medium  cross sec-
tions in isospin asymmetric nuclear matter, based on a se-
lected subset of RMF models that have been constrained
by neutron  star  observations,  as  discussed  in  our  previ-
ous work [33].

NN→ N∆

The  paper  is  organized  as  follows.  First,  we  briefly
describe  the  properties  of  nuclear  matter  for  different
RMF models. Next, we discuss the constraints on the in-
medium correction factor R for  cross sections.
Finally, we provide a summary of our findings.

NN→ N∆

NN→ N∆

For the calculation of  the in-medium cross
section  in  nuclear  matter,  we  employ  a  one-boson ex-
change model  based on a  relativistic  Lagrangian that  in-
cludes both nucleons and ∆. According to the structure of
the  Lagrangian,  three  types  of  RMF  parameter  sets  are
adopted  to  estimate  the  in-medium cross  section,  as  dis-
cussed in Ref. [34]: (i) nonlinear models, (ii) density-de-
pendent  models,  and  (iii)  point-coupling models.  De-
tailed descriptions of  these RMF models are provided in
Appendix  A.  Subsequently,  the  in-medium 
cross sections are calculated based on the respective RMF
Lagrangians, and the detailed derivation of the cross sec-
tions can be found in Appendix B.

We employ  the  same  RMF Lagrangian  to  derive  the
nuclear  matter  properties,  as  detailed  in  Appendix  A.
Here, the binding energy per particle in asymmetric nuc-
lear matter is expressed as follows: 

E(ρ,α) =
ϵ

ρ
−mN = E0(ρ)+S (ρ)α2+O(α4), (1)

E0(ρ) = E(ρ,α = 0)
S (ρ)

ρ = ρn+ρp

mN

α = (ρn−ρp)/(ρn+ρp)
S (ρ)

where  the  is  the  binding  energy  in
symmetric  nuclear  matter  and  denotes the  sym-
metry energy. Here,  represents the total nucle-
ar matter density, ϵ is the energy density,  is the nucle-
on  mass,  and  is the  isospin  asym-
metry. The nuclear symmetry energy  is defined as 

S (ρ) =
1
2
∂2E(ρ,α)
∂α2

|α=0 . (2)

(ρ−ρ0)/3ρ0

The  symmetry  energy  is  expanded  in  terms  of
: 

S (ρ) = J+
L

3ρ0
(ρ−ρ0)+

Ksym

2
(ρ−ρ0)2

ρ2
0
+ · · · . (3)

J = S (ρ0)
ρ0 L = 3ρ0

∂S
∂ρ
|ρ=ρ0

Ksym = 9ρ2
0
∂2S
∂ρ2 |ρ=ρ0

Here,  represents the symmetry energy at satura-
tion  density .  The  parameters  and

 denote  the  slope  and  curvature  of  the
symmetry energy at saturation density, respectively.

NN→ N∆

NN→ N∆

The coupling constants in RMF models are crucial for
predicting  the  in-medium  ∆  production  cross  section  as
well  as  for  determining  the  equation  of  state  (EOS)  of
nuclear matter. To reduce the uncertainty in the in-medi-
um  cross sections, it is essential to select reas-
onable RMF models.  In  previous work [33],  the EOS of
nuclear matter  was constrained using neutron star  obser-
vations  based  on  various  RMF  parameter  sets.  In  this
study,  we  calculate  the  in-medium  cross sec-
tions  using  180  RMF  interaction  sets,  as  described  in
Refs. [33, 35].

NN→ N∆

G2∗

K0

Ksym

Furthermore,  an  important  task  is  to  further  evaluate
the in-medium  cross sections  using the  selec-
ted RMF parameter sets that have been refined based on
multiple neutron star observables from Refs. [33, 36, 37].
The  final  constrained  RMF  models  are:  HC,  FSUGZ03,
IU-FSU, ,  BSR8,  BSR9,  FA3,  FZ3,  and  DD-F.  The
EOS parameters (incompressibility , symmetry energy
J,  slope  of  symmetry  energy L, and  curvature  of  sym-
metry ) used in this work from with and without NS
observations are both listed in Table 1.  Additionally,  the
properties of nuclear matter and related parameters of all
RMF models  used  here  are  detailed  in Table  C1 of Ap-
pendix C.

As a key step in calculating the in-medium cross sec-
tions  (see  Eq.  48 in  Appendix B),  it  is  first  necessary to
determine the Dirac effective masses of nucleons, the ef-
fective pole masses of ∆ resonances, and the channel-de-
pendent changes in vector self-energies. These quantities
must  be  obtained  based  on  the  RMF parameter  sets  that
have been constrained as described earlier.

m∗N/mN m∗0,∆/m0,∆

ρ/ρ0

ρδ ρδ ρδ

In the Fig. 1, we plot the effective mass of the nucle-
on ( ) and effective pole masses of ∆ ( ) as
function of  in symmetric nuclear matter. Except for
NL A  [29],  NL B  [29],  DDMEδ [30]  and  DDRH
[31],  all  others  included  the  constraint  RMF  models  are
without-δ models. Consequently, these models do not ex-
hibit  mass  splitting  between  protons  and  neutrons  (or

 

Table 1.    Ranges of the EOS from the used RMF models.

K0 (MeV) J (MeV) L(MeV) Ksym (MeV)

With neutron star constraint 216.87–297.75 29.70–31.62 29.08–69.86 -275.05–28.99

Without neutron star constraint 199.92–300.67 17.37–43.54 29.08–140.37 -275.05–398.27
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among  different  ∆  isospin  states).  Therefore,  we  only
show the effective masses in symmetric nuclear matter.

ρ ≈ 2/3ρ0

ρ0

Because the  most  RMF  models  are  adjusted  to  de-
scribe the nuclei and nuclear matter in the density region
from  near  subsaturation  density (which repres-
ents  the  average  value  between  the  central  and  surface
densities [38−43]) up to saturation density, significant un-
certainties  remain  regarding  RMF  model  properties —
such as effective masses—at densities above .

∆m∗N =
m∗N,max −m∗N,min

mN
= 0.196

m∗N/mN = 0.551−0.747 ρ0 m∗N/mN = 0.677−
0.709 ∆m∗N

∆m∗0,∆

From the results in Fig. 1, we can see that the uncer-
tainty  of  the  effective  masses  reduced,  i.e.,  the  range  of

 (corresponding  to
)  at ,  while 

 (corresponding to =0.032) are deduced at 68%
confidence level  from just  three types of  momentum de-
pendence of the optical potential model in Ref. [44]. Ad-
ditionally,  the  range  of  are also  decreased,  espe-
cially at the density above saturation density.

NN→ N∆

From our previous work [32], we observed that there
remains  a  splitting  among  different  channels  of  the  in-
medium  cross  sections  in  asymmetric  nuclear
matter. To illustrate this effect, we present the vector self-

α = 0.2
energy changes for two representative channels in asym-
metric matter at : 

∆Σ0
pp→n∆++ = Σ

0
p+Σ

0
p−Σ0

n−Σ0
∆++ ,

and 

∆Σ0
nn→p∆− = Σ

0
n+Σ

0
n−Σ0

p−Σ0
∆− .

pp→ n∆++ nn→ p∆−

NN→ N∆

These  channels,  and , are  high-
lighted  because  they  are  the  main  contributors  to  the

 processes.

NN→ N∆

The results  indicate  that  the  uncertainties  in  both the
effective  masses  and  the  vector  self-energy  changes  are
significantly  reduced  when  using  the  constrained  RMF
models,  especially  at  higher  densities.  Consequently,  the
uncertainties  in  the  in-medium  cross  sections
are expected to be correspondingly diminished.

pp→ n∆++√
s

σ∗pp→n∆++ ρ = 2ρ0 3ρ0

ρ0

∆

NN→ N∆
m∗N m∗0,∆

∆Σ0

K0

Ksym

m∗(ρ) ∆Σ0(ρ) ρ0

Fig.  2 displays  the  in-medium  cross sec-
tions  as  a  function  of  the  total  energy  in  symmetric
nuclear matter.  The  left  panel  compares  the  cross  sec-
tions  in  free  space  and  at  saturation  density,  while  the
middle  and  right  panels  present  the  cross  sections

 at  and , respectively. Compared with
the  unconstrained  results,  the  constrained  in-medium
cross sections  show  a  notably  reduced  spread,  particu-
larly  at  densities  above .  This  reduction in  uncertainty
of in-medium cross section is consistent with the behavi-
ors of the nucleon and  effective masses shown in Fig.
1. The in-medium  cross section depends expli-
citly on the effective masses (  and ) in symmetric
nuclear matter (the channel-dependent vector self-energy
changes  should  be  also  considered  in  asymmetric
nuclear matter), which can be derived from Appendix B.
Bulk “nuclear-matter  properties” such  as , J, L and

 do  not  enter  the  cross-section  formula  directly,
which are determined by RMF interactions.  After  apply-
ing  neutron-star constraints,  the  surviving  RMF  sets  de-
velop similar trajectories of  and  at 2 to 3 ,
which lead to the observed narrowing of in-medium cross
sections,  even  though  the  spread  in  incompressibility  of
the same sets may remain sizable (e.g. FA3 and FZ3).

nn→ p∆− pp→ n∆++

1
3σ
∗
pp→n∆++

R = σ∗NN→N∆/σNN→N∆

NN→ N∆

Since there is no isospin splitting of effective masses
in symmetric nuclear matter, the in-medium cross section
for  is  identical  to  that  for .  Cross
sections  for  other  channels  can  be  obtained  by  applying
the  appropriate  isospin  Clebsch-Gordan  coefficients,
yielding values equal to . Consequently, the ra-
tio  is  the  same  for  all  channels  of

 in symmetric nuclear matter.

∆R = Rmax−Rmin

ρ/ρ0

Fig.  3 shows  the  medium  correction  factors R (top
panels)  and  the  corresponding  range 
(bottom panels)  as  a  function  of  for  beam energies

 

m∗N/mN

m∗0,∆/m0,∆ ρ/ρ0

∆Σ0 pp→ n∆++ ∆Σ0nn→ p∆−

α = 0.2

Fig.  1.    (Color  online)  The  upper  panels  show the  effective
mass of the nucleon ( )  and effective pole masses of ∆
( )  in  symmetric  nuclear  matter  as  functions of .
The  lower  panels  display  the  changes  in  vector  self-energies

 and  in asymmetric  nuclear  mat-
ter with . The pure gray areas represent the ranges of all
considered  RMF  models,  and  the  hatched  areas  indicate  the
subset constrained  by  neutron  star  observations.  The  con-
strained  shaded  band  denotes  the  model-ensemble
envelope—range  from minimal  to  maximal  values  across  all
RMF interactions that pass the neutron-star filters—and is not
a statistical confidence interval.
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Ebeam = 0.4,0.8, 1.2
∆R

Ebeam = 0.4 ∆R
0.283 0.219 ρ0 0.648 0.182

2ρ0 0.696 0.125 3ρ0

 and  GeV in symmetric nuclear matter.
The  unconstrained  increases  with  density,  but  once
constraints  are  applied  to  the  in-medium  cross  sections,
the  spread  in R is notably  reduced  compared  to  the  un-
constrained results.  For instance,  at  GeV, 
decreases from  to  at , from  to 
at ,  and  from  to  at .  This  reduction
stems from the decreased uncertainty in effective masses
(see Fig. 1).

pp→ n∆++ nn→ p∆−

pp→ n∆++ nn→ p∆−

Rmed

∆R
ρ/ρ0

α = 0.2 Ebeam = 0.4

Here we take the  and  channels
as examples to illustrate the in-medium cross sections in
asymmetric  nuclear  matter.  In Fig.  4,  we  plot R for

 (panels  (a),  (b),  (c))  and  (panels
(d),  (e),  (f)),  the  constrained  median  values  (panels
(g),  (h),  (i)),  and  the  range  (panels  (j),  (k),  (l))  as
functions  of  in  asymmetric  nuclear  matter  with

 for , 0.8, and 1.2 GeV.

NN→ N∆
It is also evident that the constrained median values of

the  in-medium  cross  sections  follow

Rpp→n∆++ < Rnn→p∆− , consistent with Ref. [32].

ρ0 ∆Rpp→n∆++

∆Rnn→p∆−

Furthermore,  the  constrained  correction  factors R in
asymmetric nuclear matter are notably smaller than their
unconstrained counterparts. For instance, at , 
decreases from 0.347 to 0.202, while  decreases
from  0.427  to  0.238.  Similar  reductions  are  observed  at

 

pp→ n∆++
√

s

ρ0 2ρ0 3ρ0

Fig. 2.    (Color online) The in-medium  cross section as function of  in symmetric nuclear matter. The left panel shows
the cross section in free space and at , while the middle and right panels present results at  and , respectively. The experiment-
al data are taken from Ref. [45].

 

ρ/ρ0 Ebeam = 0.4

∆R

Fig. 3.    (Color online) The upper panels are R as a function
of density  at  beam energy ,  0.8,  and 1.2 GeV
in symmetric nuclear matter. The lower panels display the cor-
responding range .

 

pp→ n∆++ nn→ p∆−

Rmed

∆R ρ/ρ0

α = 0.2

Fig. 4.    (Color online) The in-medium correction factor R for
 (a,  b,  c  panels)  and  (d,e,f  panels),  the

constraint  median  values  of  correction  factors  (g,  h,  i
panels),  and  (j,  k,  l  panels) as function of density  in
asymmetric nuclear matter with .
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2ρ0 3ρ0 2ρ0 ∆Rpp→n∆++

∆Rnn→p∆−

∆R

pp→ n∆++ nn→ p∆− ρ0 2ρ0 3ρ0

Ebeam = 0.4

 and .  For  example,  at ,  decreases
from  0.593  to  0.230,  whereas  decreases  from
0.746  to  0.178.  Overall,  the  restricted  decreases  by
about  42%–44%,  61%–76%,  and  76%–84%  from

 to  at  at ,  and  respect-
ively for  GeV, as well as for other beam ener-
gies.

NN→ N∆

NN→ N∆
Ebeam = 0.4,0.6,0.8,1.0, 1.2

Evaluating the in-medium  cross sections in
asymmetric  nuclear  matter  is  crucial  for  heavy-ion colli-
sion studies,  as  it  provides  a  potential  avenue  for  redu-
cing uncertainties in the symmetry energy at suprasatura-
tion  densities.  To  facilitate  their  application  in  transport
models,  we  present  parameterizations  of  the  constrained
in-medium  cross  section  correction  factors R for  all

 channels  at  beam  energies
 and  GeV,  both  in  symmetric

and asymmetric nuclear matter.

NN→ N∆

σ∗NN→N∆
0 < ρ ≤ 3ρ0

Ebeam = 0.4, 0.8, 1.2

ρ0

NN→ N∆

In summary, we present the evaluated the in-medium
 cross  sections  derived  from  RMF  parameter

sets constrained by neutron star  observations [33]. Com-
pared to the unconstrained results, our findings show that
the  ranges  of  are  significantly  reduced  over  the
density  range  for  beam  energies  of

 and  GeV  in  both  symmetric  and
asymmetric  nuclear  matter,  especially  at  densities  above

. For completeness, the parameterized forms of the in-
medium  cross-section corrections are given in
the supplemental material.

NN→ N∆

NN→ N∆

We  hope  the  constrained  in-medium  cross  sections
will  help  reduce  the  uncertainties  of  information  on  the
symmetry energy at high densities by facilitating them in
the  prediction  of  pion  observables  in  QMD  models  to
simulate  heavy-ion  collision  experiments,  such  as  those
performed  by  the  HADES  (Au+Au)  [46]  and  MSU
(Sn+Sn) [15]. However, matter created in heavy ion colli-
sions is hot and in a non-equilibrium state, implying that
the in-medium  cross section depends on tem-
perature. Prior  work  has  explored  the  temperature  de-
pendence of in-medium nucleon-nucleon scattering cross
sections  (see  Ref.  [47]), reporting  a  possible  enhance-
ment at finite temperature relative to the cold matter case.
The  explicit  temperature  dependence  of  in-medium

 cross sections is rarely discussed, and we will
investigate it in future work. 

APPENDIX A: RELATIVISTIC MEAN FIELD

In this paper, we ignore the Fock term in the relativ-
istic mean field, where models are all Hartree RMF mod-
el sets.

1. Nonlinear relativistic mean field
The Lagrangians are nonlinear RMF model are: 

LNL =LF +LI , (A1)

LFwhere  is,
 

LF = Ψ̄[iγµ∂µ−mN]Ψ+∆̄λ[iγµ∂µ−m∆]∆λ

+
1
2
(
∂µπ∂

µπ−m2
ππ

2
)
+

1
2
∂µσ∂

µσ− 1
2

m2
σσ

2−U(σ)

− 1
4
ωµνω

µν+
1
2

m2
ωωµω

µ+
1
4
ζ4(ωµωµ)2

− 1
4
ρµνρ

µν+
1
2

m2
ρρµρ

µ+
1
2
(
∂µδ∂

µδ−m2
δδ

2
)

+gσg2
ωσωµω

µ(α1+
1
2
α′1gσ)+gσg2

ρσρµρ
µ(α2+

1
2
α′2gσ)

+
1
2
α′3g2

ωg2
ρωµω

µρµρ
µ .

(A2)

LIand  is interaction part,
 

LI = gσNNΨ̄Ψσ−gωNNΨ̄γµΨω
µ−gρNNΨ̄γµτ ·Ψρµ

− fπNN

mπ
Ψ̄γµγ5τ ·Ψ∂µπ+gδNNΨ̄τ ·Ψδ

+gσ∆∆∆̄µ∆µσ−gω∆∆∆̄µγν∆µων

−gρ∆∆∆̄µγνT ·∆µρν+
gπ∆∆
mπ
∆̄µγνγ5T ·∆µ∂νπ

+gδ∆∆∆̄µT ·∆µδ+
gπN∆
mπ
∆̄µT ·Ψ∂µπ

+
igρN∆
mρ
∆̄µγνγ5T ·Ψ (∂νρµ−∂µρν)+h.c. (A3)

ωµν ρµν ∂µων−∂νωµ
∂µρν−∂νρµ

U(σ) = 1
3 g2σ

3+ 1
4 g3σ

4 τ

T

In  Eq.  (A2),  and  are  defined  as 
and ,  respectively.  The  nonlinear  potential  of
the σ field is given by . Here  and
T are the isospin matrices for the nucleon and ∆ [48, 49],
while  is  the  isospin  transition  matrix  between  the
isospin 1/2 and the 3/2 fields [10].

p∗i = pi

Σ = 0

In the  uniform rest  nuclear  matter,  the  effective  mo-
mentum can  be  written  as  since the  spatial  com-
ponents  of  vector  field  vanish,  i.e., .  Thus,  in  the
mean field approach, the effective energy is given by:
 

p∗0i = p0
i −Σ0

i , (A4)

The effective masses of nucleon and ∆ read as:
 

m∗i = mi+Σ
S
i , (A5)

Σ0
i ΣS

iHere  and  represent  the  vector  and  scalar  self-en-
ergy respectively for the RMF parameter sets.

The vector and scalar potentials in the nonlinear(NL)
RMF model are expressed as:
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Σ0
i,NL = gωω̄0+gρt3,iρ̄

0
3 (A6)

 

ΣS
i,NL = −gσσ̄−gδt3,iδ̄3 (A7)

t3,i

t3,n = −1
t3,p = 1 t3,∆++ = 1 t3,∆+ =

1
3 t3,∆0 = − 1

3 t3,∆− = −1 ω̄0

ρ̄0
3 σ̄ δ̄3

where  represents the third component of the isospin of
the  nucleon  and  ∆,  with  the  following  values: ,

, , , , .  The ,
,  and  denote the expectation values of the mesons

field in the mean-field approximation. In the RMF model,
the equations of motion for the mesons are: 

m2σ̄ = gσρs−g2σ̄
2−g3σ̄

3+gσg2
ω(ω̄0)2(α1+α

′
1gσσ̄)

+gσg2
ρ(ρ̄

0
3)2(α2+α

′
2gσσ̄)

(A8)

 

m2
ωω̄

0 = gωρ− ζg4
ω(ω̄0)3−gσg2

ωσ̄ω̄
0(2α1+α

′
1gσσ̄)

−α′3g2
ωg2
ρ(ρ̄

0
3)2ω̄0

(A9)

 

m2
ρρ̄

0
3 = gρρ3−gσg2

ρσ̄ρ̄
0
3(2α2+α

′
2gσσ̄)

−α′3g2
ωg2
ρρ̄

0
3(ω̄0)2 (A10)

 

m2
δ δ̄3 = gδρs3 (A11)

The nucleon densities are (assuming no ∆ density): 

ρs = ⟨Ψ̄Ψ⟩ = ρsn+ρsp (A12)

 

ρ = ⟨Ψ̄γ0Ψ⟩ = ρn+ρp (A13)

 

ρs3 = ⟨Ψ̄τ3Ψ⟩ = ρsp−ρsn (A14)

 

ρ3 = ⟨Ψ̄γ0τ3Ψ⟩ = ρp−ρn (A15)

kF,iWith Fermi momenta  for i = n or p, the scalar and
vector densities are: 

ρsi =
C(i)
(2π)3

∫
k<kFi

d3k
m∗i√

k2+m∗2i

=
m∗i
2π2

ï
kFiE∗Fi−m∗2i ln

kFi+E∗Fi

m∗i

ò
(A16)

 

ρi =
C(i)
(2π)3

∫
k<kFi

d3k =
k3

Fi

3π2
(A17)

C(i = n, p) = 2
E∗Fi =

√
k2

Fi+m2∗
i

where  the  degeneracy  factor ,  and
 is the Fermi energy of neutrons and pro-

tons.
The eigenvalues of neutron and proton from the Dir-

ac equation are: 

en = gωω̄0−gρρ̄0
3+

√
k2∗

n +m∗2n , (A18)

 

ep = gωω̄0+gρρ̄0
3+
»

k2∗
p +m∗2p . (A19)

The  expression  for  the  energy  density  and  pressure  are
obtained from  the  given  Lagrangian  using  energy  mo-
mentum tensor relation given by, 

T µν =
∑

i

∂L
∂(∂µϕi)

∂νϕi−gµνL, (A20)

ϕiwhere  runs over all possible fields. The energy density
ϵ and  pressure P can  be  obtain  from  the  energy-mo-
mentum tensor: 

ϵNL = ⟨T 00⟩ = 1
2

m2
σσ̄

2+
1
3

g2σ̄
3+

1
4

g3σ̄
4− 1

2
m2
ω(ω̄0)2

− ζ
4

g4
ω(ω̄0)4+gωω̄0ρ− 1

2
m2
ρ(ρ̄

0
3)2+gρρ̄0

3ρ3

+
1
2

m2
δ δ̄

2
3−gσg2

ωσ̄(ω̄0)2(α1+
1
2
α′1gσσ̄)

−gσg2
ρσ̄(ρ̄0

3)2(α2+
1
2
α′2gσσ̄)− 1

2
α′3g2

ωg2
ρ(ρ̄

0
3)2(ω̄0)2

+
1
4

[3E∗Fnρn+m∗nρsn]+
1
4

[3E∗F pρp+m∗pρsp],

(A21)

and 

PNL =
1
3

3∑
i=1

⟨T ii⟩ = −1
2

m2
σσ̄

2− 1
3

g2σ̄
3− 1

4
g3σ̄

4

+
1
2

m2
ω(ω̄0)2+

ζ

4
g4
ω(ω̄0)4+

1
2

m2
ρ(ρ̄

0
3)2

− 1
2

m2
δ δ̄

2
3+gσg2

ωσ̄(ω̄0)2(α1+
1
2
α′1gσσ̄)

+gσg2
ρσ̄(ρ̄0

3)2(α2+
1
2
α′2gσσ̄)+

1
2
α′3g2

ωg2
ρ(ρ̄

0
3)2(ω̄0)2

+
1
4

[E∗Fnρn−m∗nρsn]+
1
4

[E∗F pρp−m∗pρsp].

(A22)

The  same  calculations  for  density-dependence  and
point-coupling  models  can  be  found  in  Refs.[30, 31,
50−52].

m∗n = m∗p = m∗N δ̄3For symmetric nuclear matter,  since 
vanishes.
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The expressions of the symmetry energy and slope of
symmetry energy L for nonlinear RMF models are: 

S (ρ)NL =
k2

F

6E∗F
+

1
2
ρ

g2
ρ

m∗2ρ

− 1
2
ρ

Ü
g2
δ

m2
δ

m∗2N

E∗2F

ï
1+

g2
δ

m2
δ

A(ρ,m∗N)
òê , (A23)

m∗2ρ = m2
ρ+gσg2

ρσ̄(2α2+α
′
2gσσ̄)+α′3g2

ωg2
ρ(ω̄

0)2where , and
 

A(ρ,m∗N) = 3
Å
ρs

m∗N
− ρ

E∗F

ã
. (A24)

 

LNL =
k2

F

3E∗F

Å
1− k2

F

2E∗2F
− k3

Fm∗N
E∗2F π

2

∂m∗N
∂ρ

ã
+

3g2
ρ

2m∗2ρ
ρ

Ç
1− 1

m∗2ρ

∂m∗2ρ
∂ρ
ρ

å
− 1

2
ρ

Ü
g2
δ

m2
δ

m∗2N

E∗2F

ï
1+

g2
δ

m2
δ

A(ρ,m∗N)
òê

×
ß

3− 2k2
F

E∗2F
+6
Å

1− m∗2N

E∗2F

ã
ρ

m∗N

∂m∗N
∂ρ

−3
g2
δ

m2
δ

1

1+
g2
δ

m2
δ

A

ï
2A
Å
ρ

m∗N

∂m∗N
∂ρ

ã
+ρ

k2
F

E∗3F

Å
1−3

ρ

m∗N

∂m∗N
∂ρ

ãò™
, (A25)

2. Density dependence relativistic mean field
The  Lagrangian  density  of  the  density  dependence

model is: 

LDD =LI +LF , (A26)

LFwhere  is 

LF = Ψ̄[iγµ∂µ−mN]Ψ+∆̄λ[iγµ∂µ−m∆]∆λ

+
1
2
(
∂µσ∂

µσ−m2
σσ

2
)

− 1
4
ωµνω

µν+
1
2

m2
ωωµω

µ

+
1
2
(
∂µπ∂

µπ−m2
ππ

2
)
− 1

4
ρµνρ

µν+
1
2

m2
ρρµρ

µ

+
1
2
(
∂µδ∂

µδ−m2
δδ

2
)
, (A27)

LIwhere  is 

LI =LNN +L∆∆+LN∆

= Γσ(ρ)Ψ̄Ψσ−Γω(ρ)Ψ̄γµΨωµ−Γρ(ρ)Ψ̄γµτ ·Ψρµ

+
gπNN

mπ
Ψ̄γµγ5τ ·Ψ∂µπ+Γδ(ρ)Ψ̄τ ·Ψδ

+Γσ(ρ)∆̄µ∆µσ−Γω(ρ)∆̄µγν∆µων

−Γρ(ρ)∆̄µγνT ·∆µρν+
gπ∆∆
mπ
∆̄µγνγ5T ·∆µ∂νπ

+Γδ(ρ)∆̄µT ·∆µδ+
gπN∆
mπ
∆̄µT ·Ψ∂µπ

+
igρN∆
mρ
∆̄µγνγ5T ·Ψ (∂νρµ−∂µρν)+h.c. (A28)

The vector and scalar potentials can be written as: 

Σ0
i,DD = Γωω̄

0+Γρt3,iρ̄
0
3+Σ

r (A29)
 

ΣS
i,DD = −Γσσ̄−Γδt3,iδ̄3 (A30)

ΣrHere  is  the  rearrangement  term of  the  vector  self-en-
ergy, its express is: 

Σr =
∂Γω
ρ
ω̄0ρ+

∂Γρ
∂ρ
ρ̄0

3ρ3−
∂Γσ
ρ
σ̄ρs−

∂Γδ
ρ
δ̄3ρs3 (A31)

The  expressions  of  the  symmetry  energy  and  slope  of
symmetry  energy  L  for  density-dependent  RMF  models
are: 

S (ρ)DD =
k2

F

6E∗F
+

1
2
ρ
Γ2
ρ

m2
ρ

− 1
2
ρ

×

Ü
Γ2
δ

m2
δ

m∗2N

E∗2F

ï
1+
Γ2
δ

m2
δ

A(ρ,m∗N)
òê , (A32)

 

LDD =
k2

F

3E∗F

Å
1− k2

F

2E∗2F
− k3

Fm∗N
E∗2F π

2

∂m∗N
∂ρ

ã
+

3Γ2
ρ

2m2
ρ

ρ

Å
1+6

ρ

Γρ

∂Γρ
∂ρ

ã
− 1

2
ρ

Ü
Γ2
δ

m2
δ

m∗2N

E∗2F

ï
1+
Γ2
δ

m2
δ

A(ρ,m∗N)
òê

×
ß

3+6
ρ

Γδ

∂Γδ
∂ρ
− 2k2

F

E∗2F
+6
Å

1− m∗2N

E∗2F

ã
ρ

m∗N

∂m∗N
∂ρ
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−3
Γ2
δ

m2
δ

1

1+
Γ2
δ

m2
δ

A

ï
2A
Å
ρ

Γδ

∂Γδ
∂ρ
+
ρ

m∗N

∂m∗N
∂ρ

ã
+ρ

k2
F

E∗3F

Å
1−3

ρ

m∗N

∂m∗N
∂ρ

ãò™
, (A33)

3. Point coupling model
Lagrangian  density  of  the  point  coupling  mean  field

model is:
 

LPC =LF +LI , (A34)

LFwhere  is :
 

LF = Ψ̄[iγµ∂µ−mN]Ψ+∆̄λ[iγµ∂µ−m∆]∆λ, (A35)

LIwhere  is :
 

LI = −
αS

2
(
Ψ̄Ψ

)2− αV

2
(
Ψ̄γµΨ

)(
Ψ̄γµΨ

)
− αTV

2
(
Ψ̄γµτΨ

)
·
(
Ψ̄γµτΨ

)
− fπNN

mπ

(
Ψ̄γµγ5τΨ

)
·∂µ

(
Ψ̄γ5τΨ

)
− αTS

2
(
Ψ̄τΨ

)
·
(
Ψ̄τΨ

)
− βS

3
(
Ψ̄Ψ

)3− γS

4
(
Ψ̄Ψ

)4− γV

4
(
Ψ̄γµΨΨ̄γ

µΨ
)2

− αTV

4
(
Ψ̄γµτΨ · Ψ̄γµτΨ

)2

+ [η1+η2
(
Ψ̄Ψ

)
]
(
Ψ̄Ψ

)(
Ψ̄γµΨ

)(
Ψ̄γµΨ

)
−η3

(
Ψ̄Ψ

)(
Ψ̄γµτΨ

)
·
(
Ψ̄γµτΨ

)
− αS

2
[
(
∆̄µ∆

µ
)(
Ψ̄Ψ

)
+
(
Ψ̄Ψ

)(
∆̄µ∆

µ
)
]

− αV

2
[
(
∆̄µγν∆

µ
)(
Ψ̄γνΨ

)
+
(
Ψ̄γνΨ

)(
∆̄µγ

ν∆µ
)
]

− αTV

2
[
(
∆̄µγνT∆µ

)
·
(
Ψ̄γντΨ

)
+
(
Ψ̄γντΨ

)
·
(
∆̄µγ

νT∆µ
)
]

− αTS

2
[
(
∆̄µT∆µ

)
·
(
Ψ̄τΨ

)
+
(
Ψ̄τΨ

)
·
(
∆̄µT∆µ

)
]

− βS

3
[
(
∆̄µ∆

µ
)(
Ψ̄Ψ

)2
+
(
Ψ̄Ψ

)(
∆̄µ∆

µ
)(
Ψ̄Ψ

)
+
(
Ψ̄Ψ

)2 (
∆̄µ∆

µ
)
]

− γS

4
[
(
∆̄µ∆

µ
)(
Ψ̄Ψ

)3
+
(
Ψ̄Ψ

)(
∆̄µ∆

µ
)(
Ψ̄Ψ

)2

+
(
Ψ̄Ψ

)2 (
∆̄µ∆

µ
)(
Ψ̄Ψ

)
+
(
Ψ̄Ψ

)3 (
∆̄µ∆

µ
)
]

− γV

4
[
(
∆̄µγν∆

µΨ̄γνΨ
)(
Ψ̄γνΨΨ̄γ

νΨ
)

+
(
Ψ̄γνΨ∆̄µγ

ν∆µ
)(
Ψ̄γνΨΨ̄γ

νΨ
)

 

+
(
Ψ̄γνΨΨ̄γ

νΨ
)(
Ψ̄γνΨ∆̄µγ

ν∆µ
)

+
(
Ψ̄γνΨΨ̄γ

νΨ
)(
∆̄µγν∆

µΨ̄γνΨ
)
]

− αTV

4
[
(
∆̄µγνT∆µ · Ψ̄γντΨ

)(
Ψ̄γντΨ · Ψ̄γντΨ

)
+
(
Ψ̄γντΨ · ∆̄µγνT∆µ

)(
Ψ̄γντΨ · Ψ̄γντΨ

)
+
(
Ψ̄γντΨ · Ψ̄γντΨ

)(
∆̄µγνT∆µ · Ψ̄γντΨ

)
+
(
Ψ̄γντΨ · Ψ̄γντΨ

)(
Ψ̄γντΨ · ∆̄µγνT∆µ

)
]

−η1[
(
∆̄µ∆

µ
)(
Ψ̄γνΨ

)(
Ψ̄γνΨ

)
+
(
Ψ̄Ψ

)(
∆̄µγν∆

µ
)(
Ψ̄γνΨ

)
+
(
Ψ̄Ψ

)(
Ψ̄γνΨ

)(
∆̄µγ

ν∆µ
)
]

−η2[
(
∆̄µ∆

µ
)(
Ψ̄Ψ

)(
Ψ̄γνΨ

)(
Ψ̄γνΨ

)
+
(
Ψ̄Ψ

)(
∆̄µ∆

µ
)(
Ψ̄γνΨ

)(
Ψ̄γνΨ

)
+
(
Ψ̄Ψ

)(
Ψ̄Ψ

)(
∆̄µγν∆

µ
)(
Ψ̄γνΨ

)
+
(
Ψ̄Ψ

)(
Ψ̄Ψ

)(
Ψ̄γνΨ

)(
∆̄µγ

ν∆µ
)
]

−η3[
(
∆̄µ∆

µ
)(
Ψ̄γντΨ

)
·
(
Ψ̄γντΨ

)
+
(
Ψ̄Ψ

)(
∆̄µγνT∆µ

)
·
(
Ψ̄γντΨ

)
+
(
Ψ̄Ψ

)(
Ψ̄γντΨ

)
·
(
∆̄µγ

νT∆µ
)
]

− fπNN

mπ

(
∆̄µγνγ5τ∆

ν
)
·∂µ

(
Ψ̄γ5τΨ

)
+

gπN∆
mπ
∆̄µT ·Ψ∂µ

(
Ψ̄γ5τΨ

)
+

igρN∆
mρ
∆̄µγνγ5T ·Ψ

(
∂ν(Ψ̄γµτΨ)−∂µ(Ψ̄γντΨ)

)
+h.c.

(A36)

The vector and scalar potentials can be expressed as:
 

Σ0
i,PC = αVρ+αTVρ3t3,i+γTVρ

3+γTVρ
3
3t3,i

+2(η1+η2ρs)ρsρ+2η3ρsρ3t3,i (A37)

 

ΣS
i,PC = αS ρS +βS ρ

2
s +γS ρ

3
s +η1ρ

2+2η2ρsρ
2

+η3ρ
2
3+αTS ρs3t3,i (A38)

The expressions of the symmetry energy and slope of
symmetry energy L for point-coupling RMF models are:
 

S (ρ)PC =
k2

F

6E∗F
+

1
2
αVρ+η3ρsρ

+
1
2
αTS ρ

Å
m∗2N

E∗2F [1−αTS A(ρ,m∗N)]

ã
, (A39)
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LPC =
k2

F

3E∗F

Å
1− k2

F

2E∗2F
− k3

Fm∗N
E∗2F π

2

∂m∗N
∂ρ

ã
+

3
2
αVρ+3η3ρsρ+3η3ρ

2 ∂ρs

∂ρ

+
1
2
αTS ρ

Å
m∗2N

E∗2F [1−αTS A(ρ,m∗N)]

ã
×
ß

3− 2k2
F

E∗2F
+6
Å

1− m∗2N

E∗2F

ã
ρ

m∗N

∂m∗N
∂ρ

+3αTS
1

1−αTS A

ï
2A
Å
ρ

m∗N

∂m∗N
∂ρ

ã
+ρ

k2
F

E∗3F

Å
1−3

ρ

m∗N

∂m∗N
∂ρ

ãò™
. (A40)

 

NN→ N∆APPENDIX B: IN-MEDIUM  CROSS SEC-
TION

M∗

NN→ N∆

m→ m∗ pµ→ p∗µ

Applying  quasiparticle  approximation  [53],  the  in-
medium cross  sections  are  introduced  via  the  replace-
ment  of  the  vacuum plane  waves  of  the  initial  and  final
particles  by  the  plane  waves  obtained  by  solution  of  the
nucleon and  ∆  equations  of  motion  with  scalar  and  vec-
tor  fields.  In  detail,  the  matrix  elements  for the  in-
elastic  scattering  process  are obtained  by  re-
placing  the  nucleon  and  ∆  masses  and  momenta  in  free
space  with  their  effective  masses  and  kinetic  momenta
[24],  i.e.,  and .  As  in  Ref.  [24],  all  the
calculations performed in this work are are performed for
colliding  nucleons  with  their  center-of-mass frame  coin-
ciding with the nuclear matter rest frame.

NN→ N∆

M∗

The Feynmann diagrams corresponding to the inelast-
ic-scattering  processes  are  shown  in Fig.  B1,
which  include  the  direct  and  exchange  processes.  The

-matrix  derived  from  the  interaction  Lagrangian  Eq.
(A3) can be written by using the standard procedure [10], 

M∗ =M∗π
d −M∗π

e +M
∗ρ
d −M∗ρ

e , (B1)

where 

M∗π
d = − i

gπNNgπN∆Id

m2
π(Q∗2d −m2

π)
[Ψ̄(p∗3)γµγ5Q∗µd Ψ(p∗1)]

× [∆̄ν(p∗4)Q∗νd Ψ(p∗2)] (B2)

 

M∗ρ
d = i

ΓρNNgρN∆Id

mρ
[Ψ̄(p∗3)γµΨ(p∗1)]

×
gµτ−Q∗µd Q∗τd /m

2
ρ

Q∗2d −m2
ρ

× [∆̄σ(p∗4)γλγ5(Q∗λd δστ−Q∗σd δλτ)Ψ(p∗2)] . (B3)

Q∗µd = p∗µ3 − p∗µ1
M∗

e p∗µ1 ←→ p∗µ2
Q∗µe = p∗µ3 − p∗µ2 Id Ie

For  the  direct  term, ,  while  the  exchange
term  is  obtained  by  swapping  and

. The isospin factors ,  are given in Ref.
[10].

NN→ N∆The  in-medium  cross section  is  the  aver-
aged two-body cross section, taking into account the mass
distribution  of  the  ∆  resonance  as  a  short-lived  state.  It
can be expressed as:
 

σ∗NN→N∆ =

∫ m∗
∆,max

m∗
∆,min

dm∗∆ f (m∗∆)σ̃
∗(m∗∆), (B4)

σ̃∗(m∗∆)where  is  the  in-medium  elementary  two-body
cross  section.  In  the  center-of-mass  frame  of  colliding
nucleons, it reads
 

σ̃∗(m∗∆) =
1

64π2

∫ |p∗out, c.m.|√
s∗in
√

s∗out|p∗in, c.m.|
|M∗|2dΩ, (B5)

p∗in, c.m. p∗out, c.m.

s∗in = (p∗1+ p∗2)2 s∗out = (p∗3+ p∗4)2

where  and  are the momenta of incoming (1
and  2)  and  outgoing  particles  (3  and  4),  and

, and .

|M∗|2 = 1
(2s1+1)(2s2+1)

∑
s1 s2 s3 s4

|M∗|2Here  is,
 

∑
s1 s2 s3 s4

|M∗|2

=
∑

s1 s2 s3 s4

{|M∗π
d |2−M∗π†

d M∗π
e −M∗π†

e M∗π
d + |M∗π

e |2

+ |M∗ρ
d |2−M

∗ρ†
d M∗ρ

e −M∗ρ†
e M

∗ρ
d + |M∗ρ

e |2

+M∗π†
d M

∗ρ
d −M∗π†

d M∗ρ
e −M∗π†

e M
∗ρ
d +M∗π†

e M∗ρ
e

+M∗ρ†
d M∗π

d −M
∗ρ†
d M∗π

e −M∗ρ†
e M∗π

d +M∗ρ†
e M∗π

e }. (B6)

M∗

∑
s1 s2 s3 s4

|M∗π
d |2

where  the -matrix  is  from  exchange  by π and ρ
mesons,  and the  detail  calculations  can be  found in  Ref.
[27]. Here, we show the calculation of  as an
example in the following:
 

 

Fig. B1.    The left diagram is the direct term and the right is
the exchange term of the Feynmann diagram.

In-medium NN → N∆ cross sections from constrained relativistic mean field models Chin. Phys. C 50, (2026)

-9

CPC
 A

cce
pte

d



∑
s1 s2 s3 s4

|M∗π
d |2 =

Å
gπNNgπN∆Id

m2
π(Q∗2d −m2

π)

ã2

×
∑

s1 s2 s3 s4

[Ψ(p∗1)Ψ̄(p∗1)γµγ5Q∗µd Ψ(p∗3)Ψ̄(p∗3)γσγ5Q∗σd ]

× [Ψ(p∗2)Ψ̄(p∗2)Q∗νd ∆ν(p∗4)∆̄τ(p∗4)Q∗τd ]

=

Å
gπNNgπN∆Id

m2
π(t∗−m2

π)

ã2

×
2(m∗N1

+m∗N3
)2((m∗N1

−m∗N3
)2− t∗)

3m∗2∆4

×
(
(m∗∆4

−m∗N2
)2− t∗

)(
(m∗N2
+m∗∆4

)2− t∗
)2 (B7)

t = Q∗2d |M∗π
e |2 N1←→ N2

pµ1,2 pµ3,4

pµ1 + pµ2 =
pµ3 + pµ4 p∗µ1 +Σ

∗µ
1 + p∗µ2 +Σ

∗µ
2 =

p∗µ3 +Σ
∗µ
3 + p∗µ4 +Σ

∗µ
4 p∗µ1 + p∗µ2 = p∗µ3 + p∗µ4 −∆Σµ

∆Σµ = Σ
µ
1 +Σ

µ
2 −Σ

µ
3 −Σ

µ
4

∆Σ0 = Σ0
1+Σ

0
2−Σ0

3−Σ0
4

m∗min m∗max Γ(m∗∆)

p∗01 + p∗02 p∗03 + p∗04 s∗in , s∗out

where ,  for  is .  In  Eq.  (B5),the
key element for the calculation of the cross section is the
energy-momentum conservation  in  terms  of  the  incom-
ing  ( )  and  outgoing  momenta  ( )  of  the  particles.
From  the  viewpoint  of  kinetic  momentum,  the  energy-
momentum  conservation  can  be  written  as: 

 can  be  expressed  as 
, ,  where

 is  the  kinetic  momentum  change
between the initial and final states. The change in effect-
ive  energy  is  expressed  as ,  which
is  the  same the  formula  in  Ref.  [27, 54]. The  similar  is-
sue also exists in the calculation of ,  and 
which  are  described  in  the  following.  Consequently,

 may  differ  from ,  and  in  Eq.
(B5), and they are related according to the following rela-
tionship, 

√
s =

√
s∗in+Σ

0
N1
+Σ0

N2
=

√
s∗out +Σ

0
N3
+Σ0

∆4
. (B8)

It is derived from 

s = (pN1 + pN2 )2

= (
»

m∗2N1
+p∗2N1

+
»

m∗2N2
+p∗2N2

+Σ0
N1
+Σ0

N2
)2

− (p∗N1
+p∗N2

)2

= (pN3 + p∆4 )2

= (
»

m∗2N3
+p∗2N3

+
»

m∗2∆4
+p∗2∆4

+Σ0
N3
+Σ0

∆4
)2

− (p∗N3
+p∗∆4

)2 (B9)

p∗N1
= −p∗N2

p∗N3
= −p∗∆4

where  and  in  the  center-of-mass
frame.

m∗∆,min
∆→ N +π

The value of  in the cross-section formula is de-
termined by the  in isospin asymmetric nuclear
matter as in Refs. [27, 55], where both the N and π are at
rest. Additionally, the modification of the scalar and vec-

tor  self-energies  in  this  isospin  exchange  process  must
also be taken into account. Thus, 

m∗∆,min = m∗N +mπ−∆Σ0
d, (B10)

∆Σ0
d = Σ

0
∆−Σ0

N m∗∆,max
NN→ N∆
with .  The  is  evaluated  from

 for producing N and ∆ at rest. This leads to: 

m∗∆,max =
√

s−m∗N3
−Σ0

N3
−Σ0

∆4
. (B11)

f (m∗∆)
NN→ N∆

f (m∗∆) ∆→ N +π

The in-medium ∆ mass distribution  is another cru-
cial  component  of  in-medium  cross  section,
for which proper energy conservation is also required, as

 is related to the  process in isospin asym-
metric nuclear matter. In this paper, the spectral function
of ∆ is taken from Ref. [24], 

f (m∗∆) =
2
π

m∗2∆ Γ(m
∗
∆)

(m∗20,∆−m∗2∆ )2+m∗2∆ Γ2(m∗∆)
. (B12)

m∗0,∆
Γ(m∗∆)

Here,  is  the  effective  pole  mass  of  ∆.  The  decay
width  is taken as the parameterization form [24] 

Γ(m∗∆) = Γ0
q3(m∗∆,m

∗
N ,m

∗
π)

q3(m∗0,∆,m
∗
N ,m∗π)

q3(m∗0,∆,m
∗
N ,m

∗
π)+η

2

q3(m∗∆,m
∗
N ,m∗π)+η2

m∗0,∆
m∗∆
,

(B13)

where 

q(m∗∆,m
∗
N ,m

∗
π) =

√(
(m∗∆+Σ

0
∆−Σ0

N)2+m∗2N −m∗2π
)2

4(m∗∆+Σ
0
∆−Σ0

N)2
−m∗2N .

(B14)

Γ0The  coefficients  of =0.118  GeV  and η=0.2  GeV/c
are used in the above parameterization formula.

The  form  factors  are  adopted  to  effectively  consider
the contributions from high-order terms and the finite size
of baryons [10, 56], which read 

FN(t∗) =
Λ2

N

Λ2
N − t∗

exp
(
−b
»

s∗−4m∗2N

)
(B15)

 

F∆(t∗) =
Λ2
∆

Λ2
∆− t∗

. (B16)

FN(t∗)
F∆(t∗)

ρNN πNN
ΛπNN ≈ 1 ΛρNN ΛπN∆

NN→ N∆

Here  is  the  form factor  for  nucleon-meson-nucle-
on,  and  for  nucleon-meson-∆  coupling, b=0.046
GeV−1 for both  and  coupling. The cutoff para-
meter  GeV,  and  are  determined  by
best  fitting  the  data  of  cross  section  in  free
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√
s ΛρN∆

ΛρN∆ = ΛρNN
ΛπN∆

ΛπNN
gρN∆

gρN∆ ≈
√

3
2
ΓρNN

mρ
mN

NN→ N∆

space ranging from =2.0 to 5 GeV [45]. Here,  is
determined  based  on  the  relationship 
as in [10]. Concerning the coupling constant , we use

 which  are  derived  from  the  static
quark model [10]. The cutoff parameters used in calcula-
tions of in-medium  cross sections are listed in
Table C1 in Appendix C.
 

APPENDIX C: THE PARAMETERS FOR DIFFER-
ENT RMF MODELS

gm∆∆

m = σ,ω,ρ,δ gm = gm∆∆ = gmNN

gπNN gπN∆ mπ
mN m0,∆

For  the  coupling  constant  parameters  of (where
),  we adopt  consistent  with

the  approach  used  in  many  studies  involving  transport
models [11, 24, 26]. The parameters used in the effective
Lagrangian, =1.008, =2.202, =138  MeV,

=939 MeV, =1232 MeV.

 

m∗N/mN m∗0,∆/m0,∆

ρ0 ΛρNN = 1000 ΛρNN = 798

ρδ

Table C1.    The saturation properties of all RMF models are used in this work. Excepting for  and  in dimensionless,
and  in fm−3, all entries are in MeV. All  MeV, except for , 650 and 580 MeV for FSUGOLD5, DDMEδ and
DDRH .

Model E0 ρ0 K0 J L Ksym m∗N/mN m∗0,∆/m0,∆ ΛπN∆

Nonlinear models

E [57] −16.35 0.150 210.95 38.58 124.69 133.52 0.578 0.679 417

ER [57] −16.25 0.149 215.91 39.41 126.63 128.12 0.582 0.682 416

NL1 [58] −16.42 0.152 212.35 43.54 140.37 143.39 0.572 0.674 415

NL3 [59] −16.24 0.148 269.91 37.34 118.32 100.53 0.596 0.692 417

NL3-II [59] −16.26 0.149 270.62 37.67 119.57 103.19 0.593 0.690 417

NL3* [60] −16.31 0.150 258.76 38.70 122.72 105.72 0.594 0.690 417

NL4 [61] −16.16 0.148 273.33 36.34 115.31 100.41 0.595 0.692 417

NLC [62] −15.77 0.148 221.76 35.23 108.52 76.14 0.633 0.720 417

NLB1 [58] −15.80 0.162 276.73 32.94 102.12 75.61 0.621 0.711 420

NLB2 [58] −15.80 0.162 239.96 32.93 110.57 157.15 0.557 0.662 421

NLRA1 [63] −16.15 0.147 284.42 36.44 115.31 95.56 0.597 0.693 417

NLS [64] −16.45 0.150 262.98 42.08 131.61 94.27 0.604 0.698 415

P-067 [65] −16.31 0.160 245.72 41.80 124.81 48.93 0.665 0.745 416

P-070 [65] −16.25 0.160 228.23 41.04 119.74 26.04 0.702 0.773 416

P-075 [65] −16.51 0.170 253.33 42.17 119.16 −2.19 0.755 0.813 416

P-080 [65] −15.84 0.160 251.71 39.28 108.78 −14.06 0.800 0.847 416

GL1 [66] −16.30 0.153 200.08 32.50 94.68 33.08 0.700 0.772 418

GL2 [66] −16.31 0.153 199.92 32.50 91.52 8.74 0.750 0.810 418

GL3 [66] −16.31 0.153 199.87 32.50 89.03 −8.43 0.800 0.848 417

GL4 [66] −16.31 0.153 249.88 32.50 94.31 25.23 0.700 0.772 418

GL5 [66] −16.31 0.153 249.81 32.50 91.19 2.63 0.750 0.810 418

GL6 [66] −16.31 0.153 249.90 32.50 88.73 −12.93 0.800 0.848 417

GL7 [66] −16.30 0.153 299.99 32.50 93.94 17.94 0.700 0.772 418

GL8 [66] −16.31 0.153 299.84 32.50 90.86 −2.91 0.750 0.810 418

GL82 [67] −16.00 0.145 285.41 36.22 101.28 −8.06 0.773 0.827 416

GL9 [66] −16.31 0.153 299.89 32.50 88.44 −16.84 0.800 0.848 417

GM1 [68] −16.34 0.153 299.85 32.50 93.96 17.96 0.700 0.772 418

GM2 [68] −16.31 0.153 299.94 32.50 89.34 −11.99 0.780 0.832 418

GM3 [68] −16.30 0.153 239.93 32.50 89.71 −6.46 0.780 0.832 418

GPS1 [69] −15.98 0.150 250.46 32.52 88.96 −12.54 0.800 0.848 417
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Table C1-continued from previous page

Model E0 ρ0 K0 J L Ksym m∗N/mN m∗0,∆/m0,∆ ΛπN∆

GPS2 [69] −15.96 0.150 300.67 32.52 88.66 −16.42 0.800 0.848 417

NLρA [29] −16.00 0.160 240.16 30.34 84.52 3.38 0.750 0.809 419

NLρB [29] −16.30 0.148 271.55 33.70 106.87 95.85 0.600 0.695 418

RMF301 [70] −16.30 0.153 253.79 32.50 89.87 −6.24 0.775 0.829 418

RMF302 [70] −16.30 0.153 249.64 32.50 89.65 −7.35 0.780 0.832 418

RMF303 [70] −16.30 0.153 248.80 32.50 89.61 −7.57 0.781 0.833 418

RMF304 [70] −16.30 0.153 247.97 32.50 89.57 −7.78 0.782 0.834 418

RMF305 [70] −16.30 0.153 246.30 32.50 89.49 −8.21 0.784 0.835 418

RMF306 [70] −16.30 0.153 244.62 32.50 89.40 −8.63 0.786 0.837 418

RMF307 [70] −16.30 0.153 243.77 32.50 89.36 −8.83 0.787 0.838 418

RMF308 [70] −16.30 0.153 242.94 32.50 89.32 −9.04 0.788 0.838 418

RMF309 [70] −16.30 0.153 241.24 32.50 89.24 −9.45 0.790 0.840 418

RMF310 [70] −16.30 0.153 238.68 32.50 89.12 −10.04 0.793 0.842 418

RMF311 [70] −16.30 0.153 237.82 32.50 89.08 −10.24 0.794 0.843 417

RMF312 [70] −16.30 0.153 236.96 32.50 89.04 −10.43 0.795 0.844 417

RMF313 [70] −16.30 0.153 235.24 32.50 88.96 −10.82 0.797 0.845 417

RMF314 [70] −16.30 0.153 234.39 32.50 88.92 −11.01 0.798 0.846 417

RMF315 [70] −16.30 0.153 233.94 32.50 88.90 −11.10 0.799 0.846 417

RMF316 [70] −16.30 0.153 233.51 32.50 88.88 −11.20 0.799 0.847 417

RMF317 [70] −16.30 0.153 232.65 32.50 88.84 −11.38 0.800 0.848 417

RMF401 [70] −16.31 0.153 229.87 32.50 93.78 23.04 0.710 0.779 418

RMF402 [70] −16.31 0.153 231.87 32.50 93.77 22.74 0.710 0.779 418

RMF403 [70] −16.31 0.153 229.88 32.50 93.12 18.06 0.720 0.787 418

RMF404 [70] −16.47 0.153 230.42 32.50 93.14 17.86 0.720 0.786 418

RMF405 [70] −16.31 0.153 233.88 32.50 93.09 17.50 0.720 0.787 418

RMF406 [70] −16.31 0.153 233.92 32.50 89.75 −5.80 0.780 0.832 418

RMF407 [70] −16.31 0.153 229.89 32.50 92.50 13.42 0.730 0.794 418

RMF408 [70] −16.31 0.153 231.89 32.50 92.48 13.15 0.730 0.794 418

RMF409 [70] −16.31 0.153 233.89 32.50 92.47 12.88 0.730 0.794 418

RMF410 [70] −16.31 0.153 235.89 32.50 92.45 12.62 0.730 0.794 418

RMF411 [70] −16.31 0.153 229.90 32.50 91.90 9.09 0.740 0.802 418

RMF412 [70] −16.31 0.153 231.90 32.50 91.88 8.84 0.740 0.802 418

RMF413 [70] −16.31 0.153 233.90 32.50 91.87 8.58 0.740 0.802 418

RMF414 [70] −16.31 0.153 235.90 32.50 91.86 8.33 0.740 0.802 418

RMF415 [70] −16.30 0.153 229.91 32.50 91.33 5.06 0.750 0.809 418

RMF416 [70] −16.30 0.153 231.91 32.50 91.31 4.82 0.750 0.809 418

RMF417 [70] −16.30 0.153 233.91 32.50 91.30 4.58 0.750 0.809 418

RMF418 [70] −16.30 0.153 235.91 32.50 91.29 4.34 0.750 0.809 418

RMF419 [70] −16.31 0.153 229.91 32.50 90.79 1.31 0.760 0.817 418

RMF420 [70] −16.31 0.153 231.91 32.50 90.77 1.09 0.760 0.817 418

RMF421 [70] −16.31 0.153 233.91 32.50 90.76 0.86 0.760 0.817 418

Continued on next page
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Table C1-continued from previous page

Model E0 ρ0 K0 J L Ksym m∗N/mN m∗0,∆/m0,∆ ΛπN∆

RMF422 [70] −16.31 0.153 229.92 32.50 90.27 −2.17 0.770 0.825 418

RMF423 [70] −16.31 0.153 231.91 32.50 90.26 −2.38 0.770 0.825 418

RMF424 [70] −16.30 0.153 245.93 32.50 89.21 −9.88 0.790 0.840 418

RMF425 [70] −16.30 0.153 247.94 32.50 89.20 −10.06 0.790 0.840 418

RMF426 [70] −16.30 0.153 249.94 32.50 89.19 −10.24 0.790 0.840 418

RMF427 [70] −16.30 0.153 235.94 32.50 88.83 −11.67 0.800 0.848 417

RMF428 [70] −16.30 0.153 237.94 32.50 88.81 −11.85 0.800 0.848 417

RMF429 [70] −16.30 0.153 239.94 32.50 88.80 −12.02 0.800 0.848 417

RMF430 [70] −16.30 0.153 241.94 32.50 88.79 −12.19 0.800 0.848 417

RMF431 [70] −16.30 0.153 243.94 32.50 88.78 −12.36 0.800 0.848 417

RMF432 [70] −16.30 0.153 245.94 32.50 88.77 −12.53 0.800 0.848 417

RMF433 [70] −16.30 0.153 247.94 32.50 88.75 −12.70 0.800 0.848 417

RMF434 [70] −16.30 0.153 249.94 32.50 88.74 −12.87 0.800 0.848 417

Q1 [71] −16.10 0.148 242.19 36.46 115.77 105.77 0.597 0.693 417

SMFT2 [72] −13.85 0.162 210.02 17.37 52.72 60.28 0.656 0.738 430

S271 [38] −16.24 0.148 270.94 35.03 101.91 22.28 0.700 0.771 417

SRK3M5 [73] −16.00 0.150 299.95 23.50 82.46 146.79 0.550 0.657 425

DJM [72] −14.81 0.172 245.71 20.23 63.03 32.62 0.569 0.671 430

HD [74] −16.22 0.177 283.50 35.67 105.86 44.51 0.666 0.746 419

MS1 [75] −15.75 0.148 249.97 35.00 106.76 38.56 0.600 0.695 418

MS3 [76] −15.75 0.148 247.80 34.91 102.11 −0.10 0.601 0.696 418

NLSV1 [77] −16.26 0.149 269.49 37.28 114.61 58.91 0.613 0.705 417

NLSV2 [77] −16.24 0.147 293.95 36.84 111.78 39.60 0.618 0.709 417

TM1 [78] −16.26 0.145 279.55 36.84 110.61 33.55 0.635 0.722 416

PK1 [79] −16.22 0.148 283.39 37.61 115.78 55.17 0.605 0.700 417

Z271 [38] −16.24 0.148 270.96 33.30 91.02 −16.40 0.800 0.848 417

hybrid [80] −16.24 0.148 228.75 37.24 118.41 110.50 0.596 0.692 417

Z271* [81] −16.24 0.148 268.69 40.18 83.52 −197.69 0.800 0.848 413

HC [74] −15.75 0.169 233.88 31.06 58.60 −98.75 0.679 0.756 417

XS [76] −16.30 0.148 228.11 31.78 54.85 −28.76 0.601 0.696 410

BKA20 [82] −16.09 0.146 236.89 32.24 75.39 −15.04 0.642 0.727 412

BKA22 [82] −16.08 0.147 223.09 33.13 78.67 −8.84 0.608 0.701 410

BKA24 [82] −16.13 0.147 225.97 34.18 84.77 −14.95 0.603 0.698 413

FSUGOLD [83] −16.28 0.148 228.56 32.54 60.38 −51.45 0.611 0.703 413

FSUGOLD4 [84] −16.53 0.148 228.95 31.47 51.98 −16.12 0.610 0.703 410

FSUGOLD5 [84] −16.92 0.148 229.53 30.56 45.66 23.28 0.610 0.703 413

FSUGZ00 [85] −16.03 0.149 241.74 31.47 62.27 −3.22 0.605 0.699 410

FSUGZ03 [85] −16.07 0.147 230.73 31.50 63.86 −11.75 0.603 0.698 410

FSUGZ06 [85] −16.05 0.146 226.48 31.22 62.53 −24.49 0.607 0.700 410

IU-FSU [86] −16.40 0.155 233.39 31.34 47.35 28.99 0.609 0.702 410

NL3V1 [87] −16.24 0.148 269.60 36.01 101.08 0.62 0.596 0.692 416
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Table C1-continued from previous page

Model E0 ρ0 K0 J L Ksym m∗N/mN m∗0,∆/m0,∆ ΛπN∆

NL3V2 [87] −16.24 0.148 269.60 34.93 87.64 −46.25 0.596 0.692 416

NL3V3 [87] −16.24 0.148 269.60 34.43 81.97 −56.29 0.596 0.692 416

NL3V4 [87] −16.24 0.148 269.60 33.98 76.87 −60.12 0.596 0.692 415

NL3V5 [87] −16.24 0.148 269.60 33.12 68.15 −53.40 0.596 0.692 415

NL3V6 [87] −16.24 0.148 269.60 32.35 61.05 −34.30 0.596 0.692 414

S271V1 [87] −16.24 0.148 270.98 35.73 95.92 −44.06 0.700 0.771 416

S271V2 [87] −16.24 0.148 270.98 35.05 86.87 −90.33 0.700 0.771 416

S271V3 [87] −16.24 0.148 270.98 34.42 78.86 −120.99 0.700 0.771 416

S271V4 [87] −16.24 0.148 270.98 33.82 71.75 −139.52 0.700 0.771 415

S271V5 [87] −16.24 0.148 270.98 33.27 65.44 −148.63 0.700 0.771 415

S271V6 [87] −16.24 0.148 270.98 32.74 59.81 −150.45 0.700 0.771 415

Z271S1 [87] −16.24 0.148 270.95 34.95 86.86 −64.86 0.800 0.848 415

Z271S2 [87] −16.24 0.148 270.95 34.07 76.62 −92.28 0.800 0.848 415

Z271S3 [87] −16.24 0.148 270.95 33.27 67.81 −104.57 0.800 0.848 414

Z271S4 [87] −16.24 0.148 270.95 32.53 60.18 −106.04 0.800 0.848 414

Z271S5 [87] −16.24 0.148 270.95 31.84 53.57 −99.82 0.800 0.848 413

Z271S6 [87] −16.24 0.148 270.95 31.20 47.80 −88.22 0.800 0.848 412

Z271V1 [87] −16.24 0.148 270.95 35.34 90.86 −66.36 0.800 0.848 416

Z271V2 [87] −16.24 0.148 270.95 34.80 83.61 −104.83 0.800 0.848 416

Z271V3 [87] −16.24 0.148 270.95 34.54 80.23 −120.38 0.800 0.848 415

Z271V4 [87] −16.24 0.148 270.95 34.28 76.99 −133.75 0.800 0.848 415

Z271V5 [87] −16.24 0.148 270.95 34.04 73.90 −145.14 0.800 0.848 415

Z271V6 [87] −16.24 0.148 270.95 33.80 70.94 −154.73 0.800 0.848 415

G1 [71] −16.14 0.153 215.34 38.51 123.30 97.03 0.633 0.721 417

G2 [71] −16.07 0.154 215.00 36.40 100.71 −7.48 0.664 0.744 416

G2* [81] −16.07 0.154 216.87 30.46 69.87 −21.86 0.663 0.743 413

TM1* [88] −16.33 0.145 281.13 36.87 101.72 −13.78 0.634 0.721 415

BSR1 [89] −16.02 0.148 239.60 31.03 59.39 12.92 0.605 0.699 410

BSR2 [89] −16.03 0.149 241.81 31.54 62.14 −2.87 0.605 0.699 410

BSR3 [89] −16.09 0.150 232.84 32.81 70.63 −7.45 0.604 0.698 410

BSR4 [89] −16.08 0.150 236.47 33.12 73.09 −20.92 0.607 0.700 412

BSR5 [89] −16.12 0.151 237.33 34.51 83.51 −14.00 0.607 0.700 413

BSR6 [89] −16.13 0.149 233.88 35.57 85.54 −49.59 0.602 0.697 414

BSR7 [89] −16.18 0.149 229.76 37.19 98.93 −17.04 0.602 0.697 415

BSR8 [89] −16.04 0.147 231.44 31.09 60.29 −0.68 0.606 0.699 410

BSR9 [89] −16.08 0.147 230.70 31.57 63.76 −11.42 0.603 0.698 410

BSR10 [89] −16.07 0.147 224.90 32.65 70.64 −16.62 0.601 0.696 410

BSR11 [89] −16.08 0.147 227.98 33.73 78.89 −24.71 0.605 0.699 412

BSR12 [89] −16.10 0.147 230.14 33.93 77.73 −44.28 0.608 0.701 414

BSR13 [89] −16.13 0.147 227.25 35.77 90.94 −41.62 0.604 0.698 415

BSR14 [89] −16.18 0.147 233.29 36.24 93.64 −41.83 0.609 0.702 415
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