Local probes strongly favor ∧CDM against power-law and Rh=ct universe

  • We constrain three cosmological models-the concordance cold dark matter plus cosmological constant (∧CDM) model, the power-law (PL) model, and the Rh=ct model-using the available local probes, which include the JLA compilation of type-Ia supernovae (SNe Ia), the direct measurement of the Hubble constant (H(z)), and the baryon acoustic oscillations (BAO). For the ∧CDM model, we consider two different cases, i.e. zero and non-zero spatial curvature. We find that by using the JLA alone, the ∧CDM and PL models are indistinguishable, but the Rh=ct model is strongly disfavored. If we combine JLA+H(z), the ∧CDM model is strongly favored over the other two models. The combination of all three datasets supports ∧CDM as the best model. We also use the low-redshift (z<0.2) data to constrain the deceleration parameter using the cosmography method, and find that only the ∧CDM model is consistent with cosmography. However, there is no strong evidence to distinguish between flat and non-flat ∧CDM models by using the local data alone.
      PCAS:
  • 加载中
  • [1] S. Perlmutter, G. Aldering, G. Goldhaber et al, Astrophys. J., 517:565 (1999)
    [2] A. G. Riess, A. V. Filippenko, P. Challis et al, Astron. J., 116:1009 (1998)
    [3] C. L. Bennett et al (WMAP Collaboration), Astrophys. J., 192:S16 (2011)
    [4] C. L. Bennett et al (WMAP Collaboration), Astrophys. J., 208:S20 (2013)
    [5] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 571:A16 (2014)
    [6] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A13 (2016)
    [7] S. Weinberg, Rev. Mod. Phys., 61:1 (1989)
    [8] I. Zlatev, L. M. Wang, and P. J. Steinhardt, Phys. Rev. Lett., 82:896 (1999)
    [9] A. G. Riess et al, Astrophys. J., 826:56 (2016)
    [10] F. Melia, The Edge of Infinity:Supermassive Black Holes in the Universe (Cambridge University Press 2003)
    [11] F. Melia, Mon. Not. Roy. Astron. Soc., 382:1917 (2007)
    [12] F. Melia, Astrophys. J., 764:72 (2013)
    [13] J. J. Wei, X. F. Wu, and F. Melia, Astron. J., 149:165 (2015)
    [14] F. Melia, T. M. McClintock, Astron. J., 150:119 (2015)
    [15] J. J. Wei, X. F. Wu, F. Melia, Mon. Not. Roy. Astron. Soc., 463:1144 (2016)
    [16] F. Melia, Mon. Not. Roy. Astron. Soc., 464:1966 (2017)
    [17] M. Bilicki, M. Seikel, Mon. Not. Roy. Astron. Soc., 425:1664 (2012)
    [18] D. L. Shafer, Phys. Rev. D, 91:103516 (2015)
    [19] B. S. Haridasu, V. V. Luković:R. D'Agostino, and N. Vittorio, Astron. Astrophys., 600:L1 (2017)
    [20] A. D. Dolgov, Phys. Rev. D, 55:5881 (1997)
    [21] A. Dolgov, V. Halenka, I. Tkachev, and J. Cosmol. Astropart. Phys., 1410:047 (2014)
    [22] G. Sethi, A. Dev, and D. Jain, Phys. Lett. B, 624:135 (2005)
    [23] Z. H. Zhu, M. Hu, J. S. Alcaniz, and Y. X. Liu, Astron. Astrophys., 483:15 (2008)
    [24] I. Tutusaus, B. Lamine, A. Blanchard et al, Phys. Rev. D, 94:103511 (2016)
    [25] J. T. Nielsen, A. Guffanti, and S. Sarkar, Sci. Rep., 6:35596 (2016)
    [26] I. Tutusaus, B. Lamine, A. Dupays, and A. Blanchard, Astron. Astrophys., 602:A73 (2017)
    [27] D. W. Hogg, astro-ph/9905116
    [28] F. Melia, A. Shevchuk, Mon. Not. Roy. Astron. Soc., 419:2579 (2012)
    [29] P. K. S. Dunsby, O. Luongo, Int. J. Geom. Meth. Mod. Phys., 13:1630002 (2016)
    [30] M. Kowalski et al, Astrophys. J., 686:749 (2008)
    [31] R. Amanullah et al, Astrophys. J., 716:712 (2010)
    [32] N. Suzuki et al, Astrophys. J., 746:85 (2012)
    [33] M. Betoule et al (SDSS Collaboration), Astron. Astrophys., 568:A22 (2014)
    [34] R. Tripp, Astron. Astrophys., 331:815 (1998)
    [35] J. Guy, P. Astier, S. Nobili, N. Regnault, and R. Pain, Astron. Astrophys., 443:781 (2005)
    [36] R. Jimenez, A. Loeb, Astrophys. J., 573:37 (2002)
    [37] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S. A. Stanford, and J. Cosmol. Astropart. Phys., 1002:008 (2010)
    [38] M. Moresco et al, J. Cosmol. Astropart. Phys., 1208:006 (2012)
    [39] E. Gaztanaga, A. Cabre, and L. Hui, Mon. Not. Roy. Astron. Soc., 399:1663 (2009)
    [40] C. Blake et al, Mon. Not. Roy. Astron. Soc., 425:405 (2012)
    [41] M. Moresco et al, JCAP, 1605:014 (2016)
    [42] D. J. Eisenstein, W. Hu, Astrophys. J., 496:605 (1998)
    [43] C. Cheng, Q. G. Huang, Sci. China Phys. Mech. Astron., 58:599801 (2015)
    [44] F. Beutler, C. Blake, M. Colless et al, Mon. Not. R. Astron. Soc., 416:3017 (2011)
    [45] L. Anderson et al, Mon. Not. R. Astron. Soc., 441:24 (2014)
    [46] T. Delubac et al (BOSS Collaboration), Astron. Astrophys., 574:A59 (2015)
    [47] E. A. Kazin et al, Mon. Not. Roy. Astron. Soc., 441:3524 (2014)
    [48] H. Akaike, IEEE Trans. Automatic Control, 19:716 (1974)
    [49] G. Schwarz, Ann. Statist., 6:461 (1978)
    [50] H. Jeffreys, The theory of probability (Oxford University Press, Oxford U.K.) (1998)
    [51] A. R. Liddle, Mon. Not. R. Astron. Soc., 377:L74 (2007)
    [52] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, Publ. Astron. Soc. Pac., 125:306 (2013)
    [53] A. G. Riess et al, arXiv:1710.00844 (2017)
    [54] B. P. Abbott, et al (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett., 119:161101 (2017)
    [55] A. Goldstein et al, Astrophys. J., 848:L14 (2017)
    [56] B. P. Abbott, et al (LIGO Scientific and Virgo and Fermi-GBM and INTEGRAL Collaborations), Astrophys. J., 848:L13 (2017)
    [57] D. A. Coulter et al, Science, 358:1556 (2017)
    [58] B. P. Abbott et al, Nature, 551:85 (2017)
  • 加载中

Get Citation
Hai-Nan Lin, Xin Li and Yu Sang. Local probes strongly favor ∧CDM against power-law and Rh=ct universe[J]. Chinese Physics C, 2018, 42(9): 095101. doi: 10.1088/1674-1137/42/9/095101
Hai-Nan Lin, Xin Li and Yu Sang. Local probes strongly favor ∧CDM against power-law and Rh=ct universe[J]. Chinese Physics C, 2018, 42(9): 095101.  doi: 10.1088/1674-1137/42/9/095101 shu
Milestone
Received: 2018-04-08
Fund

    Supported by National Natural Science Fund of China (11603005, 11775038, 11647307, 11675182, 11690022)

Article Metric

Article Views(827)
PDF Downloads(28)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Local probes strongly favor ∧CDM against power-law and Rh=ct universe

    Corresponding author: Hai-Nan Lin,
    Corresponding author: Xin Li,
    Corresponding author: Yu Sang,
  • 1.  Department of Physics, Chongqing University, Chongqing 401331, China
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by National Natural Science Fund of China (11603005, 11775038, 11647307, 11675182, 11690022)

Abstract: We constrain three cosmological models-the concordance cold dark matter plus cosmological constant (∧CDM) model, the power-law (PL) model, and the Rh=ct model-using the available local probes, which include the JLA compilation of type-Ia supernovae (SNe Ia), the direct measurement of the Hubble constant (H(z)), and the baryon acoustic oscillations (BAO). For the ∧CDM model, we consider two different cases, i.e. zero and non-zero spatial curvature. We find that by using the JLA alone, the ∧CDM and PL models are indistinguishable, but the Rh=ct model is strongly disfavored. If we combine JLA+H(z), the ∧CDM model is strongly favored over the other two models. The combination of all three datasets supports ∧CDM as the best model. We also use the low-redshift (z<0.2) data to constrain the deceleration parameter using the cosmography method, and find that only the ∧CDM model is consistent with cosmography. However, there is no strong evidence to distinguish between flat and non-flat ∧CDM models by using the local data alone.

    HTML

Reference (58)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return