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Local probes strongly favor ΛCDM against power-law

and Rh=ct universe *
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Abstract: We constrain three cosmological models – the concordance cold dark matter plus cosmological constant

(ΛCDM) model, the power-law (PL) model, and the Rh=ct model – using the available local probes, which include

the JLA compilation of type-Ia supernovae (SNe Ia), the direct measurement of the Hubble constant (H(z)), and the

baryon acoustic oscillations (BAO). For the ΛCDM model, we consider two different cases, i.e. zero and non-zero

spatial curvature. We find that by using the JLA alone, the ΛCDM and PL models are indistinguishable, but the

Rh=ct model is strongly disfavored. If we combine JLA+H(z), the ΛCDM model is strongly favored over the other

two models. The combination of all three datasets supports ΛCDM as the best model. We also use the low-redshift

(z<0.2) data to constrain the deceleration parameter using the cosmography method, and find that only the ΛCDM

model is consistent with cosmography. However, there is no strong evidence to distinguish between flat and non-flat

ΛCDM models by using the local data alone.
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1 Introduction

Progress in both experimental and theoretical cos-
mology in recent decades has led to the foundation of
the standard model, i.e. the cold dark matter plus cos-
mological constant (ΛCDM) model. According to this
model, the universe mainly consists of cold dark mat-
ter and dark energy (cosmological constant), while ordi-
nary baryonic matter only occupies a small proportion of
the total content. The cosmological constant is responsi-
ble for the accelerated expansion of the universe, which
was first discovered from the luminosity of type-Ia super-
novae (SNe Ia) being dimmer than expected [1, 2]. The
ΛCDM model is consistent with various local observa-
tions such as SNe Ia, the direct measurement of Hubble
parameters (H(z)), and the baryon acoustic oscillations
(BAO). More importantly, it is consistent with the cos-
mic microwave background from the WMAP [3, 4] and
Planck satellites [5, 6].

Although the ΛCDM model has been very successful,
it also faces many challenges, of which the most well-
known are the “cosmological constant fine tuning prob-
lem” and the “cosmic coincidence problem” [7, 8]. The

former asks why the cosmological constant is so close to
zero but not exactly zero, and the latter concerns why
the densities of dark matter and dark energy are approx-
imately equal today. In addition, it is found that the
Hubble constant measured from the local SNe Ia and
Cepheids is in more than 3σ tension from that obtained
from the CMB [9]. These problems motivate cosmolo-
gists to pursue new theories beyond the standard model.

Another problem ΛCDM faces is the horizon prob-
lem, which asks why the universe appears statistically
homogeneous and isotropic in accordance with the cos-
mological principle. According to the standard Big Bang
model, gravitational expansion does not allows the uni-
verse to reach thermal equilibrium, hence it is difficult
to explain the homogeneity and anisotropy. Although
the horizon problem can be solved by adding an expo-
nential inflation epoch to the very early universe, another
problem inevitably arises. That is, why the gravitational
horizon is equal to the distance light has traveled since
the Big Bang at the current epoch. According to ΛCDM,
there is only one time at which the gravitational horizon
equals the light travelling distance [10]. It is difficult to
explain why this equality happens exactly at the present
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day, not earlier or later. To avoid this coincidence, Melia
[11] proposed the Rh = ct model, in which the gravi-
tational horizon is always equal to the light travelling
distance throughout the whole history of the universe.
It was shown that various local data are consistent with
the Rh = ct model [12–16]. A detailed analysis on the
combined data of local probes, however, showed that the
Rh=ct model is strongly disfavored [17–19].

An alternative model more general than Rh=ct is the
power-law (PL) model [20, 21], which assumes that the
universe expands in a simple power law, i.e. the scale
factor of the universe follows a(t)∝ tn. Although it is
unlikely that the PL model can describe the whole evo-
lution history of the universe, some investigations have
shown that it is consistent with various low-redshift data
[21–23]. Especially, it was shown that the PL model with
index n∼1.5 can fit the SNe Ia data as well as ΛCDM
model [24]. On the other hand, the validity of the PL
model is also questioned by some authors [18, 19].

One of the most important discoveries in modern cos-
mology is the accelerated expansion of the universe. This
phenomenon was first discovered from observations of the
luminosity of SNe Ia in the late 1990s, which was later
awarded the Nobel Prize [1, 2]. Nowadays the acceler-
ation of the universe and the existence of dark energy
are widely accepted by cosmologists. Recently, however,
some investigations showed that the evidence for acceler-
ation can be weakened. By using unconventional priors
on the SN parameters, Nielsen et al. [25] found that
the SNe Ia data are still quite consistent with a constant
rate of expansion. Tutusaus et al. [26] found that the
non-accelerated power-law model is a good fit to vari-
ous local data if the cosmological evolution of the intrin-
sic luminosity of SNe is taken into account. A model-
independent way to test the acceleration of the universe
is using the cosmography method. We note that the
Rh = ct model is a non-accelerating model, thus if the
universe is proven to be accelerating, then the Rh = ct
model can be ruled out.

In this paper, we use various local probes, including
the SNe Ia, H(z) and BAO, to test three cosmological
models, i.e. the ΛCDM model, PL model and Rh = ct
model. To avoid model-dependence, the cosmography
method is also used to constrain the deceleration param-
eter. The rest of the paper is organized as follows. In
Section 2, we briefly review the cosmological models. In
Section 3, we introduce the observational datasets that
are used to constrain the cosmological models. In Sec-
tion 4, we use the Markov chain Monte Carlo method
to calculate the posterior probability density function of
cosmological parameters, and then use the information
criteria to pick the model which is best consistent with
the data. Finally, discussion and conclusions are given
in Section 5.

2 Cosmological models

In this section, we briefly review three cosmological
models we are interested in, including the ΛCDM, PL
and Rh=ct models.

The ΛCDM model is the standard model and has
been proven to be consistent with various observations.
It is based on the homogeneous and isotropic Friedmann-
Robertson-Walker (FRW) metric,

ds2=c2dt2−a2(t)

(

dr

1−kr2
+r2dθ2+r2sin2θdφ2

)

, (1)

where a(t) is the scale factor, and k=0,±1 is the curva-
ture parameter of the universe. Substituting the FRW
metric into the Einstein field equations results in the
Friedmann equation,

(

ȧ

a

)2

=
8πGρ

3c2
−kc2

a2
(2)

and the acceleration equation,

ä

a
=−4πG

3c2
(ρ+3p), (3)

where ρ=ρr+ρm+ρΛ is the total energy density of the uni-
verse, which includes radiation, matter and dark energy.
Assuming the equations of state (EoS) w≡ p/ρ for the
radiation and matter components are equal to 1/3 and
0 respectively, we obtain that ρr scales as a−4 and ρm

scales as a−3. We further assume that the dark energy
is a constant and does not evolve with a.

Defining the Hubble parameter H=ȧ/a and the crit-
ical energy density ρc,0 = 3c2H2

0/8πG, the Friedmann
equation (2) can be rewritten as

(

H

H0

)2

=Ωra
−4+Ωma

−3+Ωka
−2+ΩΛ, (4)

where Ωi ≡ ρ0,i/ρc,0 (i = r,m,Λ) is the normalized en-
ergy density today, Ωk≡−kc2/H2

0 , and H0 is called the
Hubble constant. The total energy density is normalized
to unity, i.e. Ωr+Ωm+Ωk+ΩΛ =1. Using the relation
a=1/(1+z), the Hubble parameter can be rewritten as
a function of redshift,

H(z)=H0

√

Ωr(1+z)4+Ωm(1+z)3+Ωk(1+z)2+ΩΛ. (5)

Another important quantity is the deceleration parame-
ter, which is defined by q=−äa/ȧ2. A positive or nega-
tive q means that the universe is decelerating or acceler-
ating. From Eqs. (2) and (3) the deceleration parameter
can be written as a function of the mass components of
the universe,

q0=Ωr+
1

2
Ωm−ΩΛ. (6)

At the present day the radiation component is negligible
compared to the other components, so we fix Ωr=0. If
the universe is spatially flat, i.e. Ωk=0, the deceleration
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parameter only depends on the energy density of matter,
q=(3/2)Ωm−1. Such a model is the so-called concordance
cosmological model. Here we consider the flat and non-
flat ΛCDM models separately. The comoving distance is
given by [27]

DC=
c

H0

∫ z

0

dz
√

Ωm(1+z)3+Ωk(1+z)2+ΩΛ

. (7)

The luminosity distance is related to the comoving dis-
tance by

DL=































(1+z)
c

H0

1√
Ωk

sinh
(√

ΩkDCH0/c
)

, Ωk>0,

(1+z)DC, Ωk=0,

(1+z)
c

H0

1√
−Ωk

sin
(√

−ΩkDCH0/c
)

, Ωk<0.

(8)

The power-law model [20, 21] is a toy model and
is based on the assumption that the scale factor of
the universe expands as a simple power law, namely
a(t)=(t/t0)

n, regardless of the contents of the universe,
where t0 is the current age of the universe. In the power-
law model, the Hubble parameter reads

H(z)=H0(1+z)
1

n . (9)

The deceleration parameter is given by q=1/n−1, and
n > 1 or n < 1 means an accelerating or a decelerating
universe, respectively.

The Rh=ct universe [11, 28] is based on the assump-
tion that the gravitational horizon Rh is equal to the dis-
tance ct light has travelled since the Big Bang throughout
the cosmos expansion. In the Rh=ct model, the universe
also consists of radiation, matter and dark energy, as the
ΛCDM model does. The main difference between Rh=ct
and ΛCDM is that the former has no assumption on the
EoS of dark energy but requires the EoS of the total
contents to be w≡p/ρ=−1/3. According to the Rh=ct
universe, the Hubble parameter is given by

H(z)=H0(1+z). (10)

In this model, the universe expands steadily and the de-
celeration parameter is zero.

In the PL and Rh = ct models, the luminosity dis-
tance is given by DL=(1+z)c

∫ z

0
[1/H(z)]dz. Therefore,

we have

DL=



























(1+z)
c

H0

(1+z)
1−

1

n−1

1− 1

n

, PL,n 6=1,

(1+z)
c

H0

ln(1+z), PL,n=1 & Rh=ct.

(11)

It is convenient to convert the luminosity distance to the

dimensionless distance modulus by

µ=5log
DL

Mpc
+25, (12)

where “ log” represents the logarithm of base 10.
One of the model-independent ways to describe the

local universe is the so-called cosmography [29]. The
main idea of cosmography is to expand the scale factor
a(t) and other quantities of interests into Taylor series.
In this way the Hubble parameter reads

H(z)=H0[1+(1+q0)z+O(z2)], (13)

where H0 is the Hubble constant and q0 is the decel-
eration parameter at the present day. The luminosity
distance is given by

DL(z)=
cz

H0

[

1+
1

2
(1−q0)z+O(z2)

]

. (14)

Cosmography is only valid when z≪1.

3 Data and methodology

In this section, we use the available local data to con-
strain the cosmological models. These local data include
SNe Ia, H(z) and BAO.

The first local probe used in our paper is SNe Ia. Due
to their approximately constant absolute luminosity, SNe
Ia are widely used as standard candles to constrain the
cosmological parameters. Recently, many SNe Ia sam-
ples have been released [30–33]. Here we use the most
up-to-date compilation of SNe Ia, i.e. the JLA sample
[33]. The JLA consists of 740 SNe Ia in the redshift range
[0.01,1.30]. Each SN has well-measured light curve pa-
rameters. The distance moduli of SNe can be extracted
from the light curves using the empirical relation [33–35]

µ̂=m∗

B−(MB+δ·∆M−αX1+βC). (15)

wherem∗

B is the observed peak magnitude, MB is the ab-
solute magnitude, X1 is the stretch factor, and C is the
supernova color at maximum brightness. Strictly speak-
ing, the absolute magnitude is not a constant, and it
depends in a complex way on the host galaxy. Following
Ref.[33], we use a simple step function to approximate
such a dependence, i.e., we add a term δ·∆M to MB and
set δ=1 (or δ=0) if the mass of host galaxy is larger (or
smaller) than 1010M⊙. The two parameters α and β are
universal constants and they can be fitted simultaneously
with cosmological parameters. The best-fit parameters
are the ones which can maximize the likelihood

LSN=
1

√

det(2πC)
exp

[

−1

2
(µ−µ̂)†C−1(µ−µ̂)

]

, (16)

where C is the covariance matrix of µ̂. Note that C not
only depends on the light curve parameters, but also de-
pends on the nuisance parameters α and β. Therefore,
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the normalization factor in Eq. (16) is not a constant
and cannot be neglected. In each iteration of the mini-
mization procedure, C should be recalculated using the
new parameters. Detailed information on the covariance
matrix can be found in Ref. [33].

The second local probe used here is H(z) data, which
directly measure the Hubble parameter at different red-
shifts. Two commonly used methods to measure H(z)
are the differential age of galaxies (DAG) method [36–38]
and the BAO method [39, 40]. The DAG method mea-
sures H(z) by comparing the ages of galaxies at different
redshifts, and the BAO method extracts H(z) from the
peak of acoustic oscillation of baryons. The H(z) data
have an advantage over SNe because the latter rely on the
integral of the cosmic expansion history rather than the
expansion history itself. After the integration some im-
portant information may be lost. However, the H(z) data
from the BAO method is more or less model-dependent,
and only the DAG method is free of cosmological model.
In this paper, we use the 30 H(z) data obtained using
the DAG method compiled in Ref. [41]. The likelihood
for H(z) data is given by

LH∝exp

[

−1

2

N
∑

i=1

[H(zi)−Ĥi]
2

σ2
Ĥi

]

, (17)

where H(zi) is the theoretical Hubble parameter at red-
shift zi, Ĥi is the observed Hubble parameter, and σĤi

is the uncertainty of Ĥi.
The final local probe used in our paper is the BAO

data. BAO are regular, periodic fluctuations in the den-
sity of the visible baryonic matter of the universe. As
the SNe Ia provide a “standard candle” for astronomical
observations, BAO provide a “standard ruler” for length
scale in cosmology. This standard ruler is characterized
by the sound horizon rd when the baryons are decoupled
from the Compton drag of photons at redshift zd [42],

rd=

∫

∞

zd

cs(z)dz

H(z)
, (18)

where cs(z) is the speed of sound at redshift z. The value
of rd strongly depends on the early epoch of the universe,
and different models may have very different rd. From
local data alone we cannot get information about the
early universe. Following Ref. [26], we treat rd as a free
parameter.

BAO measure the ratio of the effective distance to
the sound horizon, i.e. R(z)=DV(z)/rd, where

DV(z)=

[

d2
L(z)

(1+z)2
cz

H(z)

]

(19)

is the effective distance, which takes into consideration
the anisotropic expansion in the radial and transverse
directions. In this paper, we use the seven BAO data
points compiled in Table 1 of Ref. [43]. These data are

a compilation of BAO data from the 6dF Galaxy Survey
[44], Baryon Oscillation Spectroscopic Survey [45, 46],
and the WiggleZ Dark Energy Survey [47], The likeli-
hood of BAO data is given by

LBAO∝exp

[

−1

2

N
∑

i=1

[Rth(zi)−Robs(zi)]
2

σ2
Ri

]

. (20)

Finally, we combine all the data sets to constrain the
cosmological models. The total likelihood of the com-
bined data sets is the product of the individual likeli-
hoods, i.e.

Ltotal=LSN·LH·LBAO. (21)

We use the information criteria (IC) to pick the model
which can best depict the data. The two most widely
used IC are the Akaike information criterion (AIC) [48]
and the Bayesian information criterion (BIC) [49]. They
are defined by

AIC=−2lnLmax+2k, (22)

BIC=−2lnLmax+klnN, (23)

where Lmax is the maximum likelihood, k is the number
of free parameters, and N is the number of data points.
The model which has the smallest IC is the best one.
It is not the absolute value of IC but the difference of
IC between different models that is important in the
model comparison. We use the flat ΛCDM as the fidu-
cial model, and define the difference of IC of a model
with respect to that of flat ΛCDM as

∆ICmodel=ICmodel−ICflat−ΛCDM. (24)

According to the Jeffreys’ scale [50, 51], a model with
∆IC>5 or ∆IC>10 means that there is ‘strong’ or ‘de-
cisive’ evidence against this model with respect to the
flat ΛCDM.

4 Results

We use the publicly available Python package em-

cee [52] to calculate the posterior probability distribu-
tion functions of free parameters. A flat prior is used
on each parameter. First, we use the JLA data alone
to constrain the cosmological parameters. In this case,
the Hubble constant h0 (h0 = H0/100 km s−1 Mpc−1)
is degenerate with the absolute magnitude MB, so they
cannot be constrained simultaneously. Therefore, we fix
h0 =0.7 and leave MB free. The mean and 1σ error of
each parameter are reported in Table 1. In the last three
rows, we also report the lnLmax, ∆AIC and ∆BIC. Ac-
cording to the IC, there is decisive evidence against the
Rh=ct model. However, the flat ΛCDM and PL models
are indistinguishable using SNe data alone. According
to AIC, the flat and non-flat ΛCDM models fit the data
equally well, while according to BIC, the data favors the
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Table 1. The best-fit parameters and their 1σ uncertainties from JLA.

flat ΛCDM non-flat ΛCDM PL Rh=ct

Ωm 0.329±0.034 0.226±0.105 — —

ΩΛ — 0.522±0.163 — —

n — — 1.421±0.116 —

α 0.127±0.006 0.127±0.006 0.126±0.006 0.124±0.006

β 2.633±0.066 2.627±0.067 2.631±0.066 2.606±0.067

MB −19.053±0.023 −19.044±0.025 −19.030±0.024 −18.946±0.017

∆M −0.054±0.022 −0.054±0.021 −0.056±0.023 −0.059±0.022

lnLmax 337.873 338.509 338.188 322.076

∆AIC 0 0.728 -0.630 29.594

∆BIC 0 5.335 -0.630 24.987

Table 2. The best-fit parameters and their 1σ uncertainties from JLA+H(z).

flat ΛCDM non-flat ΛCDM PL Rh=ct

h0 0.677±0.019 0.671±0.023 0.683±0.019 0.625±0.014

Ωm 0.324±0.028 0.245±0.095 — —

ΩΛ — 0.542±0.157 — —

n — — 1.289±0.071 —

α 0.128±0.006 0.127±0.006 0.126±0.006 0.124±0.006

β 2.631±0.066 2.646±0.072 2.629±0.068 2.608±0.070

MB −19.128±0.058 −19.133±0.066 −19.064±0.057 −19.189±0.055

∆M −0.052±0.022 −0.058±0.022 −0.056±0.021 −0.059±0.022

lnLmax 330.591 331.055 325.141 313.746

∆AIC 0 1.072 10.900 31.690

∆BIC 0 5.718 10.900 27.044

flat ΛCDM model. In the non-flat ΛCDM model, the
Ωm and ΩΛ values are somewhat smaller than, but are
still marginally consistent with, the Planck 2015 results
[6] within 1σ uncertainty. In the PL model, n>1 means
that JLA data favors an accelerating universe.

Then we add H(z) data to the JLA and make a com-
bined analysis. Adding H(z) data breaks the degener-
acy between H0 and MB, so they can be fitted simulta-
neously. The best-fit parameters are listed in Table 2.
In the last two rows we also list the ∆AIC and ∆BIC
values for each model. We see that there is decisive evi-
dence against the PL and Rh=ctmodels. However, there
is weak or strong evidence favoring flat-ΛCDM against
non-flat ΛCDM, depending on whether the AIC or BIC
criterion is chosen. In the PL model, the best-fit power-
law index n is reduced compared wih the JLA-only case.
In the ΛCDM (both flat and non-flat) model and PL
model, the Hubble constant is more consistent with that
of the Planck 2015 results [6] than with the local value
from the Cepheids [9]. However, in the Rh = ct model,
the Hubble constant is unexpectedly small.

Next, we combine the JLA+H(z)+BAO datasets to
make an analysis. The results are given in Table 3. Com-
pared with Table 2, we see that adding the BAO data
leaves the best-fit parameters of the ΛCDM and Rh=ct
models almost unchanged. The most obvious change
happens in the PL model, in which the Hubble constant
is reduced to h0=0.645±0.015 and the power-law index
n is reduced to be consistent with 1. The sound hori-

zons in these three models are consistent with each other.
Among these models, the PL and Rh=ctmodels are deci-
sively disfavored compared with ΛCDM, but there is still
no strong evidence to distinguish between flat and non-
flat ΛCDM. The deceleration parameters of flat-ΛCDM,
non-flat ΛCDM and PL models are q0=−0.545±0.031,
−0.424±0.122 and −0.080±0.030, respectively.

We also check if the H(z) or BAO data alone disfa-
vor any model or not. By using the 30 H(z) data alone,
we find that flat and non-flat ΛCDM models have ap-
proximately equal maximum likelihoods, as do the PL
and Rh = ct models. The best-fit Hubble constant is
H0∼ 67 km s−1 Mpc−1 for the flat and non-flat ΛCDM
models, and H0 ∼ 62 km s−1 Mpc−1 for the PL and
Rh=ct models. The ∆AIC values are 2.1, 2.1 and 0.1 for
the non-flat ΛCDM, PL and Rh=ct models, respectively.
The ∆BIC values are 3.5, 2.1 and -1.3 for the non-flat
ΛCDM, PL and Rh = ct models, respectively. There-
fore, although there is no strong evidence to favor one
model over the others, the non-flat ΛCDM and PL mod-
els seem to be marginally disfavored. According to BIC,
the H(z) data slightly favor Rh=ct against flat ΛCDM.
Since there are only seven BAO data points, most model
parameters cannot be tightly constrained by BAO data
alone, and no model is preferred over the others.

Finally, to avoid model dependence, we apply the cos-
mography method, and use SNe Ia data with z < 0.2
to constrain the deceleration parameter. The best-fit
parameters are q0 = −0.372±0.181, α = 0.133±0.008,
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Table 3. The best-fit parameters and their 1σ uncertainties from JLA+H(z)+BAO.

flat ΛCDM non-flat ΛCDM PL Rh=ct

h0 0.688±0.018 0.676±0.019 0.645±0.015 0.625±0.014

Ωm 0.303±0.021 0.214±0.059 — —

ΩΛ — 0.531±0.118 — —

n — — 1.087±0.035 —

α 0.127±0.006 0.127±0.006 0.125±0.006 0.124±0.006

β 2.652±0.069 2.646±0.077 2.612±0.062 2.611±0.070

MB −19.099±0.055 −19.124±0.055 −19.144±0.053 −19.189±0.054

∆M −0.054±0.022 −0.052±0.023 −0.060±0.024 −0.062±0.020

rd/Mpc 150.012±3.237 150.028±2.998 150.102±2.570 150.640±2.871

lnLmax 327.264 328.327 311.807 308.127

∆AIC 0 -0.126 30.914 36.274

∆BIC 0 4.529 30.914 31.619

β = 2.731± 0.103, MB = −19.020± 0.032, and ∆M =
−0.101±0.032. Since there are only six H(z) data points
and one BAO data point at redshift z < 0.2, adding
H(z) and BAO data leaves the result almost unchanged.
The deceleration parameter is consistent with that of
the ΛCDM model within 1σ uncertainty, and is non-zero
at 2σ confidence level. Since the Rh = ct model pre-
dicts a null deceleration parameter, it can be ruled out.
Note that the PL model may have a consistent q0 if the
PL index n∼1.6. However, this PL index is in conflict
with that constrained from JLA+H(z) (+BAO). Only
the ΛCDM model is consistent with both SNe alone and
the combined data. Therefore, ΛCDM is still the best
model compared with the other two models.

5 Discussion and conclusions

In this paper, we combined the publicly available low-
redshift data to constrain the ΛCDM model and its two
alternatives, i.e. the PL model and Rh= ct model. For
the ΛCDMmodel, we considered flat and non-flat models
separately. It was found that, by using the JLA compi-
lation of SNe Ia alone, the Rh=ct model is conclusively
disfavored against the ΛCDM and PL models. However,
the ΛCDM and PL models are indistinguishable based
on the JLA alone. The power-law index of the PL model
is about 1.4. This supports that the universe is really
accelerating. By using the H(z) or BAO data alone, no
model is strongly favored against the others. If we com-
bine JLA and H(z) datasets, there is conclusive evidence
disfavoring the PL and Rh=ctmodels against the ΛCDM
model. Finally, the combined data of JLA+H(z)+BAO
also conclusively disfavor the PL and Rh=ct models. In
addition, the Hubble constant constrained in the ΛCDM
model is consistent with that obtained from the CMB.
However, in the PL and Rh = ct models, the Hubble
constant is much smaller. Therefore, we conclude that
the local probes favor ΛCDM over the other two mod-
els. However, there is no strong evidence to distinguish
between flat and non-flat ΛCDM models.

Shafer [18] analyzed two different compilations of SNe
Ia and BAO data sets, and found that neither ΛCDM
model nor PL model is strongly preferred over the other
if SNe Ia or BAO data are analyzed separately, but the
combined analysis of SNe Ia and BAO data strongly fa-
vors the ΛCDM model over the PL model. Furthermore,
the Rh=ct model is conclusively disfavoured by the SNe
alone. Our calculations confirm the results of Ref. [18].
By adding the H(z) data to SNe Ia and BAO, we find
that the significance of disfavoring the PL and Rh = ct
models can be highly improved. In addition, we used
the cosmography method to constrain the deceleration
parameter, and find that only the ΛCDM model has de-
celeration parameters consistent with cosmography.

Tutusaus et al. [26] analyzed similar datasets and
found that both ΛCDM and PL models can fit the local
probes equivalently well. The power-law index of the PL
model they obtained is slightly smaller than 1, so they
doubted if the cosmic acceleration is really proven by
the local probes. The main difference between Ref. [26]
and our paper is that, in the former, the authors took
into consideration the possible redshift dependence of the
absolute luminosity of SNe Ia. They considered four pa-
rameterizations of such a dependence, each of which has
two parameters, i.e. one amplitude parameter ǫ and one
power-law index δ. To avoid degeneracy between pa-
rameters, they fixed δ to some arbitrary values. In our
paper, we adopted the standard procedure and did not
consider such a dependence. This is because that there
is no evidence for such a dependence. Especially, there
is no reason why such a dependence, if it really exists,
can be parameterized in these forms. We tried to con-
strain ǫ and δ with other parameters simultaneously, but
found that these two parameters could not be tightly
constrained. This implies that the parameterizations are
not appropriate. It is always possible to eliminate the
acceleration if we properly parameterize the evolution
term. Riess et al. [53] pointed out that the better fit
of the PL model than ΛCDM may be due to the small
number of SNe at z>1 in JLA. With more high-redshift
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SNe, the PL model is no longer as good a fit as ΛCDM
even if the evolution of SNe luminosity is considered.

Recently, the simultaneous detection of gravitational
waves (GWs) and their electromagnetic counterparts
has provided another standard siren to test cosmology.
The first GW event detected from a binary neutron
star merger, GW 170817 [54], was found to be unam-
biguously associated with a short gamma-ray burst,
GRB 170817 [55, 56]. The follow-up observations of
this event led to the identification of NGC 4993 as the
host galaxy [57]. The advantage of using GWs as a
distance indicator is that they do not rely on other
distance ladders and are completely independent of cos-
mological models. Using the luminosity distance ob-

tained from the GW signals and the redshift of the host
galaxy, the Hubble constant was tightly constrained
to be 70.0+12.0

−8.0 km s−1 Mpc−1 [58]. Adding this single
GW data point to our JLA+H(z)+BAO sample does
not improve the constraint. With the launch of third-
generation GW detectors, such as the Einstein Telescope
and the Cosmic Explorer, hundreds to thousands of GW
events are expected be observed in the future. We expect
that in the near future, GW multi-messenger astronomy
will provide deep insights into the universe.

We are grateful to Zhe Chang and Z. C. Zhao for

useful discussions.
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