Crust-core properties of neutron stars in the Nambu-Jona-Lasinio model

  • We adopt the Nambu-Jona-Lasinio (NJL) model to study the crust-core transition properties in neutron stars (NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure. Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 MeV, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction (7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 MeV and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 M.
      PCAS:
  • 加载中
  • [1] J. M. Lattimer, M. Prakash, Astrophys. J., 550:426(2001)
    [2] M. Ruderman, Nature, 223:597(1969)
    [3] D. Pines, J. Shaham, M. Ruderman, Nat. Phys. Sci., 237:83(1972)
    [4] P. W. Anderson and N. Itoh, Nature (London), 256:25(1975)
    [5] D. Pines, M. Alpar, Nature, 316:27(1985)
    [6] B. Link, R. I. Epstein, and J. M. Lattimer, Phys. Rev. Lett., 83:3362(1999)
    [7] J. M. Lattimer, M. Prakash, Science, 304:536(2004)
    [8] J. M. Lattimer, M. Prakash, Phys. Rep., 442:109(2007)
    [9] N. Chamel, Phys. Rev. Lett., 110:011101(2013)
    [10] J. Piekarewicz, F. J. Fattoyev, C. J. Horowitz, Phys. Rev.C, 90:015803(2014)
    [11] N. Andersson, K. Glampedakis, W. C. G. Ho, and C. M. Espinoza, Phys. Rev. Lett., 109:241103(2012)
    [12] N. Chamel, Phys. Rev. C, 85:035801(2012)
    [13] M. Bigdeli and S. Elyasi, Eur. Phys. J. A, 51(3):38(2015)
    [14] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Astrophys. J., 697:1549-1568(2009)
    [15] Ch. C. Moustakidis et al, Phys. Rev. C, 81:065803(2010)
    [16] C. Ducoin et al, Phys. Rev. C, 83:045810(2011)
    [17] Y. Nambu, G. J. Lasinio, Phys. Rev., 122:345(1961)
    [18] U. Vogl and W. Weise, Prog. Part. Nucl. Phys., 27:195-272(1991)
    [19] N. D. Merrnin, Rev. Mod. Phys., 64:3-49(1992); Rev. Mod. Phys., 64:1163-1163(1992); Rev. Mod. Phys., 64:635-635(1992); Rev. Mod. Phys., 66:249-249(1994)
    [20] M. Buballa, Phys. Rept., 407:205-376(2005)
    [21] V. Koch, T. S. Biro, J. Kunz, and U. Mosel, Phys. lett. B, 185:1(1987)
    [22] I. N. Mishustin, L. M. Satarov, and W. Greiner, Phys. Rep., 391:363(2004)
    [23] C. Da. Providencia, J. Da. Providencia, and S. A. Moszkowski, Int. J. Mod. Phys. B, 17:5208(2003)
    [24] S. N. Wei, W. Z. Jiang, R. Y. Yang, and D. R. Zhang, Phys. Lett. B, 763:145-150(2016)
    [25] T. J. Brvenich and D. G. Madland, Nucl. Phys. A, 729:769(2003)
    [26] H. Pais, D. P. Menezes, and C. Providencia, Phys. Rev. C, 93:065805(2016)
    [27] S. Kubis, Phys. Rev. C, 70:065804(2004)
    [28] S. Kubis, Phys. Rev. C, 76:025801(2007)
    [29] X. D. Ji, Phys. Rev. Lett., 74:1071(1995)
    [30] M. Procura, B. U. Musch, T. Wollenweber, T. R. Hemmert, and W. Weise, Phys. Rev. D, 73:114510(2006)
    [31] W. G. Lynch, M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, and A. W. Steiner, Prog. Part. Nucl. Phys., 62:427(2009)
    [32] C. Fuchs, Prog. Part. Nucl. Phys., 56:1(2006)
    [33] I. Sagert, L. Tolos, D. Chatterjee, J. Schaffner-Bielich, and C. Sturm, Phys. Rev. C, 86:045802(2012)
    [34] C. Fuchs, A. Faessler, E. Zabrodin, and Y. M. Zheng, Phys. Rev. Lett., 86:1974(2001)
    [35] P. Danielewicz, R. Lacey, and W. G. Lynch, Science, 298:1592(2002)
    [36] G. A. Lalazissis, J. Konig, and P. Ring,Phys. Rev. C, 55:540(1997)
    [37] M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B, 312:377(1993)
    [38] Y. Sugahara and H. Toki, Nucl. Phys. A, 579:557(1994)
    [39] B. A. Li and X. Han, Phys. Lett. B, 727:276(2013)
    [40] L. W. Chen, C. M. Ko, B. A. Li, and J. Xu, Phys. Rev. C, 82:024321(2010)
    [41] L. W. Chen, Nucl. Phys. Rev., 31:273(2014)
    [42] C. Xu, B. A. Li, L. W. Chen, Phys. Rev. C, 82:054607(2010)
    [43] M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz et al, Phys. Rev. C, 86:015803(2012)
    [44] M. B. Tsang, Y. X. Zhang, P. Danielewicz, M. Famiano, Z. X. Li, W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett., 102:122701(2009); ibid., Int. J. Mod. Phys. E, 19:1631(2010)
    [45] N. Wang, M. Liu, L. Ou, and Y. Zhang, Phys. Lett. B, 751:553(2015)
    [46] J. M. Lattimer and Y. Lim, Astrophys. J., 771:51(2013)
    [47] A. W. Steiner, S. Gandolfi, Phys. Rev. Lett., 108:081102(2012)
    [48] X. Roca-Maza, M. Brenna, B. K. Agrawal, P. F. Bortignon, G. Col'o, Li-Gang Cao, N. Paar, and D. Vretenar, Phys. Rev. C, 87:034301(2013)
    [49] D. V. Shetty, S. J. Yennello, G. A. Souliotis, Phys. Rev. C, 76:024606(2007)
    [50] P. Danielewicz and J. Lee, Nucl. Phys. A, 818:36(2009)
    [51] M. Gearheart, W. G. Newton, J. Hooker, and B. A. Li, Mon. Not. R. Astron. Soc., 418:2343(2011)
    [52] H. Sotani, K. Nakazato, K. Iida, and K. Oyamatsu, Mon. Not. R. Astron. Soc., 428:L21(2013)
    [53] W. G. Newton, B. A. Li, Phys. Rev. C, 80:065809(2009)
    [54] J. M. Lattimer and A. W. Steiner, Eur. Phys. J. A, 50:40(2014)
    [55] S. Gandolfi, J. Carlson, and Sanjay Reddy, Phys. Rev. C, 85:032801(2012)
    [56] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, Astrophys. J, 773:11(2013)
    [57] J. Oppenheimet and G. Volkoff, Phys. Rev., 55:374(1939)
    [58] R. C. Tolman, Phys. Rev., 55:364(1939)
    [59] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J., 170:299(1971)
    [60] K. Iida and K. Sato, Astrophys. J., 477:294(1997)
    [61] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hessels, Nature, 467:1081(2010)
    [62] J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch et al, Science, 340:1233232(2013)
    [63] A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J, 722:33(2010)
    [64] A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J., 765:L5(2013)
    [65] S. Guillot, M. Servillat, N. A. Webb, and R. E. Rutledge, Astrophys. J, 772:7(2013)
    [66] F. zel, G. Baym, and T. Guver, Phys. Rev. D, 82:101301(2010)
    [67] V. Suleimanov, J. Poutanen, M. Revnivtsev, and K. Werner, Astrophys. J, 742:122(2011)
    [68] S. Bogdanov, Astrophys. J., 762:96(2013)
    [69] J. Poutanen et al, Mon. Not. R. Astron. Soc., 442:3777(2014)
    [70] C. O. Heinke, H. N. Cohn, P. M. Lugger, N. A. Webb et al, Mon. Not. R. Astron. Soc., 444:443(2014)
    [71] J. M. Lattimer, A. W. Steiner, Astrophys. J., 784:123(2014)
    [72] B. A. Li, A. W. Steiner, Phys. Lett. B, 642:436(2006)
    [73] W. Z. Jiang, B. A. Li, L. W. Chen, Phys. Lett. B, 653:184(2007)
    [74] G. Watanabe and C. J. Pethick, Phys. Rev. Lett., 119:062701(2017)
    [75] J. M. Lattimer and M. Prakash. Phys. Rep., 333:121(2000)
    [76] G. G. Pavlov, V. E. Zavlin, D. Sanwal, V. Burwitz, and G. P. Garmire, Astrophys. J., 552:L129(2001)
  • 加载中

Get Citation
Si-Na Wei, Rong-Yao Yang and Wei-Zhou Jiang. Crust-core properties of neutron stars in the Nambu-Jona-Lasinio model[J]. Chinese Physics C, 2018, 42(5): 054103. doi: 10.1088/1674-1137/42/5/054103
Si-Na Wei, Rong-Yao Yang and Wei-Zhou Jiang. Crust-core properties of neutron stars in the Nambu-Jona-Lasinio model[J]. Chinese Physics C, 2018, 42(5): 054103.  doi: 10.1088/1674-1137/42/5/054103 shu
Milestone
Received: 2017-10-25
Revised: 2018-02-25
Fund

    Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

Article Metric

Article Views(762)
PDF Downloads(24)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Crust-core properties of neutron stars in the Nambu-Jona-Lasinio model

    Corresponding author: Wei-Zhou Jiang,
  • 1. School of Physics, Southeast University, Nanjing 211189, China
Fund Project:  Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

Abstract: We adopt the Nambu-Jona-Lasinio (NJL) model to study the crust-core transition properties in neutron stars (NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure. Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 MeV, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction (7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 MeV and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 M.

    HTML

Reference (76)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return