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Abstract: We adopt the Nambu–Jona-Lasinio (NJL) model to study the crust-core transition properties in neutron

stars (NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing

the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure.

Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition

pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment

of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff

of the NJL model is preferred. For a momentum cutoff of 500 MeV, the fraction of the crustal moment of inertia

clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction (7%) of the

crustal moment of inertia, the NJL model with momentum cutoff of 500 MeV and a large slope of the symmetry

energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 M¯.
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1 Introduction

Neutron stars (NSs) feature many properties that are
dominated by the nuclear equation of state (EOS). For
instance, the NS maximum mass depends mainly on the
nuclear EOS of isospin symmetric matter at densities in
excess of a few times saturation density ρ0, and the NS
radius is primarily determined by the slope of the sym-
metry energy in the density range of 1 to 2 ρ0 [1]. The
nuclear EOS also plays a decisive role in the dynami-
cal evolution of the NS, such as pulsar glitches. His-
torically, pulsar glitches were thought to be the result
of starquakes [2]. However, this kind of interpretation
cannot explain why the glitches occur about every three
years on average. To solve this problem, a corequake
model was established [3]. Similarly, the existence of a
solid core in the corequake model is also unpersuasive.
Nowadays, glitches are though to result from angular mo-
mentum transfer between the liquid interior and the solid
crust [4–9]. When the crust rotation slows down for the
emission of magnetic dipole radiation, the inner crust,
where there is a neutron superfluid, rotates more rapidly
than the crust because of the absence of viscous drag.
Since there is a lag between the crust and the neutron
superfluid, a Magnus force is exerted on the superfluid
vortices. The superfluid vortices, pinned in the crystal

lattice of neutron-rich nuclei of the inner crust, will be
unpinned when the lag reaches a critical point, and trans-
fer their angular momentum to the solid crust. This leads
to a sudden increase of the pulsar rotation rate, i.e., the
glitches. Large glitches of the Vela pulsar suggest that
about 1.6 percent of the total moment of inertia resides
in the crust of the Vela pulsar [6, 9, 10]. When the
crustal entrainment is taken into account, which means
the nondissipative elastic scattering of unbound neutrons
by the crystal lattice reducing the neutron superfluid, the
lower limit of the fraction of crustal moment of inertia
needs to increase significantly to 7 percent [9, 11, 12]
in order to explain the large glitches of the Vela pulsar.
In researching NS glitches, it is very important to study
the phase transition from homogeneous matter at higher
densities to inhomogeneous matter at low densities. The
predicted transition density ρt and the transition pres-
sure Pt are significant for understanding the crust-core
properties of NS. In the past, lots of theoretical mod-
els were used to understand these low-density transition
properties [8, 10, 13–16].

In this paper, we employ the Nambu–Jona-Lasinio
(NJL) model, which respects the chiral symmetry to de-
scribe the crust-core properties of a NS. The original NJL
model, which was built in analogy to the BCS theory, was
established on the nucleonic degrees of freedom [17]. The
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pion in the NJL model was treated as a Goldstone boson
of the spontaneously broken chiral symmetry with the
nucleon as the elementary fermion. Whereas chiral sym-
metry is indeed an important symmetry of low-energy
QCD, the NJL model has been widely used to describe
quark matter [18–20]. Since confinement is absent in the
NJL model, the original NJL model with the nucleonic
degrees of freedom also remains widely used. It should be
noted that the original NJL model cannot reproduce the
saturation properties of nuclear matter. The saturation
problem of the NJL model was cured by introducing the
scalar-vector interaction [21–23]. In our previous work,
a good fit was achieved between the NJL parametriza-
tions on the nucleonic level and the available saturation
properties and nuclear EOS of pure neutron matter [24].
However, due to the constraints on the nuclear EOS im-
posed by chiral symmetry, the NJL model has some dif-
ferent characteristics from other models. For instance,
the symmetry energy of the NJL model can have the
same trends of stiffness at both subsaturation and supra-
normal densities, in sharp contrast to the usual models,
where a soft symmetry energy at higher densities means
a stiff symmetry energy at lower densities [24]. The dif-
ference is mainly caused by a faster eclipse of nucleon
mass due to the partial restoration of chiral symmetry
in the medium. With the saturation properties and EOS
of pure neutron matter in nice agreement with the avail-
able constraints, it is interesting in this work to investi-
gate the properties of NS matter with the NJL model,
which may bring some differences in predicting the onset
of pulsar glitches [6].

The paper is arranged as follows. In Section 2, the
formalism for obtaining the nuclear EOS of asymmetric
matter and transition density will be given. The numer-
ical results and discussions are presented in Section 3.
Finally, a brief summary is given.

2 Formalism

The extended NJL model contains scalar, vector,
isovector, scalar-vector and isovector-scalar interactions.
The vector-vector and isovector-vector interactions are
not considered, because the vector-vector interaction
may lead to the pressure exceeding the energy density,
depending on the sign of the coupling strength, and the
isovector-vector interaction may produce a negative sym-
metry energy which will render the NS unstable [24]. The
Lagrangian of the extended NJL model can be written
as [21–26]:

L = ψ̄(iγµ∂
µ−m0)ψ+

GS

2
[(ψ̄ψ)2−(ψ̄γ5τψ)

2]

−GV

2
[(ψ̄γµψ)

2+(ψ̄γµγ5ψ)
2]

+
Gρ

2
[(ψ̄γµτψ)

2+(ψ̄γµγ5τψ)
2]

+
GSV

2
[(ψ̄ψ)2−(ψ̄γ5τψ)

2]

·[(ψ̄γµψ)2+(ψ̄γµγ5ψ)
2]

+
GρS

2
[(ψ̄γµτψ)

2+(ψ̄γµγ5τψ)
2]·

[(ψ̄ψ)2−(ψ̄γ5τψ)
2], (1)

where m0 is the bare nucleon mass. GS, GV, Gρ, GSV

and GρS are the scalar, vector, isovector, scalar-vector
and isovector-scalar coupling constants, respectively. It
is easy to see that the Lagrangian is chiral symmetric
when m0=0.

In the mean field approximation, the Lagrangian can
be simplified to:

L = L0+LIV =ψ̄[iγµ∂
µ−m(ρ,ρS)

−γ0Σ(ρ,ρS,ρ3)]ψ−U(ρ,ρS,ρ3), (2)

where m, Σ and U are defined as

m(ρ,ρS) = m0−(GS+GSVρ
2+GρSρ

2
3)ρS, (3)

Σ(ρ,ρS,ρ3) = GVρ+Gρρ3τ3−GSVρ
2
Sρ

−GρSρ3ρ
2
Sτ3, (4)

U(ρ,ρS,ρ3) =
1

2
(GSρ

2
S−GVρ

2−Gρρ
2
3+3GSVρ

2
Sρ

2

+3GρSρ
2
3ρ

2
S). (5)

Equation (3) is the gap equation for the nucleon ef-
fective mass in this NJL model. Here ρ =< ψ̄γ0ψ > ,
ρ3=<ψ̄γ

0τ3ψ> and ρS=<ψ̄ψ> are the vector, isovector
and scalar densities, respectively,

ρ =
∑

i=p,n

νi

∫ pFi

0

d3p

(2π)3
, ρ3=ρp−ρn, (6)

ρS = −
∑

i=p,n

νi

∫ Λ

pFi

d3p

(2π)3
m√
p2+m2

, (7)

where νi is the spin degeneracy, and Λ is the momentum
cutoff. From the above Lagrangian, we may obtain the
energy density

ε = −
∑

i=p,n

νi

∫ Λ

pFi

d3p

(2π)3
(p2+m2)1/2+

GVρ
2

2

+
Gρρ

2
3

2
+
GSρ

2
S

2
+
GSVρ

2ρ2
S

2

+
GρSρ3

2ρ2
S

2
+ε0, (8)

where the ε0 is introduced to give the vanishing energy
density of the vacuum state [21]. The pressure can be
obtained from the thermodynamic relation

P=
∑

i=p,n

µiρi−ε,µi=
∂ε

∂ρi

, (9)
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and it is given explicitly as

P = −
∑

i=p,n

νi

3

∫ Λ

pFi

d3k

(2π)3
k2

√
k2+m2

+
GVρ

2

2

+
Gρρ

2
3

2
−GSρ

2
S

2
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2
Sρ

2

2

−3GρSρ3
2ρ2

S

2
−2Λ3

√
Λ2+m2

3π2
−ε0. (10)

From the energy density, we can derive the symmetry
energy as

Esym(ρ)=
1

2

∂2(ε/ρ)

∂δ2

∣

∣

∣

∣

δ=0

=
p2

F

6EF

+
1

2
Gρρ−

1

2
GρSρ

2
Sρ, (11)

where δ=(ρn−ρp)/ρ is the isospin asymmetry parameter

and EF=
√

p2
F+m

2. The slope of the symmetry energy
at saturation density is defined as

L=3ρ0

∂Esym

∂ρ

∣

∣

∣

∣

ρ0

. (12)

In this work, we consider the simplest composition for
NS matter: neutrons, protons and electrons. The NS
composition can be obtained from solving the gap equa-
tion (Eq. (3)) and the conditions of chemical equilibrium
and charge neutrality.

µn=µp+µe, ρp=ρe. (13)

The thermodynamical stability condition will lead to the
constraints for pressure and chemical potential [8, 27,
28].

−
(

∂(P+Pe)

∂v

)

µ

>0, (14)

−
(

∂µ

∂qc

)

v

>0, (15)

where Pe is the pressure of electrons, v=1/ρ is the vol-
ume per baryon and qc=(ρp−ρe)/ρ is the charge fraction.
Equation (15) is usually valid. Since Pe is only a function
of the chemical potential, Eq. (14) can be simplified as

−
(

∂P

∂v

)

µ

>0. (16)

The above constraint leads to the following inequal-
ity [8, 13, 14, 27, 28]:

V = ρ2 ∂
2E(ρ,δ)

∂ρ2
+2ρ

∂E(ρ,δ)

∂ρ

−
(

2ρ
∂2E(ρ,δ)

∂ρ∂δ

)2(
4∂2E(ρ,δ)

∂δ2

)−1

>0. (17)

The crust-core transition density ρt can be obtained by
solving the coupled equations V =0 and Eq. (13). The
corresponding crust-core transition pressure can thus be

obtained by the following equation [8, 14]:

Pt =
κ

9

ρ2
t

ρ0

(

ρt

ρ0

−1
)

+ρtδt

[

1−δt
2

Esym(ρt)

+

(

ρ
dEsym(ρ)

dρ

)

ρt

δt

]

, (18)

where κ is the incompressibility of symmetry nuclear
matter at saturation density ρ0.

3 Results and discussions

The momentum cutoffs are chosen as 320, 350, 400
and 500 MeV, according to the saturation properties,
especially the incompressibility. The parameters, listed
in Table 1, can be obtained as follows. With the chosen
momentum cutoff, the scalar density of the vacuum state
ρvac

S can be obtained. The bare nucleon mass m0 can be
solved by using ρvac

S and the Gell-Mann-Oakes-Renner
(GMOR) relation of nucleons m2

π
f2
π
=m0ρ

vac
S (mπ=140

MeV, fπ =93 MeV) [18, 22]. In so doing, we obtain a
small bare nucleon mass m0 that interprets the consis-
tency with the understanding that the mass acquisition
arises dominantly from the non-perturbative vacuum.
This is consistent with the conclusion in Ref. [29] that
the nucleon mass coming from an explicit chiral symme-
try breaking should not be larger than 160 MeV. Yet,
we note that there are various considerations to make
the choice of the bare nucleon mass [26, 30]. For in-
stance, a different parametrization with very large bare
mass was considered in a similar model [26]. We then
determine GS through the gap equation (Eq. (3)) in the
vacuum state. GSV and GV are obtained by satisfying
the saturation property, namely, the energy per nucleon
ε/ρ−MN = −16 MeV (MN = 938 MeV) at ρ0 = 0.160
fm−3. The choices of the isovector coupling constant Gρ

and isovector-scalar coupling constant GρS in Table 2 are
constrained by properties of symmetry energy at satura-
tion density.

To provide a convincing study, we restrict the EOS
to be consistent with the KaoS experiment [31–34] and
the collective flow data in heavy-ion collisions [35]. As
shown in Fig. 1, the pressure of the NJL model with the
momentum cutoff of 320 and 350 MeV surpasses the con-
straints extracted from both the KaoS experiment and
the collective flow data. We see that the pressure with
the momentum cutoff of 400 MeV can satisfy the KaoS
experiment well and the one with 500 MeV is very close
to the constraint from the KaoS experiment. Besides, the
pressure with the momentum cutoff of 500 MeV can pass
through the constraints extracted from the collective flow
data in the full density region, while the one with the
momentum cutoff of 400 MeV will surpass the collective
flow data constraint beyond 3ρ0 because its critical den-
sity, which is determined as pF=Λ, is much smaller than

054103-3



Chinese Physics C Vol. 42, No. 5 (2018) 054103

Table 1. The NJL parameter sets with various cutoffs that are adjusted at saturation density ρ0 =0.16fm−3. ρc,
evaluated by the relation pF=Λ, is the critical density for chiral symmetry restoration.

Λ/MeV GS/(GeV·fm3) m0/MeV GSV/(GeV·fm9) GV/(GeV·fm3) κ/MeV ρc/ρ0

320 3.067 79.2 4.553 2.736 318 1.81

350 2.409 60.9 3.482 2.173 262 2.37

400 1.669 41.3 2.054 1.581 296 3.53

500 0.896 21.7 0.879 1.156 315 6.90

that with the momentum cutoff of 500 MeV. It should
be noted that the marginal consistency with the available
constraints at high densities is due to the model’s chiral
character, which is not considered in the transport mod-
els that are used to extract those constraints. The nice
agreement with the available constraints at lower densi-
ties demonstrates that it is meaningful to use the EOS
with the momentum cutoff of 400 and 500 MeV to study
the NS crust-core transitional properties at low densities.
We also depict the pressure with the relativistic mean-
field (RMF) models NL3 [36], NL-SH [37] and TM1 [38]
for comparison. The pressure with NL3 and NL-SH sur-
passes the constraints from both the KaoS experiment
and the collective flow data. However, the pressure with
TM1 passes through constraints from both the KaoS ex-
periment and the collective flow data. As we can see
from Fig. 1, the NJL pressure with the momentum cut-
off of 400 and 500 MeV is between the pressure with NL3
(NL-SH) and the pressure with TM1. In the following,
we perform the investigation with momentum cutoffs of
400 and 500 MeV.

Fig. 1. (color online) The pressure as a function
of density for symmetric nuclear matter. The red
region represents the constraints from the KaoS
experiment [31–34] and the yellow region the con-
straints from the collective flow data [35]. The
pressure with the RMF models NL3, NL-SH and
TM1 are also depicted for comparison.

The symmetry energy at saturation density extracted
from terrestrial nuclear experiments and astrophysical

observations is around Esym(ρ0)∼26−35.8 MeV at sat-
uration density [39–47]. The slope of the symmetry en-
ergy at saturation density still has large uncertainties,
ranging from 19 to 110 MeV in analyses of terrestrial
nuclear experiments [40–42, 48–50], or from 43 to 130
MeV in analyses of astrophysical observations [47, 51–
54]. In fact, the uncertainty of the slope of the symme-
try energy may grow with increasing symmetry energy at
saturation density. For instance, the slope of saturation
density may change from 60 to 110 at Esym(ρ0) = 35.0
MeV [43, 44]. Even though the average slope of symme-
try energy of 40–60 MeV is extracted according to the
observational/experimental data [39, 41, 44–46, 54], a
value beyond this average domain cannot be excluded,
especially when the larger symmetry energy is consid-
ered. In this study, the slope of the symmetry energy
at saturation density is thus not just limited to the av-
erage domain, though we are actually in reference to
this average domain. As listed in Table 2, the symme-
try energy at saturation density is chosen as an aver-
age value Esym(ρ0)=31.6 MeV [39] and a comparatively
larger value Esym(ρ0)=35.0 MeV. The slopes of symme-
try energy of saturation density with Λ=400 MeV are
chosen as 50.0, 93.6 and 108.7 MeV. The slopes of sym-
metry energy of saturation density with Λ=500 MeV and
Esym(ρ0)=31.6 MeV are chosen as 64.0, 85.6 and 108.6
MeV, and those with Λ=500 MeV and Esym(ρ0)=35.0
MeV are chosen as 70.0, 85.6 and 108.6 MeV. The
slopes of symmetry energy of different momentum cut-
offs at saturation density are correspondingly locating
in the domain of analyses of terrestrial nuclear experi-
ments/astrophysical observations L(ρ0)∼ 19–130 MeV.
The minimum slopes of the symmetry energy of satu-
ration density at Esym(ρ0) = 35.0 MeV and 31.6 MeV
are different with Λ=500 MeV, whereas they are cho-
sen to be the same with Λ =400 MeV. As the chiral
symmetry is restored at high densities, the contribution
from the isovector-scalar term is very close to zero, and
the isovector term dominates the symmetry energy. The
symmetry energy is very different at high density when
the isovector-scalar coupling constant is taken to be zero,
because of the nonvanishing isovector coupling constant.
However, the symmetry energy is very close at high den-
sities when the isovector coupling constant equals zero
for minor contribution from the isovector-scalar term.
For example, with Λ=400 MeV, the curves with the same
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Table 2. The crust-core transition density ρt and transition pressure Pt with respect to the slope of the symmetry
energy L(ρ0) at saturation density with Λ= 400 and 500 MeV. The coupling constants Gρ and GρS are set by
fitting Esym(ρ0)=31.6 MeV or 35.0 MeV at saturation density. κ is the incompressibility at saturation density ρ0.
For comparison, the transition properties of the RMF models NL3, NL-SH and TM1 are also presented.

Λ/MeV ρ0/fm−3 κ/MeV L(ρ0)/MeV Esym(ρ0)/MeV ρt/fm−3 Pt/(MeV·fm−3) Gρ/(GeV·fm3) GρS/(GeV·fm9)

400 50.0 31.6 0.088 0.480 0.011 -1.405

400 93.6 31.6 0.077 0.403 0.193 0

400 0.160 296 108.7 31.6 0.069 0.306 0.256 0.485

400 50.0 35.0 0.090 0.604 0.011 -1.734

400 93.6 35.0 0.081 0.577 0.193 -0.329

400 108.7 35.0 0.077 0.523 0.256 0.154

500 64.0 31.6 0.095 0.636 0.012 -0.299

500 85.6 31.6 0.085 0.507 0.223 0

500 0.160 315 108.6 31.6 0.079 0.412 0.446 0.316

500 70.0 35.0 0.096 0.767 0.014 -0.357

500 85.6 35.0 0.090 0.707 0.166 -0.141

500 108.6 35.0 0.082 0.592 0.389 0.175

NL3 0.148 271 118.4 37.3 0.065 0.461

NS-SH 0.146 357 113.7 36.1 0.074 0.456

TM1 0.145 279 110.5 36.8 0.071 0.568

Fig. 2. (color online) The symmetry energy as a
function of density. The corresponding isovector
coupling constant (Gρ) is given in Table 2. For
comparison, the results with the RMF models
NL3, NL-SH and TM1 are also displayed.

Fig. 3. (color online) The pressure as a function of
density for neutron matter. The blue area is the
quantum Monte Carlo result [55], and the cyan
area is the microscopic result based on chiral NN
and 3N interactions [56].
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slope but different symmetry energies at saturation den-
sity nearly overlap at high densities, as shown in Fig. 2.

Besides the constraints on symmetric matter prop-
erties and the symmetry energy at saturation density,
we make a more comprehensive comparison with quan-
tum Monte Carlo results [55] and microscopic calcula-
tions based on chiral NN and 3N interactions [55], that
mainly concern the behavior of the symmetry energy
below saturation density. As can be seen from Fig. 3,
the pressure of neutron matter with a relatively small
slope in the NJL model (L(ρ0)=50 MeV with Λ=400
MeV and L(ρ0)=64 MeV with Λ=500 MeV) marginally
satisfies the ab-initio constraints at sub-saturation den-
sities. When the slope of symmetry energy is relatively
large, the pressure of neutron matter is just close to the
constraints below 0.1 fm−3. Note that the ab-initio con-
straints from Refs. [55] and [56] produced a relatively
small slope of symmetry energy. Generally, our results
agree with the ab-initio constraints, though the devia-
tion from the ab-initio constraints becomes large for the
use of the large slope parameter of the symmetry energy
in the NJL model.

The crust-core transition density ρt is obtained by
solving the coupled equations Eq. (17) and Eq. (13),
and the corresponding transition pressure Pt is obtained
by solving Eq. (18). The crust-core transition den-
sity ρt generally increases with decreasing slope of the
symmetry energy at saturation density [14–16]. How-
ever, the dependence of the transition pressure on the
slope of the symmetry energy at saturation density is
model-dependent [16]. A momentum-dependent inter-
action (MDI) model shows that the transition pressure
decreases with increasing slope of the symmetry energy
at saturation density[14], whereas the relativistic nuclear
energy density functionals support that the transition
pressure increases with increasing slope of the symme-
try energy [15]. In the NJL model, we find that the
transition pressure decreases with increasing slope of the
symmetry energy at saturation density. For instance,
with Esym(ρ0)=31.6 MeV and Λ=400 MeV, as the slope
of the symmetry energy at saturation density increases
from 50.0 to 93.6 MeV, the transition density decreases
from 0.088 to 0.077 fm−3, and the corresponding pres-
sure decreases from 0.480 to 0.403 MeV·fm−3. We also
study the increasing trend between crust-core transition
properties and the symmetry energy at saturation den-
sity. When the slope of the symmetry energy at satu-
ration density is fixed, we find that the transition den-
sity and the corresponding transition pressure increase
with increasing symmetry energy. For instance, when
the slope of the symmetry energy of Λ=400 MeV at sat-
uration density is set to be 93.6 MeV, the transition den-
sity increases from 0.077 fm−3 to 0.088 fm−3 when the
symmetry energy increases from Esym(ρ0) = 31.6 MeV
to Esym(ρ0) = 35.0 MeV, and the corresponding pres-

sure increases from 0.403 MeV·fm−3 to 0.577 MeV·fm−3.
In short, the crust-core transition properties depend not
only on the slope of symmetry energy but also on the
symmetry energy at saturation density [16, 40].

Fig. 4. (color online) Mass versus radius for the
cutoffs of 400 and 500 MeV of neutron star mass.
For comparison, the results with the RMF models
are also displayed.

With the crust-core transition properties and EOS
of NS matter, the radius-mass relations can be obtained
by solving the standard Tolman-Oppenheimer-Volkoff
(TOV) [57, 58] equation. We adopt the EOS obtained in
this work at densities above the transition density, while
we employ the standard low-density EOS [59, 60] be-
low the transition density where it is an inhomogeneous
phase. As the NS central density may exceed the critical
density ρc for Λ=400 MeV [24], one needs to check the
validity of NJL model with Λ=400 MeV above ρc. As
the density increases continuously, the Fermi momen-
tum increases to be close to the cutoff, resulting in the
restoration of chiral symmetry. When the Fermi mo-
mentum exceeds the cutoff, we find that fortunately the
nucleon effective massm and the scalar density ρS change
continuously with the density and are very close to zero.
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Table 3. Some main NS properties of Fig. 4 and Fig. 5 obtained with the parametrizations of Table 2. Mmax is the
NS maximum mass, and ρcen is the NS central density. The radius R is in units of km. ∆I/I, the fraction of the
crustal moment of inertia, is defined in Eq. (19).

Λ/MeV L(ρ0)/MeV Esym(ρ0)/MeV (Mmax/M¯, R, ρcen/ρ0) R(1.4M¯) M/M¯(∆I/I=0.07)

400 50.0 31.6 (2.45, 11.6, 5.45) 12.9 1.12

400 93.6 31.6 (2.48, 11.8, 5.65) 13.7 1.20

400 108.7 31.6 (2.48, 11.9, 5.50) 14.0 1.12

400 50.0 35.0 (2.45, 11.6, 5.30) 12.9 1.26

400 93.6 35.0 (2.48, 11.8, 5.30) 13.6 1.37

400 108.7 35.0 (2.48, 11.8, 5.65) 13.9 1.37

500 64.0 31.6 (2.18, 11.3, 6.15) 12.6 1.21

500 85.6 31.6 (2.21, 11.8, 6.00) 13.5 1.29

500 108.6 31.6 (2.23, 12.5, 5.60) 14.9 1.47

500 70.0 35.0 (2.18, 11.3, 6.15) 12.5 1.30

500 85.6 35.0 (2.20, 11.7, 5.95) 13.2 1.40

500 108.6 35.0 (2.22, 12.1, 5.80) 14.3 1.53

NL3 118.4 37.3 (2.84, 13.5, 4.53) 14.8 1.43

NS-SH 113.7 36.1 (2.86, 13.7, 4.49) 15.0 1.48

TM1 110.5 36.8 (2.23, 12.5, 6.08) 14.4 1.48

Thus, no anomalous contributions to the EOS arise
from the large Fermi momentum after chiral symmetry
restoration, and the model should be valid in the core of
neutron stars. As shown in Fig. 4 and Table 3, the NS
maximum mass with various momentum cutoffs can eas-
ily surpass the lower limit of NS maximum mass, which
is about 2M¯ [61, 62], and the NS radius of 1.4M¯ lies
in a reasonable domain, which is roughly 10-15 km [63–
73]. The mass and radius relations are very important in
studying pulsar glitches. The large glitches of the Vela
pulsar suggest that about 1.6 percent of the total mo-
ment of inertia resides in the crust [9, 10]. When the
effects of pairing are small, the neutron superfluid of the
inner crust of the NS is still strongly scattering off nuclei
due to non-dissipative entrainment effects [12], leading
to the decrease of the neutron superfluid density. The
fraction of the crustal moment of inertia needs to in-
crease significantly to 7 percent [9, 11] to explain the
large glitches of the Vela pulsar. However, the Bragg
scattering between the neutron superfluid and nuclei is
going to be suppressed when the pairing gap is of the
same order as or greater than the strength of the lat-
tice potential [74]. In this case, the required fraction of
the crustal moment of inertia may thus be less than 7
percent. In this paper, we just pay attention to the con-
sequences of entrainment under the small pairing effect.
In the theoretical calculations, the fraction of the crustal
moment of inertia ∆I/I can be simplified as [75]:

∆I

I
' 28πPtR

3

3Mc2
(1−1.67β−0.6β2)

β

×
[

1+
2Pt(1+5β−14β2)

ρtmNc2β2

]−1

, (19)

where ∆I is the crustal moment of inertia, I is the to-

tal moment of inertia, β=GM/Rc2 is the compactness
parameter, and M and R are the NS mass and radius,
respectively. Given the crust-core transition properties
and radius-mass trajectory, the fraction of the crustal
moment of inertia can be obtained. As we can see from
Eq. (19), the fraction of crustal moment of inertia mainly
depends on the radius-mass trajectory and the crust-core
transition pressure Pt. With the fixed momentum cutoff
and slope of the symmetry energy at saturation den-
sity, the fraction of crustal moment of inertia mainly
depends on the crust-core transition pressure Pt, since
the radius-mass trajectories are similar. For instance,
with Λ=400 MeV and L(ρ0)=50 MeV, the fraction of
crustal moment of inertia with Esym(ρ0) = 35.0 MeV is
larger than that with Esym(ρ0)=31.6 MeV, in that the
Pt of Esym(ρ0)=35.0 MeV is larger. Given the momen-
tum cutoff and symmetry energy at saturation density,
since radius-mass trajectory and the crust-core transition
pressure Pt are different by varying the slope of symme-
try energy, the fraction of the crustal moment of inertia
depends both on the crust-core transition pressure and
on the radius-mass trajectory. As shown in Fig. 5, with
Λ=400 MeV and fixed symmetry energy at saturation
density, as the slope of the symmetry energy increases,
the fraction of crustal moment of inertia does not in-
crease enough with increasing NS radius to eliminate
the reduction of the fraction of crustal moment of iner-
tia caused by the reduction of the crust-core transition
pressure. As a result, the fraction of the crustal moment
of inertia with Λ=400 MeV does not increase with in-
creasing slope of symmetry energy at saturation density.
However, with Λ=500 MeV, as the slope of the symme-
try energy at saturation density increases, the increase of
fraction of crustal moment of inertia caused by increasing
the NS radius is larger than the reduction of fraction of
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Fig. 5. (color online) Fraction of crustal moment
of inertia as a function of neutron star mass. For
comparison, the results with the RMF models are
also displayed.

crustal moment of inertia caused by the reduction of the
crust-core transition pressure. As a consequence, the
fraction of the crustal moment of inertia with Λ=500
MeV increases with increasing slope of symmetry en-
ergy at saturation density. Since the NS radius with
the larger momentum cutoff increases more sharply than
that with small momentum cutoff with increasing slope
of symmetry energy at saturation density, the resulting
functional between the fraction of the crustal moment of
inertia and the slope of symmetry energy at saturation
density is dependent on the momentum cutoff. At the re-
quired fraction (7%) of the crustal moment of inertia, the
parametrization with Λ=400 MeV cannot give the upper
limit of the mass of the Vela pulsar to be above 1.40M¯.

However, the parametrization with Λ=500 MeV, where
the fraction of the crustal moment of inertia increases
with increasing slope of symmetry energy at saturation
density, is able to yield the mass of the Vela pulsar above
1.4 M¯ with a reasonably large slope of the symmetry
energy at saturation density. For example, with Λ=500
MeV, the upper limit of the mass of the Vela pulsar at
the necessary fraction (7%) of crustal moment of iner-
tia is 1.47M¯ for Esym(ρ0)=31.6 MeV and L(ρ0)=108.6
MeV, which is close to the value predicted by the RMF
model NL3max [10]. In addition, the parametrization
with Λ=500 MeV and Esym(ρ0)=35.0 MeV yields the up-
per mass limit of the Vela pulsar as 1.40 and 1.53M¯ for
L(ρ0)=85.6 and 108.6 MeV, respectively. Since a mass
of 1.4 M¯ can fit the X-ray spectrum of the Vela pulsar
well [76], the results with the Λ=500 MeV parametriza-
tion indicate that the crust may carry enough angular
momentum to explain the giant frequency glitches of the
Vela pulsar.

4 Summary

In this work, the NJL model, which has saturation
properties on the hadronic level, is used to study the
crust-core transition properties in NSs. We have cho-
sen the momentum cutoffs to meet the constraints on
the EOS that are extracted from the KaoS experiment
and the flow data. It is found that the pressure of the
NJL model with the cutoff Λ=400 MeV can meet the
constraints from the KaoS experiment and the pressure
with 500 MeV can satisfy the constraints from the flow
data. With the given momentum cutoff and symme-
try energy at saturation density, the transition density
and corresponding transition pressure increase with de-
creasing slope of symmetry energy. Besides, with the
given momentum cutoff and the slope of symmetry en-
ergy at saturation density, the transition density and cor-
responding transition pressure increase with increasing
symmetry energy. At the fraction (7%) of the crustal
moment of inertia required by the crustal entrainment,
the parametrization with Λ=400 MeV of the NJL model
cannot give the upper limit of the mass of the Vela pul-
sar above 1.40 M¯. However, the parametrization with
Λ=500 MeV can yield the mass of Vela pulsar to be above
1.4 M¯ with the allowed larger values of the symmetry
energy and its slope at saturation density. This implies
that the crustal angular momentum in the NJL model
with reasonable parametrizations can explain the large
glitches of the Vela pulsar.

054103-8



Chinese Physics C Vol. 42, No. 5 (2018) 054103

References

1 J. M. Lattimer, M. Prakash, Astrophys. J., 550: 426 (2001)
2 M. Ruderman, Nature, 223: 597 (1969)
3 D. Pines, J. Shaham, M. Ruderman, Nat. Phys. Sci., 237: 83

(1972)
4 P. W. Anderson and N. Itoh, Nature (London), 256: 25 (1975)
5 D. Pines, M. Alpar, Nature, 316: 27 (1985)
6 B. Link, R. I. Epstein, and J. M. Lattimer, Phys. Rev. Lett.,

83: 3362 (1999)
7 J. M. Lattimer, M. Prakash, Science, 304: 536 (2004)
8 J. M. Lattimer, M. Prakash, Phys. Rep., 442: 109 (2007)
9 N. Chamel, Phys. Rev. Lett., 110: 011101 (2013)

10 J. Piekarewicz, F. J. Fattoyev, C. J. Horowitz, Phys. Rev.C,
90: 015803 (2014)

11 N. Andersson, K. Glampedakis, W. C. G. Ho, and C. M. Es-
pinoza, Phys. Rev. Lett., 109: 241103 (2012)

12 N. Chamel, Phys. Rev. C, 85: 035801 (2012)
13 M. Bigdeli and S. Elyasi, Eur. Phys. J. A, 51(3): 38 (2015)
14 J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Astrophys. J.,

697: 1549-1568 (2009)
15 Ch. C. Moustakidis et al, Phys. Rev. C, 81: 065803 (2010)
16 C. Ducoin et al, Phys. Rev. C, 83: 045810 (2011)
17 Y. Nambu, G. J. Lasinio, Phys. Rev., 122: 345 (1961)
18 U. Vogl and W. Weise, Prog. Part. Nucl. Phys., 27: 195-272

(1991)
19 N. D. Merrnin, Rev. Mod. Phys., 64: 3-49 (1992); Rev. Mod.

Phys., 64: 1163-1163 (1992); Rev. Mod. Phys., 64: 635-635
(1992); Rev. Mod. Phys., 66: 249-249 (1994)

20 M. Buballa, Phys. Rept., 407: 205-376 (2005)
21 V. Koch, T. S. Biro, J. Kunz, and U. Mosel, Phys. lett. B, 185:

1 (1987)
22 I. N. Mishustin, L. M. Satarov, and W. Greiner, Phys. Rep.,

391: 363 (2004)
23 C. Da. Providencia, J. Da. Providencia, and S. A. Moszkowski,

Int. J. Mod. Phys. B, 17: 5208 (2003)
24 S. N. Wei, W. Z. Jiang, R. Y. Yang, and D. R. Zhang, Phys.

Lett. B, 763: 145-150 (2016)
25 T. J. Bürvenich and D. G. Madland, Nucl. Phys. A, 729: 769

(2003)
26 H. Pais, D. P. Menezes, and C. Providencia, Phys. Rev. C, 93:

065805 (2016)
27 S. Kubis, Phys. Rev. C, 70: 065804 (2004)
28 S. Kubis, Phys. Rev. C, 76: 025801 (2007)
29 X. D. Ji, Phys. Rev. Lett., 74: 1071 (1995)
30 M. Procura, B. U. Musch, T. Wollenweber, T. R. Hemmert,

and W. Weise, Phys. Rev. D, 73: 114510 (2006)
31 W. G. Lynch, M. B. Tsang, Y. Zhang, P. Danielewicz, M. Fami-

ano, Z. Li, and A. W. Steiner, Prog. Part. Nucl. Phys., 62: 427
(2009)

32 C. Fuchs, Prog. Part. Nucl. Phys., 56: 1 (2006)
33 I. Sagert, L. Tolos, D. Chatterjee, J. Schaffner-Bielich, and C.

Sturm, Phys. Rev. C, 86: 045802 (2012)
34 C. Fuchs, A. Faessler, E. Zabrodin, and Y. M. Zheng, Phys.

Rev. Lett., 86: 1974 (2001)
35 P. Danielewicz, R. Lacey, and W. G. Lynch, Science, 298: 1592

(2002)
36 G. A. Lalazissis, J. Konig, and P. Ring,Phys. Rev. C, 55: 540

(1997)
37 M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B,

312: 377 (1993)
38 Y. Sugahara and H. Toki, Nucl. Phys. A, 579: 557 (1994)
39 B. A. Li and X. Han, Phys. Lett. B, 727: 276 (2013)

40 L. W. Chen, C. M. Ko, B. A. Li, and J. Xu, Phys. Rev. C, 82:
024321 (2010)

41 L. W. Chen, Nucl. Phys. Rev., 31: 273 (2014)
42 C. Xu, B. A. Li, L. W. Chen, Phys. Rev. C, 82: 054607 (2010)
43 M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz et al,

Phys. Rev. C, 86: 015803 (2012)
44 M. B. Tsang, Y. X. Zhang, P. Danielewicz, M. Famiano, Z. X.

Li, W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett., 102:
122701 (2009); ibid., Int. J. Mod. Phys. E, 19: 1631 (2010)

45 N. Wang, M. Liu, L. Ou, and Y. Zhang, Phys. Lett. B, 751:
553 (2015)

46 J. M. Lattimer and Y. Lim, Astrophys. J., 771: 51 (2013)
47 A. W. Steiner, S. Gandolfi, Phys. Rev. Lett., 108: 081102

(2012)
48 X. Roca-Maza, M. Brenna, B. K. Agrawal, P. F. Bortignon, G.

Colco, Li-Gang Cao, N. Paar, and D. Vretenar, Phys. Rev. C,
87: 034301 (2013)

49 D. V. Shetty, S. J. Yennello, G. A. Souliotis, Phys. Rev. C, 76:
024606 (2007)

50 P. Danielewicz and J. Lee, Nucl. Phys. A, 818: 36 (2009)
51 M. Gearheart, W. G. Newton, J. Hooker, and B. A. Li, Mon.

Not. R. Astron. Soc., 418: 2343 (2011)
52 H. Sotani, K. Nakazato, K. Iida, and K. Oyamatsu, Mon. Not.

R. Astron. Soc., 428: L21 (2013)
53 W. G. Newton, B. A. Li, Phys. Rev. C, 80: 065809 (2009)
54 J. M. Lattimer and A. W. Steiner, Eur. Phys. J. A, 50: 40

(2014)
55 S. Gandolfi, J. Carlson, and Sanjay Reddy, Phys. Rev. C, 85:

032801 (2012)
56 K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J, 773: 11 (2013)
57 J. Oppenheimet and G. Volkoff, Phys. Rev., 55: 374 (1939)
58 R. C. Tolman, Phys. Rev., 55: 364 (1939)
59 G. Baym, C. Pethick, and P. Sutherland, Astrophys. J., 170:

299 (1971)
60 K. Iida and K. Sato, Astrophys. J., 477: 294 (1997)
61 P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hes-

sels, Nature, 467: 1081 (2010)
62 J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch

et al, Science, 340: 1233232 (2013)
63 A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J,

722: 33 (2010)
64 A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys.

J., 765: L5 (2013)
65 S. Guillot, M. Servillat, N. A. Webb, and R. E. Rutledge, As-

trophys. J, 772: 7 (2013)
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