Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes

  • In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds.
      PCAS:
  • 加载中
  • [1] B. Zwiebach, Phys. Lett. B, 156:315 (1985)
    [2] J. T. Wheeler, Nucl. Phys. B, 273:732 (1986)
    [3] D. L. Wiltshire, Phys. Rev. D, 38:2445 (1988)
    [4] T. Thiemann Lect, Notes. Phys., 41:631 (2003)
    [5] L. Randall and R. Sundrum, Phys. Rev. Lett., 83:4690 (1999)
    [6] Ashoke Sen, J. High. Energy. Phys., 0603:008 (2006)
    [7] F. Moura and R. Schiappa, Class. Quantum Grav., 24:361 (2007)
    [8] D. J. Gross and E. Witten, Nucl. Phys. B, 277:1 (1986)
    [9] J. Scherk and J. H. Schwarz, Nucl. Phys. B, 81:118 (1974)
    [10] N. Deppe, C. D. Leonard, T. Taves, G. Kunstatter, and R. B. Mann, Phys. Rev. D, 86:104011 (2012)
    [11] S. Golod and T. Piran, Phys. Rev. D, 85:104015 (2012)
    [12] D. G. Boulware, and S. Deser, Phys. Rev. Lett., 55:2656 (1985)
    [13] A. Barrau, J. Grain, and S. O. Alexeyev, Phys. Lett. B, 584:114 (2004)
    [14] D. G. Boulware and S. Deser, Phys. Rev. Lett., 55:2656 (1985)
    [15] J. T. Wheeler, Nucl. Phys. B, 268:737 (1986)
    [16] R. Konoplya, Phys. Rev. D, 71:024038 (2005)
    [17] E. Abdalla, R. A. Konoplya, and C. Molina, Phys. Rev. D, 72:084006 (2005)
    [18] M. A. Cuyubamba, R. A. Konoplya, and A. Zhidenko, Phys. Rev. D, 93:104053 (2016)
    [19] R. A. Konoplya and A. Zhidenko Rev. Mod. Phys., 83:793 (2011)
    [20] R. A. Konoplya, Phys. Rev. D, 82:084003 (2010)
    [21] R. A. Konoplya, Phys. Rev. Lett., 103:161101 (2009)
    [22] G. Dotti and R. J. Gleiser, Phys. Rev. D, 72:044018 (2005)
    [23] R. J. Gleiser and G. Dotti, Phys. Rev. D, 72:124002 (2005)
    [24] R. A. Konoplya, Phys. Rev. D, 77:104004 (2008)
    [25] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quant. Grav., 26:163001 (2009)
    [26] C. V. Vishveshwara, Phys. Rev. D, 1:2870 (1970)
    [27] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D, 73:064030 (2006)
    [28] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity 2, 2 (1999)
    [29] C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D, 49:883 (1994)
    [30] H. Shahar, Phys. Rev. Lett., 81:4293 (1998)
    [31] Olaf Dreyer, Phys. Rev. Lett., 90:081301 (2003)
    [32] L. Motl and Adv. Neitzke Theor. Math. Phys., 7:307 (2003)
    [33] E. Berti and K. D. Kokkotas, Phys. Rev. D, 67:064020 (2003)
    [34] B. P. Abbott et al, Phys. Rev. Lett., 116:241103 (2016)
    [35] B. P. Abbott et al, Phys. Rev. Lett., 116:061102 (2016)
    [36] B. P. Abbott et al, Phys. Rev. Lett., 118:221101 (2017)
    [37] B. P. Abbott et al, Phys. Rev. Lett., 119:161101 (2017)
    [38] R. Konoplya and A. Zhidenko, Phys. Lett. B, 756:350 (2016)
    [39] J. Maldacena, Adv. Theor. Math. Phys., 2:253 (1998)
    [40] E. Witten, Adv. Theor. Math. Phys., 2:253 (1998)
    [41] O. Lunin, S. Mathur, Nucl. Phys. B, 623:342 (2002)
    [42] V. Cardoso, Jos P S Lemos, Phys. Rev. D, 64:084017 (2001)
    [43] A. Nunez and A. O. Starinets, Phys. Rev. D, 67:124013 (2003)
    [44] M. Maliborski and A. Rostworowski, Phys. Rev. Lett., 111:051102 (2013)
    [45] A. Buchel, S. L. Liebling, and L. Lehner, Phys. Rev. D, 87:123006 (2013)
    [46] P. Bizoń and J. Jałmużna, Phys. Rev. Lett., 111:041102 (2013)
    [47] A. Buchel, L. Lehner, and S. L. Liebling, Phys.Rev. D, 86:123011 (2012)
    [48] D. Santos Olivn and F. Sopuerta Carlos, Phys. Rev. Lett., 116:041101 (2016)
    [49] K. Lin, W. L. Qian and A. B. Pavan, Phys. Rev. D, 94:064050 (2016)
    [50] H. Ma and J, Li, Chin. Phys. B, 26:060400 (2017).
    [51] C. Gundlach, H. P. Richard, and J. Pullin, Phys. Rev. D, 49:890 (1994)
    [52] G. T. Horowitz and V. E. Hubeny, Phys. Rev. D, 62:024027 (2000)
    [53] G. T. Horowitz, Class. Quantum Grav. D, 17:1107 (2000)
    [54] D. Lovelock, J. Math. Phys., 12:498 (1971)
    [55] M. H. Dehghani and R. Pourhasan, Phys. Rev. D, 79:064015 (2009)
    [56] C. Teitelboim and J. Zanelli, Class. and Quant. Grav., 4:L125 (1987)
    [57] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. D, 49:975 (1994)
    [58] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. D, 49:986 (1994)
    [59] R. G. Cai, Phys. Rev. D, 65:084014 (2002)
    [60] F. R. Tangherlini, Nuovo Cim., 27:636 (1963)
    [61] J. Li, K. Lin, H. Wen, and W. Liang Qian, Advances in High Energy Physics 2017, 19 (2017)
    [62] T. Takahashi, and J. Soda, Prog. Theor. Phys., 124:911 (2010)
    [63] B. Schutz and C. M. Will, Astrophys. J., 291:L33 (1988)
    [64] S. Iyer and C. M. Will, Phys. Rev D, 35:3621 (1985)
    [65] V. Ferrari and B. Mashhoon, Phys. Rev. D, 30:295 (1984)
    [66] N. Andersson and S. Linnaeus, Phys. Rev. D, 46:4179 (1992)
    [67] E. W. Leaver, Proc. R. Soc. A, 402:285 (1985)
    [68] R. A. Konoplya and A. Zhidenko, Nucl. Phys. B, 777:182 (2007)
    [69] B. Wang, C.Y. Lin, and E. Abdalla, Phys. Lett. B, 481:79 (2000)
    [70] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B, 428:105 (1998)
    [71] O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Phys. Rept., 323:183 (2000)
  • 加载中

Get Citation
Hong Ma and Jin Li. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes[J]. Chinese Physics C, 2018, 42(4): 045101. doi: 10.1088/1674-1137/42/4/045101
Hong Ma and Jin Li. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes[J]. Chinese Physics C, 2018, 42(4): 045101.  doi: 10.1088/1674-1137/42/4/045101 shu
Milestone
Received: 2017-11-19
Fund

    Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

Article Metric

Article Views(1615)
PDF Downloads(36)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes

    Corresponding author: Jin Li,
  • 1. Department of Physics, Chongqing University, Chongqing 401331, China
Fund Project:  Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

Abstract: In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds.

    HTML

Reference (71)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return