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Abstract: In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-

Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black

holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated

on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of

gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector

and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore,

the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum

quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies

have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become

increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with

the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is

connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might

be beneficial for the exploitation of string theory and extra-dimensional brane worlds.
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1 Introduction

In recent years, discussion of the properties and be-
havior of gravity in higher dimensions has become a sig-
nificant issue in gravity theories. Of these, Einstein-
Gauss-Bonnet (EGB) theory [1–3] is meaningful to study
since it is essential for our understanding of quantum
gravity [4], extra dimensional brane-world scenarios [5],
and string theory [6, 7]. EGB theory is seen as a promis-
ing candidate for an effective model of gravity from the
low energy limits of string theory [8].

EGB theory indicates the presence of a coupling pa-
rameter α in the Lagrangian squared in curvature, except
for the ordinary Einstein-Hilbert term [9] in higher di-
mensional spacetimes. In 4-dimensional spacetimes the
Gauss-Bonnet coupling parameter α is a topological in-
variant (it is basically a total derivative), so it is triv-
ial [10, 11]. Accordingly, BHs in EGB theory [12] have
received widespread attention, because of the possibility
that they might be produced at the LHC [13]. A spher-
ically symmetric solution representing a static BH has
been derived by Boulware et al. [14] and Wheeler [15]

in EGB gravity. The evolution of gravitational per-
turbations of D-dimensional BHs has been analyzed by
Ishibashi and Kodama in pure Einstein theory. Sub-
sequently, Konoplya considered the scalar field QNMs
of EGB BHs in asymptotically flat and dS/AdS space-
times [16, 17], and the stability of EGB BHs [18–21].
Meanwhile, Dotti and Gleiser [22, 23] separated and de-
coupled the EGB perturbed equations, which reduce to a
waveform with some effective potentials. However, EGB
theory is extremely difficult. Even if an effective poten-
tial equation is obtained, the S-deformations still cannot
conveniently remove the negative regions in the poten-
tials, since one needs an ansatz that converts the po-
tential to a positive definite form [24]. Consequently,
our purpose in this article is to investigate the stability
of EGB BHs by analyzing the dynamic evolution of all
types of gravitational perturbations field (tensor, vector
and scalar) in higher dimensional anti-de Sitter (AdS)
spacetimes.

There are three different stages in the evolution of
a BH perturbed by external fields. First is the initial
wave bursts phase. The second stage corresponds to
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damp oscillations with complex frequencies (these are
unconventional oscillations, which are called quasinor-
mal modes [25]). The final stage is called the late-time
tail. At the stage when a black hole decays with per-
turbations, the perturbed BH is transformed into an un-
perturbed one which is dominated by QNMs [26]. The
eigenfrequencies of QNMs are complex. The real part
describes the actual frequency of the oscillation rate and
the imaginary part represents the damping rate of the
frequency [27]. QNMs have been used as a powerful
tool to reveal the intrinsic properties of BHs, because
the modes characterize the geometry and are indepen-
dent from extrinsic properties and their geometry [28].
These frequencies from a BH spectrum are responsive
to external perturbations. If a BH becomes unstable, a
small perturbation must expand with time [29]. In other
words, the semi-classical quantum spectral information
of the interior region of a BH will probably be given by
QNMs [30–33]. So, QNMs provide an incentive to ana-
lyze the interior of Einstein-Gauss-Bonnet BHs.

Recently there have been four confirmed gravitational
wave events from the merger of binary BHs detected by
Advanced LIGO, where QNMs also appeared [34–37].
The results show that the gravitational wave (GW) sig-
nals comply with Einstein’s theory of gravity. However,
the evolution of binary BHs simulated by the LIGO and
VIRGO collaborations has forecast that the experimen-
tal precision available at present might satisfy the re-
quirements for testing modified theories of gravity [36].
In other words, some non-negligible parameters of inde-
terminacy in the range of the BHs show that the win-
dow for alternative theories of gravity is opened [38].
Therefore, EGB gravity could realistically be confirmed
through corresponding GW observations.

Higher dimensional BHs are considered under
AdS/CFT correspondence [39], where string theory is
equivalent to a conformal field theory (CFT) with one
less dimension in AdS spacetime [40]. In AdS BHs,
AdS/CFT is connected to the QNM frequencies of the a
test field and the decay rates in the CFT [41]. In this
framework, a BH with a characteristic temperature fixed
by the Hawking effect should be consistent with CFT at
finite temperature. The temporal evolution of pertur-
bation thermal state regression thermal equilibrium is
described by QNMs [42]. Therefore, as for AdS BHs in
Einstein’s theory of gravity, the QNMs of large Gauss-
Bonnet-AdS BHs can also be derived by a holographic
interpretation in CFT [43]. Many studies on AdS BHs
have been presented in Refs. [44–50].

The purpose of this paper is to show a numerical
analysis of the evolution of gravitational perturbations
of higher dimensional Einstein-Gauss-Bonnet AdS BHs.
The properties of Einstein-Gauss-Bonnet BHs in asymp-

totically flat, de Sitter (dS), and AdS spacetimes are
first discussed. The emphasis is placed on studying AdS
spacetime. What will happen to the QNM spectrum of
an Einstein-Gauss-Bonnet BH if the Gauss-Bonnet cou-
pling parameter α is varied is taken into consideration.
We also study Einstein-Gauss-Bonnet AdS BH QNMs
with different dimensionalities of spacetime n and differ-
ent multipole numbers l. The results indicate that the
quasinormal behavior crucially relies on α and n. Thus,
α leads to increase in oscillation frequency and decrease
of the decay rate in AdS spacetimes.

In addition, the potentials for vector and scalar per-
turbations have negative regions, where quasinormal
ringing of the behavior with exponential tail may be
restrained, which does not cause instability. However,
when α increases to a certain critical value, the QNMs
in Einstein-Gauss-Bonnet AdS spacetime become unsta-
ble.

The paper is structured as follows. We review the
Einstein-Gauss-Bonnet BH solutions from second-order
Lovelock gravity, discussing properties in three different
spacetimes (flat, dS and AdS), in Section 2. Later we
focus on the Einstein-Gauss-Bonnet AdS spacetimes. In
Section 3, the wave equations describing all types of grav-
itational perturbations and the properties of the mas-
ter equations are calculated. Section 4 mainly analyzes
the QNMs. In Section 4.1, the dynamical evolution of
the gravitational perturbation fields in Einstein-Gauss-
Bonnet AdS spacetime is analyzed by the finite differ-
ence method [51]. In Section 4.2, QNMs for Einstein-
Gauss-Bonnet AdS BHs are calculated by utilizing the
method proposed by Gary T. Horowitz and Veronika E.
Hubeny [52, 53]. The key results and some remarks are
summarized in Section 5.

2 Spherically symmetric static Einstein-

Gauss-Bonnet BH solutions

Lovelock gravity is an extension of Einstein theory
in a (n+1)-dimensional manifold M [54]. The Lanczos-
Lovelock action has the following form [55],

IG=
1

16π

∫
dn+1x

√−g
[n/2]∑

p=0

αpLp, (1)

where αp is the Lovelock coefficient, [n/2] indicates the
integer part, and Lp is the Euler density [54], which is
defined by

Lp=
1

2p
δµ1ν1···µpνp

ρ1σ1···ρpσp
R ρ1σ1

µ1ν1
···R ρpσp

µpνp
. (2)

Here, R ρσ
µν is the D-dimensional Riemann tensor and

δ
µ1ν1···µpνp

ρ1σ1···ρpσp
is the Kronecker delta.
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In general, it is more convenient to calculate the equa-
tions of motion in the Hamiltonian formulation [55]. For
the purposes of discussion, we have chosen a decompo-
sition of spacetime into time and space, which allows
discernment of the dynamic properties of general rela-
tivity [56]. Furthermore, the spatial metric hij replaces
the spacetime metric gµν as the dynamical variable. Here
hij stands for the induced metric, and its conjugate mo-
mentum can be expressed as [57]

π
i
j =−

1

4

√−g
n∑

p=0

αp
2p

p−1∑

s=0

(−4)p−s
s![2(p−s)−1]!!δ

i1...i2p−1i

[j1...j2p−1j

×R̂j1j2
i1i2
···R̂j2s−1j2s

i2s−1i2s
K

j2s+1

i2s+1
···Kj2p−1

i2p−1
,

(3)

where R̂ijkl is the intrinsic component of the curvature
tensor of the boundary Σt, and K

i
j is the extrinsic cur-

vature, expressed as [57]:

Kij=
1

2
N−1(ḣij−DjNi−DiNj), (4)

Here N=(−g00)−1/2 and N i=hijg0µ represent the ‘lapse
function’ and ‘shift vectors’ respectively. In the ADM
(Arnowitt-Deser-Misner) spacetime decomposition, Di

is defined as the covariant derivative connected with
hij [55]. g0µ is the Lagrange multiplier linked to surface
deformation and

H=−
√
h
∑

p

αp
1

2p
δ
i1···i2p

j1···j2p
Rj1j2

i1i2
···Rj2p−1j2p

i2p−1i2p
,

(5)
where Hi=−2πji|j , and Rij

kl describes the spatial com-

ponents curvature tensor. Rij
kl is given by the Gauss–

Codacci equation [58],

Rijkl=R̂ijkl+KikKjl−KilKjk . (6)

So the Hamiltonian formulation of the action Eq. (1)
becomes [56]

IG=
1

16π

∫
dtdnx(πijḣij−NH−N iHi)+B, (7)

where B is a surface term. Based on the relationship
between the Gauss-Codacci relation Eq. (6) and the ex-
trinsic curvature Kij [55], the generator of surface de-
formation Eq. (5) can be simplified to be H=

∑
αpLp.

Moreover, due to the second order Lovelock gravity, we
focus on the first three terms of the Hamiltonian action
Eq. (7), which becomes

IG=
1

16π

∫
dtdnxN

√
h[L0+L1+α2L2]+B, (8)

where

L0 = −2Λ, (9)

L1 = R, (10)

L2 = RijklR
ijkl−4RijR

ij+R2 . (11)

Λ =−n(n−1)/2l2 represents the cosmological constant
in AdS spacetimes, and α2 is the Gauss-Bonnet coupling
parameter. L1 and L2 describe the Einstein-Hilbert La-
grangian and the second order Lovelock Lagrangian re-
spectively.

Consider the metric of static vacuum solution of the
EGB equation,

ds2=−f(r)dt2+ 1

f(r)
dr2+r2dΩ2

n, (12)

where

f(r)=κ−r2ψ(r), (13)

where ψ(r) satisfies [18]

W [ψ]≡αn(n−1)(n−2)
4

ψ2+
n

2
ψ− Λ

n+1
=

µ

rn+1
, (14)

and dΩ2
n represents the (n=D−2)-dimensional hypersur-

face with κ=±1,0. µ is proportional to the mass of the
BH, which is a positive constant.

There are two solutions can be obtained from the
quadratic equation, given by

ψ(r) =
1

α(n−1)(n−2)

×
(
ε

√
1+

4α(n−1)(n−2)
n

(
µ

rn+1
+

Λ

n+1

)
−1
)
,

(15)

where ε=±1. The asymptotic anti-de Sitter solutions
are studied in this paper (i.e., ε=1 and Λ<0). Then we
can infer the same properties of the metric as Ref. [59].

In order to reduce the relative error in Eq.(15), its
alternative equivalent form is used (for ε=1) [18]

ψ(r)=

4

(
µ

rn+1
+

Λ

n+1

)

n+

√
n2+4αn(n−1)(n−2)

(
µ

rn+1
+

Λ

n+1

) . (16)

For κ=1, an Einstein-Gauss-Bonnet BH solution can
be obtained as

f(r)=1−
4r2

(
µ

rn+1
+

Λ

n+1

)

n+

√
n2+4αn(n−1)(n−2)

(
µ

rn+1
+

Λ

n+1

) ,

(17)
where α is the Gauss-Bonnet coupling parameter and
α → 0 EGB gravity leads to the Schwarzschild-
Tangherlini spacetime from a higher dimensional solu-
tion [60].

f(r)=κ−2r2

n

(
µ

rn+1
+

Λ

n+1

)
. (18)
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(a) Flat spacetime: n=3, and rh=1

Α=0.01

Α=0.1

Α=0.2

Α=0.3

1 3 5 7 9 r0

0.5

1
f HrL

(b) dS spacetime: n=3, rh =1 and rc =
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(c) AdS spacetime: n=3, and rh=1
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(d) Flat spacetime: α=0.01 and rh=1
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(e) dS spacetime: α= 0.01, rh = 1 and
rc=10
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(f) AdS spacetime: α=0.01 and rh=1

Fig. 1. (color online) The structures of the Einstein-Gauss-Bonnet BH’s metric function f(r) with different values
of α ((a)-(c), n=3) and n ((d) - (f), α=0.01): (a) and (d) show asymptotically flat spacetimes with rh=1; (b) and
(e) show de Sitter spacetimes with rh=1 and rc=10; and (c) and (f) show anti-de Sitter spacetimes with rh=1.

According to the event horizon radius rh, we can express
parametrization of the BH mass µ as:

µ=
nrn−1

h

4

(
2+

α(n−2)(n−1)
r2
h

− 4Λr2
h

n(n+1)

)
. (19)

Here, we investigate the effect of Λ on Einstein-Gauss-
Bonnet BH spacetime. The parameters Λ=0, Λ>0, Λ<0
in Einstein-Gauss-Bonnet BH spacetime can be classified
into asymptotically flat, dS, and AdS spacetime respec-
tively.

(1) For asymptotically flat spacetime:

Λ=0, (20)

Here r→∞, f(r)→ 1, and the spacetime is asymptoti-
cally flat. We note when α→0 in 4-dimensional (n=2)
spacetime, Eq.(17) returns to Schwarzschild flat space-
time.

(2) For the de Sitter spacetime [18]:

Λ=
n(n+1)

2

(
rn−1
c −rn−1

h

rn+1
c −rn+1

h

+
α(n−1)(n−2)

2

rn−3
c −rn−3

h

rn+1
c −rn+1

h

)
,

(21)
where rc and rh are the cosmological horizon and the
event horizon respectively. In dS spacetimes, the condi-
tion rc>rh limits the span of the spatial coordinate [61].
We note when α→0 in 4-dimensional (n=2) spacetime,
Eq.(17) returns to Schwarzschild dS spacetime.

(3) For anti-de Sitter spacetime:

Λ=−n(n−1)
2r2

h

, (22)

where rh is the event horizon of AdS spacetime. For AdS
spacetime, we choose f(r)→r2 with r→∞ without loss
of generality. We note that when α→0 in 4-dimensional
(n=2) spacetime, Eq.(17) becomes Schwarzschild AdS
spacetime. In this paper, attention is concentrated on
analyzing the gravitational perturbations of Einstein-
Gauss-Bonnet in AdS spacetime.

Generally, the cosmological constant Λ and the mass
µ can be described according to α, n, rh and rc. There-
fore, Fig. 1 shows that α, n, rh and rc can determine
the structure of Einstein-Gauss-Bonnet BH spacetime.
For the asymptotically flat spacetime, with larger α,
the spacetime approaches flatness more slowly, while the
spacetime goes flat at infinity more quickly with increas-
ing n. For dS spacetime, it is bounded by two horizons
rh<r<rc. The spacetime becomes less curved with the
increase of α (with n fixed), but more curved with the
increase of n (with α). However, as α and n increase,
AdS spacetime approaches infinity more quickly.

3 Gravitational perturbations

Considering the first order gravitational perturba-
tions of static EGB gravity, the metric functions can be
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represented as

gµν=ḡµν+hµν , (23)

where hµν is a small perturbation, and ḡµν is the back-
ground metric. Correspondingly, the inverse of the met-
ric perturbation can be expressed as:

gµν=ḡµν−hµν . (24)

According to Eq.(23) and Eq.(24), the perturbation of
the Christoffel symbol due to the metric perturbation is:

δΓ β
µν=

1

2
ḡβα(hαν;µ+hαµ;ν−hµν;α), (25)

where we use ‘;’ to denote a covariant derivative. We
then get the perturbed Ricci tensor as:

δRµν=δΓ
α
µα;ν−δΓα

µν;α. (26)

Variations of the Einstein-Gauss-Bonnet equations
for vacuum solutions are derived as follows [18],

δG ν
µ =ΛδG ν

(0)µ +δG ν

(1)µ +αδG ν

(2)µ =0, (27)

where

G ν

(0)µ = δνµ, (28)

G ν

(1)µ = R ν
µ −

1

2
δνµR (29)

and

G ν

(2)µ = R δσ
λµ R λν

δσ −2R λ
δ R

δν
λµ −2R λ

µ R ν
λ +RR ν

µ

−1

4
δνµ
(
R σρ
λδ R λδ

σρ −4R δ
λ R

λ
δ +R2

)
. (30)

The contribution of parameter α to the Einstein tensor
can be found. It is shown in Refs. [22, 23] that the per-
turbations of an Einstein-Gauss-Bonnet AdS BH can be
decomposed into an angular part [62] and a radial part.
The master differential equations can be expressed as

(
∂2

∂t2
− ∂2

∂r2
∗

+Vi(r∗)

)
Ψ(t,r∗)=0, (31)

where i represents tensor, vector and scalar perturba-
tions respectively. A tortoise coordinate r∗ is given by,

dr∗≡
dr

f(r)
=

dr

1−r2ψ(r)
. (32)

The effective potentials in Vt(r), Vv(r), and Vs(r) are
given respectively as [62]

Vt(r) =
`(`+n−1)f(r)T ′′(r)

(n−2)rT ′(r)
+

1

R(r)

d2

dr2
∗

(
R(r)

)
, (33)

Vv(r) =
(`−1)(`+n)f(r)T ′(r)

(n−1)rT (r) +R(r)
d2

dr2
∗

(
1

R(r)

)
,

Vs(r) =
2`(`+n−1)
nr2B(r)

d

dr∗

(
rB(r)

)
+B(r)

d2

dr2
∗

(
1

B(r)

)
,

where `=2,3,4,... stands for the multipole number and

T (r)=rn−1 dW

dψ
=
nrn−1

2

(
1+α(n−1)(n−2)ψ(r)

)
,

R(r)=r
√
T ′(r), B(r)=

2(`−1)(`+n)−nr3ψ′(r)

r
√
T ′(r)

T (r).

Equation (33) can be used to discuss how parame-
ters such as α, n and l impact the effective potential in
AdS spacetime. The form of the effective potential in
AdS spacetime is quite different from that in flat and
dS spacetime. The potential function in AdS spacetime
is mostly a convex function. Potentials of gravitational
perturbations are given in Fig. 2.

From Fig.2(a) - (c), we can see that with the increase
of the α (α≤0.3), the potentials in all the cases are en-
hanced. As α increases, some negative regions emerge
in the vector and scalar perturbation. Then we can find
that when α increases to certain critical value (α=0.45,
0.5, 0.35), the potentials are different. Therefore, it is
necessary to further consider the temporal evolution of
higher dimensional AdS Einstein-Gauss-Bonnet BHs and
analyze the (in)stability of the BHs in each type of per-
turbation.

For the potentials with tensor and vector perturba-
tions, the Fig. 2(d) - (f) shows us that as the dimension
number n increases, the potential values also increases.
Figure 2(g) - (i) shows that the potential increases with
the growth of l. Effective potentials are positive defi-
nite beyond the event horizon in the tensor and vector
perturbations. However, the features of the potential
for scalar perturbations is different from the other types.
The scalar perturbations have a negative region. From
Fig. 2(f), the increase of n makes the negative gap ap-
pear. From Fig. 2(i), the increase of l leads to the peak
value of the potential increasing. The potential is not
positive definite any more for scalar perturbations.

4 Numerical calculation of the QNM

frequencies for Einstein-Gauss-Bonnet

Anti-de Sitter BHs

QNMs reflect the intrinsic properties of the black
holes. In order to obtain the QNM frequencies of black
holes, boundary conditions should be imposed on the
master equation. At the horizon there are only ingo-
ing waves, and at infinity there are only purely out-
going waves, which mean discrete sets of complex fre-
quency ω meeting these requirements [28]. The study
of the potential function in Einstein-Gauss-Bonnet AdS
spacetime in Section 3 showed that V (r) → ∞ at in-
finity. Therefore, a number of numerical methods are
ineffective with V (r)→∞ at infinity, for instance the
WKB method [63, 64], Pöschl-Teller approximation [65],
integral phase method [66] and Continuous Fraction
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(b) Vector perturbations: n=3, l=2 and
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(c) Scalar perturbations: n=3, l=2 and
rh=1
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(d) Tensor perturbations: l=2, α=0.01
and rh=1
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(e) Vector perturbations: l=2, α=0.01
and rh=1
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(f) Scalar perturbations: l= 2, α= 0.01
and rh=1
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(g) Tensor perturbations: n=3, α=0.01
and rh=1
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(h) Vector perturbations: n=3, α=0.01
and rh=1
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(i) Scalar perturbations: n=3, α=0.01
and rh=1

Fig. 2. (color online) The potential of gravitational perturbations in Einstein-Gauss-Bonnet AdS spacetime (Λ=

−

n(n−1)

2r2
h

and rh=1) with different values of α, n, and l. (a), (d) and (g) are tensor perturbations; (b), (e) and (h)

are vector perturbations; and (c), (f) and (i) are scalar perturbations.

method [67]. However, to overcome this issue, Gary
T. Horowitz and Veronika E. Hubeny [52, 53] have dis-
cussed the boundary condition at infinity in AdS space-
times. Moreover, the finite difference method [51, 52]
can also be employed in AdS spacetime to study QNMs.
Therefore, in this section, we will firstly use the finite
difference method to solve the dynamics evolution of the
gravitational perturbation fields and analyze the stability
of Einstein-Gauss-Bonnet BHs in AdS spacetime. Sec-
ondly, the QNM frequencies varying with dimension n
and Gauss-Bonnet coupling parameter α are calculated
by the Horowitz and Hobeny method.

4.1 Dynamics evolution of the gravitational per-

turbations

Using the finite difference method [51, 52], we study
the ringing of Einstein-Gauss-Bonnet BHs in AdS space-

time, which can directly reflect the (in)stability of the
BH [68] with all the frequencies in the temporal evolu-
tion images. Therefore, using a numerical integration
scheme [52], Eq. (31) is rewritten in light-cone coordi-
nates:

µ=t−r∗, ν=t+r∗, (34)

yielding

∂2Ψ

∂u∂v
+
1

4
V (r)Ψ=0, (35)

where Ψ(u,v)→Ψij and

∂Ψ

∂u
→Ψi+1,j−Ψi−1,j

4u , (36)

∂Ψ

∂v
→Ψi,j+1−Ψi,j−1

4v .
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Using the central difference rule,

Ψi,j=
ΨW+ΨE

2
, (37)

we get a discrete expression for Eq. (35)

ΨN=ΨW+ΨE−ΨS−4u4vV (r)
ΨW+ΨE

8
. (38)

The notations we use here are

ΨN=Ψi+1,j+1,ΨS=Ψi−1,j−1, (39)

ΨE=Ψi+1,j−1,ΨW=Ψi−1,j+1.

We adopt the finite difference method to analyse the
stability of Einstein-Gauss-Bonnet BHs in AdS space-
time with Λ=−n(n−1)

2r2
h

and rh=1. The temporal evolu-

tion of various modes in Fig. 3 is consistent with each
situation in Fig. 2.

From Fig. 3(a) - (c), the Gauss-Bonnet coupling pa-
rameter α in 5-dimensional (n = 3) AdS spacetime is
analyzed. Figure 3 shows the detailed evolution of grav-
itational perturbation fields (including tensor, vector,
and scalar types) in higher dimensional Einstein-Gauss-
Bonnet AdS spacetime. In all types of gravitational
perturbations, the QNMs of Einstein-Gauss-Bonnet BHs
with α≤0.3 tend to oscillate stably. Even if α increases
exponentially, damping become dominant. In Fig. 2(b)
and Fig. 2(c) the vector and scalar types of perturba-
tion respectively have negative regions, which probably
does not lead to instability, but the quasinormal ringing
is suppressed by this negative region, cf. Fig. 3(b) and
Fig. 3(c). Hence, it causes the QNM ringing period to
disappear after the initial disturbance.

We show that stable typical damped (α ≤ 0.3) and
evolving time domain picture of the instability near the
critical value in Fig. 3(a) - (c). Note that when α
increases to a certain critical value, the instability of
QNMs in Einstein-Gauss-Bonnet AdS spacetime occurs.
The dynamic evolution of tensor, vector, and scalar per-
turbations becomes unstable when α = 0.45, 0.5, and
0.35 respectively. That means that the stronger Gauss-
Bonnet coupling parameter α leads to slower decay of
the perturbations, which will further cause instability of
the Einstein-Gauss-Bonnet BH. Therefore, we show that
the parametric region of the BHs is stable but shows
the beginning of instability. Additionally, we can see
the Einstein-Gauss-Bonnet AdS BH remains stable when
α=0.01. Therefore, we calculate the QNMs of gravita-
tional perturbations with α = 0.01, to distinguish the
Einstein-Gauss-Bonnet BHs and classics BHs of QNMs.

Figure 3(d) - (f) shows the stability of Einstein-
Gauss-Bonnet BHs in different higher dimensional AdS
spacetimes with α= 0.01 and l= 2. Moreover, when a
α→0, an Einstein-Gauss-Bonnet BH becomes a higher-
dimensional Schwarzschild-Tangherlini spacetime, which
returns to a classical Schwarzschild BH with n=2 and

α=0. Re(ω) and |Im(ω)| both increase as n increases,
which indicates that Re(ω) becomes much more intense
than a Schwarzschild BH (n=2 and α=0), and the decay
rate |Im(ω)| is faster than that of a Schwarzschild BH.

Figure 3(g) - (i) shows the stability of Einstein-Gauss-
Bonnet BHs in 5-dimensional (n = 3) AdS spacetime
with α = 0.01. As the angular quantum number l in-
creases, Re(ω) increases significantly, while the decay
rate (|Im(ω)|) decreases.

4.2 Numerical calculation

We use the discretization scheme proposed by Gary
T. Horowitz and Veronika E. Hubeny [52, 53] to
study the QNMs in Einstein-Gauss-Bonnet AdS space-
time. Therefore, in the ingoing Eddington coordinates,
Eq. (31) should be reformulated with v=t+r∗:

f(r)
∂2Ψ

∂r2
+[f ′(r)−2iω]∂Ψ

∂r
−Ṽ (r)Ψ=0, (40)

where Ψ(r) = eiωrΦ(r) and Ṽ (r) = V (r)

f(r)
. x = 1/r is in-

troduced to the region outside BH, defining x+ =1/r+.
Equation (40) is expressed as

s(x)
d2Ψ

dx2
+

t(x)

x−x+

dΨ

dx
+

u(x)

(x−x+)2
Ψ=0, (41)

where

s(x)= −f(r)x
4

x−x+

, (42)

t(x)= x2[f(r)
′−2f(r)x−2iω],

u(x)= (x−x+)Ṽ (r).

Around horizon rh, s(x), t(x) and u(x) can be expanded
as

s(x)=

4∑

m=0

sm(x−x+)
m, (43)

t(x)=

4∑

m=0

tm(x−x+)
m,

u(x)=

4∑

m=0

um(x−x+)
m,

where s0=2x2
+κ, t0=2x2

+(κ−iω) and u0=0 (κ=f ′(rh)/2
represents the surface gravity of the BH). The wave func-
tion is Ψ∼(x−x+)

β and Eq. (41) yields

β(β−1)s0+βt0=2x2
+β(βκ−iω)=0. (44)

Accordingly, β=0 represents ingoing modes in the AdS
horizon. Then Ψ∼(x−x+)

0 is the approximate solution
of the wave function around the horizon. Therefore we
define

Ψ=

∞∑

m=0

am(x−x+)
m. (45)
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(a) Tensor perturbations: n= 3, l= 2 and
rh=1

(b) Vector perturbations: n= 3, l= 2 and
rh=1

(c) Scalar perturbations: n= 3, l= 2 and
rh=1
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(d) Tensor perturbations: l = 2, α= 0.01
and rh=1

(e) Vector perturbations: l = 2, α = 0.01
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(f) Scalar perturbations: l=2, α=0.01 and
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(g) Tensor perturbations: n= 3, α= 0.01
and rh=1

(h) Vector perturbations: n= 3, α= 0.01
and rh=1

(i) Scalar perturbations: n = 3, α = 0.01
and rh=1

Fig. 3. (color online) The dynamical evolution for all types of gravitational perturbations in Einstein-Gauss-Bonnet

AdS spacetime (Λ=−n(n−1)

2r2
h

and rh=1) with different values of α, n, and l: (a), (d) and (g) are for the tensor

type; (b), (e) and (h) are for the vector type; and (c), (f) and (i) are for the scalar type.

Substituting Eq. (43) and Eq. (45) into Eq. (44), the
recurrence formula of am can be derived as [69]

am=− 1

m(m−1)s0+mt0
Σ∞
j=0aj [j(j−1)sm−j+jtm−j+um−j ],

(46)
here setting a0=1. Using another boundary condition at
r→∞(x→0), Ψ→0, yields

∞∑

m=0

am(−x+)
m=0. (47)

Taking Eqs. (25) and (26) into the above equation, the
algebraic equation of ω is solved by the iterative method.

The fundamental QNMs for the three types of grav-
itational perturbation, calculated by the Horowitz and
Hubeny method, are given in Tables 1, 2 and 3. We
mainly focus on the effect of α in the different dimen-
sions. The results show that α would increase the fre-
quency of oscillation Re(ω) (n is held constant), but
would decrease the decay rate |Im(ω)| except the case
of n=2. Since n=2 for a Einstein-Gauss-Bonnet AdS
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Table 1. Tensor gravitational perturbations for Einstein-Gauss-Bonnet AdS BHs, rh=1, l=2, Λ=−
n(n−1)

2r2
h

.

α n=2 n=3 n=4

0.1 2.34096555−0.42801937i 6.92285542−0.612430224i 8.35573638−1.07776817i

0.01 2.34096555−0.42801937i 6.69814978−0.614303907i 8.15232034−1.08129254i

0.001 2.34096555−0.42801937i 6.69590424−0.637235403i 8.09896332−1.08175591i

0.0001 2.34096555−0.42801937i 6.69547613−0.639571231i 8.09436918−1.08263107i

Table 2. Vector gravitational perturbations for Einstein-Gauss-Bonnet AdS BHs, rh=1, l=2, Λ=−
n(n−1)

2r2
h

.

α n=2 n=3 n=4

0.1 1.71539459−0.549173291i 3.30910851−0.544646153i 4.55613638−0.87652084i

0.01 1.71539459−0.549173291i 3.25540325−0.562397563i 4.35573638−0.95566896i

0.001 1.71539459−0.549173291i 3.21429942−0.567733641i 4.33661026−1.05033999i

0.0001 1.71539459−0.549173291i 3.20749423−0.568562154i 4.33260148−1.05594466i

Table 3. Scalar gravitational perturbations for Einstein-Gauss-Bonnet AdS BHs, rh=1, l=2, Λ=−
n(n−1)

2r2
h

.

α n=2 n=3 n=4

0.1 1.69656429−0.42529586i 1.99326015−0.35548921i 13.7557363−0.55566893i

0.01 1.69656429−0.42529586i 1.98294621−0.48272505i 13.5126658−0.60197929i

0.001 1.69656429−0.42529586i 1.91962459−0.49008132i 13.4005969−0.60538738i

0.0001 1.69656429−0.42529586i 1.91225165−0.49109236i 13.3755785−0.60780494i

BH, like a classical Schwarzschild AdS BH, the Gauss-
Bonnet coupling parameter α is trivial. Moreover, we
see that Re(ω) and |Im(ω)| both increase as dimension
n increases, for a given α.

5 Conclusion

In this paper, we studied the spherically symmet-
ric solution representing a static BH in asymptotically
flat, dS, and AdS spacetimes. Then the QNMs of grav-
itational perturbations in AdS spacetimes were inves-
tigated. It is noteworthy that around r →∞ in AdS
spacetime is different from the situations in flat and dS
spacetimes [70, 71]. The potential Ṽ (r) of the master
equation at infinity does not tend to zero but to in-
finity in AdS spacetime. The main focus of the paper
is, therefore, to analyze the dynamic evolution of the
Einstein-Gauss-Bonnet BH according to the finite dif-
ference method in AdS spacetimes, varying the value of
α, the dimensionality of spacetime n, and the multipole
numbers l. Finally, the QNMs of gravitational perturba-
tions of Einstein-Gauss-Bonnet BHs in AdS spacetimes
were calculated by the Horowitz and Hubeny method.

Using the finite difference method, we find that per-
turbation frequency Re(ω) increases but the decay rate
|Im(ω)| decreases with increasing α. More remarkably,
we have found that vector and scalar perturbations have
a negative gap which probably does not cause insta-
bility but suppresses the quasinormal ringing to be an
exponential tail. Therefore, we are unable to see the
QNM ringing period after the initial outburst. Never-
theless, when α increases to some critical value (α =

0.45,0.5,0.35 respectively), instability of the QNMs oc-
curs in Einstein-Gauss-Bonnet AdS spacetime. In accor-
dance with the AdS/CFT correspondence, instability of
the QNMs possibly forecasts limits of holographic appli-
cability in Einstein-Gauss-Bonnet AdS backgrounds. As
we increase n, perturbation frequency Re(ω) and decay
rate |Im(ω)| both increase. Meanwhile, Re(ω) increases
and the decay rate |Im(ω)| decreases when the angular
quantum number l increases. The results of QNMs from
the Horowitz and Hubeny method are consistent with
the above properties of Gauss-Bonnet AdS BHs.

As a summary, we can draw the following conclu-
sions. (i) The existence of α can affect the QNMs of
Einstein-Gauss-Bonnet AdS BHs. When α approaches
1, as forecast by string theory, some different properties
from Einstein-Gauss-Bonnet AdS BH QNMs of grav-
itational perturbations will appear. When TeV-scale
quantum gravity scenarios are taken into account, the
effects of α on the QNM spectrum should not be ig-
nored The result of the finite difference method indicates
that Einstein-Gauss-Bonnet AdS BHs become more and
more unstable at larger α. Einstein-Gauss-Bonnet the-
ory comes from a one-loop string theory approximation,
which is valid when α is small. (ii) In the higher dimen-
sional spacetimes, the decay rate of |Im(ω)| decreases
with the increase of α and n, which is connected with
the mass of Einstein-Gauss-Bonnet AdS BHs. In the
matter of AdS/CFT correspondence, this signifies that
the greater the mass, the more time the Einstein-Gauss-
Bonnet BH takes to approach equilibrium. Therefore, in
this study the results we obtained not only contribute α
for QNMs of Einstein-Gauss-Bonnet AdS BHs, but also
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provide useful reference information for research into
AdS/CFT correspondence. We are indebted to Dr. Hao Wen for help.

References

1 B. Zwiebach, Phys. Lett. B, 156: 315 (1985)
2 J. T. Wheeler, Nucl. Phys. B, 273: 732 (1986)
3 D. L. Wiltshire, Phys. Rev. D, 38: 2445 (1988)
4 T. Thiemann Lect, Notes. Phys., 41: 631 (2003)
5 L. Randall and R. Sundrum, Phys. Rev. Lett., 83: 4690 (1999)
6 Ashoke Sen, J. High. Energy. Phys., 0603: 008 (2006)
7 F. Moura and R. Schiappa, Class. Quantum Grav., 24: 361

(2007)
8 D. J. Gross and E. Witten, Nucl. Phys. B, 277: 1 (1986)
9 J. Scherk and J. H. Schwarz, Nucl. Phys. B, 81: 118 (1974)

10 N. Deppe, C. D. Leonard, T. Taves, G. Kunstatter, and R. B.
Mann, Phys. Rev. D, 86: 104011 (2012)

11 S. Golod and T. Piran, Phys. Rev. D, 85: 104015 (2012)
12 D. G. Boulware, and S. Deser, Phys. Rev. Lett., 55: 2656

(1985)
13 A. Barrau, J. Grain, and S. O. Alexeyev, Phys. Lett. B, 584:

114 (2004)
14 D. G. Boulware and S. Deser, Phys. Rev. Lett., 55: 2656 (1985)
15 J. T. Wheeler, Nucl. Phys. B, 268: 737 (1986)
16 R. Konoplya, Phys. Rev. D, 71: 024038 (2005)
17 E. Abdalla, R. A. Konoplya, and C. Molina, Phys. Rev. D, 72:

084006 (2005)
18 M. A. Cuyubamba, R. A. Konoplya, and A. Zhidenko, Phys.

Rev. D, 93: 104053 (2016)
19 R. A. Konoplya and A. Zhidenko Rev. Mod. Phys., 83: 793

(2011)
20 R. A. Konoplya, Phys. Rev. D, 82: 084003 (2010)
21 R. A. Konoplya, Phys. Rev. Lett., 103: 161101 (2009)
22 G. Dotti and R. J. Gleiser, Phys. Rev. D, 72: 044018 (2005)
23 R. J. Gleiser and G. Dotti, Phys. Rev. D, 72: 124002 (2005)
24 R. A. Konoplya, Phys. Rev. D, 77: 104004 (2008)
25 E. Berti, V. Cardoso, and A. O. Starinets, Class. Quant. Grav.,

26: 163001 (2009)
26 C. V. Vishveshwara, Phys. Rev. D , 1: 2870 (1970)
27 E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D, 73: 064030

(2006)
28 K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity 2,

2 (1999)
29 C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D, 49: 883

(1994)
30 H. Shahar, Phys. Rev. Lett., 81: 4293 (1998)
31 Olaf Dreyer, Phys. Rev. Lett., 90: 081301 (2003)
32 L. Motl and Adv. Neitzke Theor. Math. Phys., 7: 307 (2003)
33 E. Berti and K. D. Kokkotas, Phys. Rev. D, 67: 064020 (2003)
34 B. P. Abbott et al, Phys. Rev. Lett., 116: 241103 (2016)
35 B. P. Abbott et al, Phys. Rev. Lett., 116: 061102 (2016)
36 B. P. Abbott et al, Phys. Rev. Lett., 118: 221101 (2017)
37 B. P. Abbott et al, Phys. Rev. Lett., 119: 161101 (2017)
38 R. Konoplya and A. Zhidenko, Phys. Lett. B, 756: 350 (2016)

39 J. Maldacena, Adv. Theor. Math. Phys., 2: 253 (1998)
40 E. Witten, Adv. Theor. Math. Phys., 2: 253 (1998)
41 O. Lunin, S. Mathur, Nucl. Phys. B, 623: 342 (2002)
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