Magnetic moments and g-factors in odd-A Ho isotopes

Get Citation
E. Tabar, H. Yakut, A. A. Kuliev, H. Quliyev and G. Ho?gör. Magnetic moments and g-factors in odd-A Ho isotopes[J]. Chinese Physics C, 2017, 41(7): 074101. doi: 10.1088/1674-1137/41/7/074101
E. Tabar, H. Yakut, A. A. Kuliev, H. Quliyev and G. Ho?gör. Magnetic moments and g-factors in odd-A Ho isotopes[J]. Chinese Physics C, 2017, 41(7): 074101.  doi: 10.1088/1674-1137/41/7/074101 shu
Milestone
Received: 2016-12-08
Revised: 2017-03-03
Fund

    Supported by Scientific and Technological Research Council of Turkey (TUBITAK) (115F564)

Article Metric

Article Views(768)
PDF Downloads(49)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Magnetic moments and g-factors in odd-A Ho isotopes

    Corresponding author: E. Tabar, etabar@sakarya.edu.tr
    Corresponding author: H. Yakut, etabar@sakarya.edu.tr
  • 1. Physics Department, Sakarya University, 54187 Sakarya, Turkey
  • 2. Biomedical, magnetic and semiconductor materials research center (BIMAYAM), Sakarya University, 54187 Sakarya, Turkey
  • 3.  Azerbaijan National Academy of Aviation, Baku, Azerbaijan
  • 4.  Physics Department, Sakarya University, 54187 Sakarya, Turkey
Fund Project:  Supported by Scientific and Technological Research Council of Turkey (TUBITAK) (115F564)

Abstract: The ground-state magnetic moment, gK factor and quenching spin gyromagnetic ratio have been calculated using the microscopic method based on the Quasiparticle Phonon Nuclear Model (QPNM) for 155-169Ho nuclei for the first time. It is shown that the residual spin-spin interactions are responsible for the core polarization, and because of the core polarization the spin gyromagnetic factors are quenched. By considering the core polarization effects, a satisfactory agreement is obtained for the computed ground state gK factor, which gives an intrinsic contribution to the magnetic moments. In order to assess the collective contribution to the magnetic moments, the rotational gyromagnetic factors gR have been also calculated within the cranking approximation using the single particle wave function of the axially symmetric Woods-Saxon potential. For the ground-state magnetic moments of odd-proton 155-165Ho nuclei, a good description of the experimental data is obtained with an accuracy of 0.01-0.1 μN. From systematic trends, the quenching spin gyromagnetic factor, gK factor and magnetic moment have also been theoretically predicted for 167,169Ho where there is no existing experimental data.

    HTML

Reference (28)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return