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Abstract: The ground-state magnetic moment, gK factor and quenching spin gyromagnetic ratio have been cal-

culated using the microscopic method based on the Quasiparticle Phonon Nuclear Model (QPNM) for 155−169Ho

nuclei for the first time. It is shown that the residual spin-spin interactions are responsible for the core polarization,

and because of the core polarization the spin gyromagnetic factors are quenched. By considering the core polariza-

tion effects, a satisfactory agreement is obtained for the computed ground state gK factor, which gives an intrinsic

contribution to the magnetic moments. In order to assess the collective contribution to the magnetic moments, the

rotational gyromagnetic factors gR have been also calculated within the cranking approximation using the single

particle wave function of the axially symmetric Woods-Saxon potential. For the ground-state magnetic moments of

odd-proton 155−165Ho nuclei, a good description of the experimental data is obtained with an accuracy of 0.01–0.1

µN. From systematic trends, the quenching spin gyromagnetic factor, gK factor and magnetic moment have also been

theoretically predicted for 167,169Ho where there is no existing experimental data.
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1 Introduction

Rare-earth nuclei have attracted strong interest in
the nuclear physics community in recent years because
of their complex structure. As a result, they have become
some of the most frequently studied nuclei and a consid-
erable amount of effort has been spent on understanding
their complex structure.

One of the basic tools to gain information on the
complex structure of rare-earth nuclei is to measure the
nuclear magnetic moments [1]. During the last four
decades, the experimental results of ground-state nuclear
spins and magnetic moments for a great number of rare
earth odd-mass nuclei have been reported [2].

The limits of the magnetic moments of odd-mass nu-
clei are described by the Schmidt lines theoretically de-
rived from the single-particle (shell) model [3]. How-
ever, the magnetic moments of odd-mass deformed nuclei
which are far from the closed shells deviate systemati-
cally from the Schmidt predictions [4]. It is well known
that these deviations are mainly due to the core polar-
ization and meson exchange current (MEC) [5–7]. Core
polarization arises as a result of the interaction between
M1 excitations of the core and odd-particle. It is re-

sponsible for quenching of the spin gyromagnetic factor
[8–15]. It is important to state that the meson exchange
current is beyond the scope of the present paper.

In an earlier paper, we proposed a microscopic
method in the QPNM framework [16] in which core po-
larization effects are assumed to be due to the scattering
of an odd particle by 1+ excitations of the doubly even
core [12]. The influence of these effects can be taken into
account by introducing an effective spin gyromagnetic
factor calculated in theory. The method allows proper
description of core polarization effects. Such a calcula-
tion also makes it possible to analyse underlying the mi-
croscopic structure of the ground states of nuclei investi-
gated. The numerical calculations have been performed
in the rare earth elements 155−165Dy [13], 157−167Er [12],
165−175Hf [14] for the ground states with K>1/2. It was
demonstrated that such a quenching of the spin gyro-
magnetic factors is due to the residual spin-spin interac-
tions and explains the deviation between theoretical and
experimental magnetic moments.

The current work focuses on applying the QPNM
method to investigate the magnetic moments of the
ground state for odd-mass holmium isotopes. Hyper-
fine structure, nuclear spins as well as magnetic mo-
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ments of the rare earth element 155−165Ho have been
investigated experimentally using resonance ionization
spectroscopy [17]. However, no systematic theoretical
analysis of experimental data on magnetic moments of
odd-mass 155−165Ho nuclei has been performed. There-
fore, holmium with long isotopic chains provides us a
strong test area for the method. This is the first study
in which the QPNM method has been used to explain
the magnetic properties of an odd-proton nucleus.

The paper is organised as follows. In Section 2 a brief
introduction of the theory is given. In Section 3 the nu-
merical results of the magnetic moments of the ground
states in 155−165Ho nuclei are presented. In Section 4 a
short summary is given.

2 Theory

2.1 QPNM description of ground-state of an

odd-nucleus

The renormalization of gs is associated with the spin
dependent part of the spin-spin residual interaction [4].
The spin-polarization effect can be described in terms
of the coupling to excitations of the even-even core pro-
duced by spin-dependent fields [4]. This was confirmed
by early calculations [4, 10, 11]. Therefore, the starting
point of the method is that the nucleons in the axially
symmetric average field interact via pairing and spin-spin
residual forces. The QPNM Hamiltonian of such a nu-
cleus consists of a single-quasiparticle term, a collective
part and an interaction term [12–14],

H≈Hsqp+Hcoll.+Hint., (1)

where

Hsqp=
∑

s,τ

εs(τ)α
+
sραsρ, (2)

Hcoll. =
1

2

∑

τ,τ ′

χττ ′

∑

ss′

σ(µ)

ss′Lss′g
i
ss′ [Q

+
i (τ)+Qi(τ)]

×
∑

mm′

σ(µ)

mm′Lmm′gi
mm′ [Q+

i (τ ′)+Qi(τ
′)], (3)

Hint. =
∑

τ,τ ′

χττ ′

∑

mm′

∑

ss′

{

σ(µ)

ss′Mss′σ
(µ)

mm′Lmm′gi
mm′Dss′(τ)

×[Q+
i (τ ′)+Qi(τ

′)]+σ
(µ)

ss′Lss′σ
(µ)

mm′Mmm′gi
ss′

×[Q+
i (τ)+Qi(τ)]Dmm′ (τ ′)

}

. (4)

Here the first two terms (Hsqp and Hcoll.) describe
quasiparticle motion and phonon excitations, respec-
tively, and the last term (Hint.) represents the interaction
between quasiparticles and phonons [12–14]

In Eqs. (2)–(4), εs(τ)is the quasiparticle energy
of the nucleons, the quantities Mss′ = usu

′
s +vsv

′
s and

Lss′ = usv
′
s−u

′
svs are expressed in terms of Bogoliubov

canonical transformation parameters, and us and vs.
σ(µ)

ss′ =〈s|σµ |s
′〉 are single-particle matrix elements of the

Pauli spin operator. Dss′ =
∑

ρ

ρα+
s−ραs′−ρ, where α+

sρ(αsρ)

are quasi-particle creation (annihilation) operators.gi
ss′=

ψi
ss′+ϕ

i
ss′ is the sum of the two-quasiparticle amplitudes.

The summation over ss′(mm′) means that the sum is
taken over the average field single particle levels of the
neutron (proton) system. χττ ′ is the spin-spin interac-
tion parameter with τ,τ ′, which denotes the correspond-
ing proton-proton, neutron-neutron (χ=χnn=χpp,) and
proton-neutron (χnp = qχ,q expresses the isovector and
isoscalar characteristics of the neutron-proton spin-spin
interactions) spin interactions. Both spin interaction pa-
rameters (χ) are expressed in terms of spin interaction
strengths (κ), χ= κ

A
MeV [12–14].

In the case of odd-mass nuclei the QPNM Hamil-
tonian is constructed as a superposition of one-
quasiparticle and single-quasiparticles ⊗ phonon compo-
nents

Ψ j
K(τ)=

{

N j
Kα

+
K(τ)+

∑

iν

GKν
ij α

+
ν (τ)Q+

i

}

|ψ0〉, (5)

where the index j describes the states with a given spin
and parity Kπ value in an odd-mass nucleus. The quan-
tities N j

K and GKν
ij determine the contribution of the one-

quasiparticle and the quasiparticle ⊗ phonon component
in the wave function, respectively [12–14].

By using the variation principle the secular equation
is determined as following:
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iv

1

Z(ωi)

q2σ2
KvM

2
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εss′σ
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2
ss′
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2
i

.

Here, ωi is the energy of collective 1+ states in the
even-even core. The energies ηj

K(τ) of the ground and ex-
cited states of odd-mass nuclei are the roots of the secular
equation. The functions GKv

ij and N j
K can be easily de-

rived by using the secular Eq. (6) and the normalization
condition of the wave function [12–14].

N−2
K =1+

1

Z(ωi)

[

qσKνMKν

(1+χFp)(εν+ωi−ηK)

]2

, (8)

RKν
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NK(τ)
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[

qσKνMKν
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]

. (9)
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2.2 Core polarization and ground-state mag-

netic momen

According to the Unified Model of Bohr and Mottel-
son, the ground-state (with K>1/2) magnetic moment
of an odd-mass deformed nuclei reads

µ=
K

I+1
(gKK+gR). (10)

As can be seen in Eq. (10), the ground-state mag-
netic moment of an odd-A nucleus contains contributions

from both intrinsic and rotational motion. Therefore, it
is dependent on two parameters, namely intrinsic (gK)
and rotational (gR) gyromagnetic factor [4].

For a K>1/2 state of an odd-mass nucleus the intrin-
sic magnetic moment µK=gKK is the expectation value
of µz, which is the projection of the magnetic dipole mo-
ment operator on the symmetry axis. Using the QPNM
wave function, i.e Eq. (5) one can see that gK is a sum of
quasiparticle-quasiparticle (qp-qp), phonon-phonon (ph-
ph) and quasiparticle-phonon (qp-ph) terms:
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∣
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+
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+
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]
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+

(

∑
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)2
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+
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. (11)

After the calculation of expectation values in Eq. (11) the analytical formula is then given by

µK=

{
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}
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(12)
From the comparison of Eq. (12) with conventional Nilsson formula, i.e.

µ=gKK=(gp
s−g

p
l )〈K|ŝz |K〉+gp

l K, (13)

it can easily be seen that

geff
s −gp

l =(gp
s −g

p
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K
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, (14)

where geff
s is the effective spin gyromagnetic factor for

odd-proton nuclei. The second term in the bracket and
last term on the right side of Eq. (14) express the coher-
ent contribution coming from the quasi particle-phonon
interactions in the polarized core. This contribution
leads to a significant reduction of the spin gs factor [12–
14].

Calculations of the collective gyromagnetic ratio (gR)
for odd-mass nuclei have been carried out in the Inglis-
Belyaev cranking model [18]. As an improvement to
the early calculations in which the Nilsson Model wave
functions were used, the single-particle wave function of
the axially symmetric Wood-Saxon potential is used in
the present calculations. According to the Inglis-Belyaev
cranking model, gR is given for an axially symmetric odd-
mass nucleus as follows:

g(p)
R =

1

J0

[Jp+(gn
s −g

n
l )Xn+(gp

s −g
p
l )Xp], (15)

where
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+2
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2

tt′
L2

tt′
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. (16)

Here, (jx)
ρ

and (sx)
ρ

are the single particle matrix
elements of the x-component of angular momentum and
spin operator, respectively. J0=Jn+Jp is the moment of
inertia of odd-proton nuclei [18].

The empirical values of geff
s /gfree

s and gK can be
computed by using experimental magnetic moments [2]
and empirical rotational gyromagnetic ratios in following
equations

gemp.
K =

K+1

K2
(µexp−gRK)+gR, (17)

geff
s (emp)=

2(gemp
K −gp

l )K+gp
l σKK

gp
s σKK

. (18)

3 Results and discussion

The calculations of single particle basis for both neu-
tron and protons are performed using a Woods-Saxon po-
tential with β2 quadrupole deformation parameters de-
rived from the experimental quadrupole moments [19].
The parameters of the Woods –Saxon potential are the
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same as in Ref, [20]. The proton and neutron pairing
gaps were taken from Ref [21]. λp and λn chemical po-
tentials were calculated according to Ref. [22], based
on the single-particle states of the nuclei under investi-

gation. For the ground-state calculations of odd-mass
holmium isotopes the phonon basis was constructed us-
ing one-phonon QRPA states of the corresponding even-
even core with IπK=1+0.

Table 1. The ground-state configurations, pairing correlation quantities ∆ and λ (in MeV) and the mean-field
deformation parameters.

isotope [NnzΛ]Σ ∆n/MeV ∆p/MeV λn/MeV λp/MeV δ2
155Ho [402]↑ 1.011 1.046 −8.631 −5.015 0.205
157Ho [523]↑ 1.017 1.021 −8.340 −5.625 0.254
159Ho [523]↑ 1.006 1.010 −8.072 −6.219 0.283
161Ho [523]↑ 0.972 1.023 −7.748 −6.810 0.295
163Ho [523]↑ 0.952 1.021 −7.379 −7.398 0.299
165Ho [523]↑ 0.919 1.023 −6.957 −7.974 0.304
167Ho [523]↑ 0.886 1.024 −6.437 −8.594 0.256*
169Ho [523]↑ 0.848 1.030 −6.029 −9.149 0.265*

*Calculated using β2 quadrupole deformation parameters taken from Ref [21].

The interaction constant (κ) of the spin-spin force is
determined by comparison of the theoretical and empir-
ical values of ground-state gK factors of odd-mass 165Ho
nuclei. However, this is done for only 165Ho since the em-
pirical gR factor is only available for this nucleus. Then,
the determined spin-spin interaction strength was fixed
and it was used in magnetic moment calculation of other
Ho isotopes. The empirical gK for 165Ho is found to be
gK=1.410 (11) using empirical gR (gemp.

R =0.429) [18] and
the experimental magnetic moment value [2] in Eq. (17).
Figure 1 shows the computed gK as a function of q and
κ for 165Ho. As can be seen from Fig. 1, a satisfactory
description of empirical gK factor for 165Ho is obtained
with q =-1 and κ=35 MeV. Therefore, the strength of
the spin-spin interaction is fixed to be κ=35 MeV for
155−169Ho isotopes. This value of κ is close to that used
earlier in the scissors mode calculations [23, 24].
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1.35
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K

g
K
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K
(emp.)=1.410(11)

Fig. 1. Computed gK as a function of q and κ for 165Ho.

According to the secular equation there should be
an energy shift of one-quasiparticle spectra due to the
quasiparticle phonon admixtures. The theoretical results
show that the energy shift is always small (∼80 keV) and
almost homogeneous for all single-quasiparticle states ly-
ing below the collective vibrational states of odd-mass
nuclei under investigation.

The microscopic structure of odd-mass 155−169Ho nu-
clei calculated in the QPNM is presented in Table 2.
The ground-states of odd-mass 157−169Ho nuclei origi-
nate from the single-quasiparticle state with [523]↑ and
the couplings of the single quasiparticle state to the one-
phonon core excitations, i.e. [523]↑⊗Qi. In the case of
155Ho, the ground state has a [523]↑ single-quasiparticle
state with [402]↑ and contains a component [402]↑⊗Qi.
Because of having the same Nilsson configuration, the
structures of the ground states of odd-mass 157−169Ho
are very similar. Calculations show that as a rule the
contribution of the single-quasiparticle state to the wave
functions is predominant (∼99.9%) so that N j2

K is very
close to unity. The quasiparticle⊗phonon admixtures
are less important in ground states of odd-mass Ho iso-
topes and do not exceed 0.1%. This means that the
ground state of these nuclei can be approximated as a
pure one-quasiparticle state. This approximation may
not affect the calculations of reduced M1 transitions be-
tween ground and excited states in a significant way ow-
ing to small admixture of quasiparticles⊗phonon states
[23-25]. However, as discussed in the next paragraph,
these small admixtures in the ground state are enough
to cause a significant renormalization of spin matrix ele-
ments. Therefore, in the calculation of the ground state
of odd-mass nuclei, the quasiparticles⊗phonon interac-
tion has to be taken into account.
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Table 2. Ground-state structures of odd-mass 155−169Ho nuclei.

nucleus Kπ structure phonon structure

single quasiparticle quasiparticles⊗phonon ωi ψss′ ϕss′ [NnzΛ]Σ
155Ho 5/2+ 99.83%[402]↑ 0.05%[402]↑⊗Q47 9.630 0.298 0.001 nn420↑-640↑

0.363 0.006 pp523↑-514↓

0.03%[402]↑⊗Q53 10.344 −0.408 −0.002 nn530↑-510↑

−0.243 0.005 pp523↑-514↓

0.08%[402]↑⊗Q56 10.612 −0.306 0.003 nn541↑-512↓

−0.255 0.008 pp523↑-514↓

0.02%[402]↑⊗Q60 11.073 −0.149 0.001 pp413↓-402↓

−0.658 0.002 pp523↓-503↓
57Ho 7/2− 99.88%[523]↑ 0.02%[523]↑⊗Q70 10.060 0.380 0.001 nn422↓-651↑

−0.164 0.004 pp532↑-512↑

0.04%[523]↑⊗Q79 10.855 0.173 0.001 nn512↓-501↑

−0.383 0.001 pp550↑-521↓

0.02%[523]↑⊗Q81 10.925 −0.375 0.001 nn512↓-501↑

0.408 −0.001 pp550↑-521↓
159Ho 7/2− 99.76%[523]↑ 0.04%[523]↑⊗Q80 11.113 −0.379 −0.001 nn550↑-550↑

−0.196 0.002 pp440↑-411↓

0.02%[523]↑⊗Q82 11.250 0.458 −0.001 nn550↑-550↑

0.158 −0.005 pp523↑-514↓
161Ho 7/2− 99.88%[523]↑ 0.03%[523]↑⊗Q73 10.354 0.186 −0.006 nn514↑-505↓

−0.361 0.004 pp532↑-512↑

0.05%[523]↑⊗Q84 11.271 0.203 0.001 nn420↑-400↑

0.330 −0.005 pp550↑-521↓
163Ho 7/2− 99.75%[523]↑ 0.02%[523]↑⊗Q69 10.385 0.163 −0.005 nn514↑-505↓

0.415 −0.004 pp532↓-512↓

0.02%[523]↑⊗Q74 10.923 −0.137 −0.001 nn651↑-642↓

0.463 0.003 pp550↑-521↓

0.03%[523]↑⊗Q81 11.360 0.485 −0.001 nn550↑-530↑

−0.243 0.003 pp550↑-521↓
165Ho 7/2− 99.75%[523]↑ 0.02%[523]↑⊗Q71 10.123 0.279 −0.005 nn514↑-505↓

0.463 0.004 pp532↓-512↓

0.02%[523]↑⊗Q72 10.437 0.146 −0.005 nn514↑-505↓

−0.487 0.004 pp532↓-512↓

0.02%[523]↑⊗Q74 10.971 -0.396 -0.003 pp550↑-521↓

0.02%[523]↑⊗Q77 11.299 −0.347 −0.001 nn541↑-532↓

0.371 −0.003 pp550↑-521↓
167Ho 7/2− 99.76%[523]↑ 0.02%[523]↑⊗Q74 10.691 0.508 0.003 pp530↑-521↓

0.289 −0.001 pp440↑-411↓

0.02%[523]↑⊗Q75 10.966 0.467 0.001 nn541↑-512↓

−0.365 0.003 pp530↑-521↓

0.04%[523]↑⊗Q78 11.196 0.344 -0.002 nn550↑-510↑

−0.245 0.004 pp530↑-521↓
169Ho 7/2− 99.76%[523]↑ 0.02%[523]↑⊗Q61 9.777 −0.178 0.001 nn550↑-750↑

−0.468 −0.004 pp532↓-512↓

0.02%[523]↑⊗Q70 10.780 0.154 0.001 nn541↑-521↑

0.410 −0.001 pp440↑-411↓

0.02%[523]↑⊗Q74 11.069 −0.443 −0.001 nn541↑-512↓

0.370 −0.003 pp530↑-521↓

0.04%[523]↑⊗Q77 11.280 0.445 −0.002 nn550↑-510↑

0.249 −0.004 pp530↑-521↓
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Fig. 2. The B(M1↑) distributions with IπK = 1+0 computed within QRPA, summed in bins of 0.2 MeV, for the
core of 157Ho and 165Ho in 3–20 MeV energy range.

Table 3. Comparison of QPNM results for geff
s /gfree

s and gK with those obtained in other theories and empirically.

geffs /gfrees gK

isotope KPM [8] TDA QPNM Semi-Emp. SM MSM [28] KPM [8] TDA QPNM Semi-Emp.
155Ho 0.630 0.635 0.786 0.866(15) 1.886 - 1.486 1.491 1.655 1.741(16)
157Ho 0.632 0.639 0.787 0.782(17) 1.548 1.302 1.307 1.405 1.402(11)
159Ho 0.623 0.633 0.785 0.784(16) 1.556 1.301 1.307 1.411 1.410(11)
161Ho 0.617 0.623 0.784 0.789(16) 1.559 1.508 1.298 1.303 1.412 1.416(11)
163Ho 0.612 0.619 0.782 0.790(22) 1.560 1.512 1.295 1.300 1.412 1.416(15)
165Ho 0.607 0.614 0.781 0.778(16) 1.561 1.515 1.292 1.297 1.411 1.410(11)
167Ho 0.596 0.631 0.778 1.546 1.518 1.277 1.301 1.398
169Ho 0.602 0.610 0.779 1.549 - 1.282 1.288 1.401

According to our calculation, the phonon states lying
around 9–12 MeV give the largest contribution to the
structure of the ground states of odd-mass Ho isotopes.
This is because these core states have strong M1 tran-
sitions known as spin-flip resonances. As can be seen
from Table 2, the backward amplitudes (φss′ ) of these
high-lying 1+ phonons are very small. For illustrative
purposes, the QRPA results for the B(M1↑) distribu-
tions with IπK=1+0, summed in bins of 0.5 MeV, are
shown in Fig. 2 for only the core of 157Ho and 165Ho.
The QRPA calculations for IπK = l+0 states presented
in Fig. 2 are performed as in Ref. [26].

In general, B(M1↑) strength below 5 MeV is due to
the orbital motion. In contrast, the contribution of the
spin part to the M1 strength increases above 5 MeV and
the states in the 9-12 MeV energy range are purely spin
excitations. Although the contributions to ground-state
wave function of odd-mass nuclei coming from coupling
of these phonons with single-quasiparticles are small,
they significantly affect the magnetic properties of odd-
mass Ho nuclei.

Let us now consider the correction to the ground-
state gs and gK factors of 155−169Ho isotopes from the
small admixture of quasiparticles⊗phonon interaction.
A direct comparison between QPNM results (for gK and

geff
s ) and the semi-empirical data is presented in Table 3.

The semi-empirical values of geff
s /gfree

s and gK were com-
puted by using experimental magnetic moments [2] and
empirical rotational gyromagnetic factors in Eqs. (17,
18) as pointed out by Y.F. Bow [27]. Empirical rotational
gyromagnetic ratio is only available for 165Ho. There-
fore, in the determination of semi-empirical gK for the
155−169Ho isotopic chain, except for 165Ho , the estima-
tions of the cranking model presented in Table 4 (column
6) were used. In this table also the results of the early
theoretical attempts such as the Kuliev-Pyatov Method
(KPM), Tamm-Damcof Approximation (TDA), Shell-
Model (SM) and Modified-Shell Model (MSM) were in-
cluded.

As seen in Table 3, a satisfactory overall description
of the ground-state gK and geff

s factors of odd-Z 155−169Ho
isotopes was obtained by the QPNM calculations. The
TDA and KPM provide very similar results and all of
them deviate noticeably from the empirical data. This
is because the ground-state of the core corresponds to
an independent quasiparticle vacuum in both methods.
For all nuclei, the QPNM results are closer to the em-
pirical values than TDA and KPM. This indicates that
the inclusion of ground-state correlations with QPNM in
the core improves the description of not only the one-
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phonon vibrational states in an even-even core, but also
the ground-state of the corresponding odd-mass nuclei.
The basic premise of the TDA is to accept the indepen-
dent quasiparticle vacuum as the ground state whereas
QPNM admits the possibility that the ground state is
not of purely independent quasiparticle character and
contain correlations. In other word, the QPNM ground
state is different from the TDA ground state because
of the ground-state correlations. The results of TDA for
geff
s and gK are therefore much smaller than the empirical

values.
As expected, in the case of gK, SM and MSM show

very similar behaviours and the calculations are in poorer
agreement with empirical data than QPNM due to the
neglect of the core. In these models it is assumed that
protons and neutrons do not interact. The key differ-
ence between them is only the pairing correlations in-
troduced in the MSM [28]. From the above compar-
isons it can be concluded that the magnetic properties
are sensitive to small admixtures of the spin-dependent
interaction, which are neglected in SM and MSM. Al-
though TDA and KPM include the residual spin-spin
interaction, the interactions in the ground-state of core
are neglected. This causes the asymmetric behaviours
of the ground- and excited- states in TDA and KPM.
However, the QPNM method considers quasiparticle in-
teractions in both excited- and ground-states so that it
allows proper description of core polarization effects in
odd-mass nuclei.
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Fig. 3. Contribution of (qp-qp), (ph-ph) and (qp-
ph) terms to the ground state gK of odd-mass
155−169Ho nuclei.

As can be seen in Eq. (11), gK is indeed a sum of
three terms, namely quasiparticle-quasiparticle (qp-qp),
phonon-phonon (ph-ph) and quasiparticle-phonon (qp-
ph). The contribution of these terms to the gK factors
of odd-A Ho isotopes are illustrated in Fig. 3. As ex-
pected, the main contribution to gK comes from qp-qp
terms. The ph-ph terms give a positive but rather weak

contribution. The qp-ph terms turn out to be always of
negative sign and are also quite weak compared to the
qp-qp terms. It must be emphasized once more that the
small admixtures induced by quasiparticle⊗phonon in-
teractions, i.e. qp-ph terms, lead to a decrease in the
magnitude of the gK factor, which improves the agree-
ment with empirical data. The quasiparticle⊗phonon
admixtures are usually less than 1% of the norm of
the wave function. However, because of the large den-
sity (ρ∼30 MeV−1) and coherent contribution, small
quasiparticle⊗phonon admixtures in the wave function
strongly affect the nuclear magnetic moments. That the
magnetic moments are sensitive to such small admixtures
were first pointed out by Arima and Horie [8, 9].

Table 4 shows the calculated moment of inertia and
gR values for odd-mass nuclei.The same calculations were
also performed for core nuclei and presented in Table 4,
since it may be of interest to compare the results for odd-
A nuclei with those for the corresponding cores. From
these comparisons it can be concluded that adding an
extra proton to the core induces a considerable contri-
bution to the gR factor and moment of inertia in some
cases. The quantum state of the odd-proton determines
whether the contribution is additive or destructive. For
all cases the contribution of the odd-proton to the gR

factors is additive, so that the ground state gR factor for
odd mass Ho nuclei is higher than the one for doubly even
cores, except for 155Ho. This is because the ground-state
quantum numbers, i.e Nilsson state ([402]), of 155Ho are
different from other odd-mass Ho isotopes. In the case
of 155Ho, when an odd proton is added to the core nu-
cleus, i.e 154Dy, the proton contribution (Jp) to the total
moment of inertia (J0)decreases because of the negative
sign of Jp. Besides, the negative sign of the (jx)

tK
(sx)

tK

term in Eq. (16) reduces to 0.257 from 0.099. In view
of Eq. (15), the decrease in Jp and Xp reduces gR from
0.580 to 0.562.

In Table 4 the calculated values of the gyromagnetic
ratio are also compared to the simple estimate Z/A and
to empirical data [18]. In general the calculated gR fac-
tors significantly deviate from Z/A. Only in 168Dy are
the calculated gR factors nearly equal to Z/A. In all
cases, the calculated gR factors are in excellent agree-
ment with the available empirical data. The core po-
larization also affects the rotational gyromagnetic ratio.
However, its impact on gR is weak compared to its effect
on the spin gyromagnetic ratios. To show this, the rota-
tional gyromagnetic ratio has been calculated with core
polarization and is also presented in Table 4.

In order to calculate gR with core polarization, i.e
gc
R(eff), the QPNM results for geff

s /gfree
s presented in Ta-

ble 3 were used in Eq. (15).
Figure 4 shows the dependence of the results ob-

tained for ground-state magnetic moment of odd-proton
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Table 4. Ground-state moments of inertia and gyromagnetic ratios (gR). Here, the quantities Jn and Jp are proton
and neutron contributions to the total moment of inertia (J0), respectively.

nucleus Jn Jp J0 gR=Z/A gcR gcR(eff) gemp.
R [18]

154Dy 14.877 15.434 30.311 0.429 0.580 - -
155Ho 14.877 13.405 28.282 0.432 0.562 0.536 -
156Dy 20.621 16.212 36.833 0.423 0.518 - -
157Ho 20.621 29.236 49.857 0.427 0.686 0.655 -
158Dy 26.543 16.744 43.287 0.418 0.433 - -
159Ho 26.543 27.937 54.480 0.421 0.569 0.544 -
160Dy 30.086 16.492 46.578 0.412 0.382 - 0.370(40)
161Ho 30.086 27.190 57.276 0.416 0.510 0.486 -
162Dy 32.140 16.356 48.496 0.407 0.359 - 0.362(24)
163Ho 32.140 26.938 59.078 0.411 0.481 0.459 -
164Dy 34.342 16.075 50.417 0.402 0.338 - 0.331(16)
165Ho 34.342 26.566 60.908 0.406 0.456 0.435 0.429(58)
166Dy 34.256 15.102 49.358 0.398 0.326 - -
167Ho 34.256 28.977 63.234 0.401 0.500 0.475 -
168Dy 36.170 14.989 51.159 0.393 0.317 - -
169Ho 36.170 28.387 64.557 0.396 0.479 0.455 -

g
R
=0.25

g
R
=0.50

g
R
=Z/A

g
R
c

g
R
c (eff.)

µ
exp.

A
155 157 159 161 163 165 167 169
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Fig. 4. Theoretical and experimental magnetic mo-
ments as a function of mass number A. The ex-
perimental data are shown by red stars.

155−169Ho on the mass numberA. In the majority of cases
for gR, the theoretical results are close to each other, but
the values calculated using cranking gR provides a better
description of experimental data.

The differences between the theoretical results of
magnetic dipole moment calculated using both gc

R and
gc
R(eff) and the experimental results are somewhat

smaller in 155−169Ho. For illustrative purposes, the quan-
titative difference between theory and experiment may
be expressed by ∆µ. One can see that, except for 155Ho,
the characteristic value of this quantity is ∆µ≈ 0.1µN,
indicating a reasonably good agreement between the the-
oretical and experimental results. In the case of 155Ho,
the discrepancy between theoretical and experimental
ground-state magnetic moments may be due to the fact
that the Nilsson state ([402]) has been not exactly con-

firmed by experiments. Although quantitative agree-
ment is rather poor, the sharp drop of magnetic moment
of 155Ho is well reproduced.

The analyses of the results indicate that the ground-
state magnetic moments are much more sensitive to the
value of gs than to that of gR. As seen in Fig. 4, a vari-
ation of gR from 0.25 to 0.50 corresponds to a variation
of the magnetic moment ≈ 0.2µN. On the other hand,
a variation in gs from 0.7 to 1 leads to ≈ 0.6µN. This
stresses the importance of accurate determination of the
effective gyromagnetic factor of a nucleus for the calcu-
lation of its ground-state magnetic moment. Therefore,
determination of effective spin gyromagnetic ratios is an
important problem for comparing theoretical and exper-
imental magnetic moments.

The quadrupole deformation dependence of the
ground-state magnetic properties of odd-mass Ho iso-
topes has been also investigated. As an example, the
results for 163Ho are illustrated in Fig. 5. In all the
odd-mass Ho nuclei considered, the geff

s factors exhibit
a weak dependence on the quadrupole deformation. On
the other hand, the calculations show that there is pro-
nounced sensitivity of the magnetic moments and gK to
the quadrupole deformation. This situation reflects the
important role of the single-particle matrix elements in
the calculation of the magnetic moments and gK.

In the present paper it has been shown that the
quenching of spin gyromagnetic ratio can be well ex-
plained by microscopic QPNM calculations including
residual spin-spin interactions. It should be noted that
the effective spin gyromagnetic ratios is important not
only for calculation of ground-state magnetic moments
but also for the calculation of reduced M1 transitions
between ground and excited states.
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Fig. 5. Deformation dependence of ground-state magnetic properties of 163Ho.

The reasonably good agreement with experiment has
encouraged us to give predictions of the ground-state
magnetic moments of 167,169Ho isotopes for which there is
not yet any experimental data. Using effective gyromag-
netic factors and gc

R values, the ground-state magnetic
moments of 167Ho and 169Ho nuclei have been predicted
to be µ=+4.195µN and µ=+4.18µN, respectively.

4 Conclusion

The present study has provided the first theoret-
ical systematic investigation of the ground-state mag-
netic moments in odd-mass 155−169Ho nuclei. Core po-

larization corrections to ground-state magnetic moments
of odd-mass 155−169Ho nuclei have been calculated in
QPNM theory. It has been shown that the effective gs

factors in the calculation of magnetic moments can be
explained in terms of the polarized core.

In all cases, the results for the ground-state magnetic
moments calculated using cranking rotational gyromag-
netic factors (gc

R) are closer to the experimental values
than those calculated using different gR values.

The authors thank Prof Ibrahim OKUR for his careful

reading of the manuscript and useful comments.
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