Study of the structures of four-quark states in terms of the Born-Oppenheimer approximation

  • In this work, we use the Born-Oppenheimer approximation, where the potential between atoms can be approximated as a function of distance between the two nuclei, to study the four-quark bound states. By this approximation, Heitler and London calculated the spectrum of the hydrogen molecule, which includes two protons (heavy) and two electrons (light). Generally, the observed exotic mesons Zb(10610), Zb(10650), Zc(3900) and Zc(4020) (Zc(4025)) may be molecular states made of two physical mesons and/or diquark-anti-diquark structures. Analogous to the Heitler-London method for calculating the mass of the hydrogen molecule, we investigate whether there exist energy minima for these two structures. Contrary to the hydrogen molecule case where only the spin-triplet possesses an energy minimum, there exist minima for both of these states. This implies that both molecule and tetraquark states can be stable objects. Since they have the same quantum numbers, however, the two states may mix to result in the physical states. A consequence would be that partner exotic states co-existing with Zb(10610), Zb(10650), Zc(3900) and Zc(4020) (Zc(4025)) are predicted and should be experimentally observed.
      PCAS:
  • 加载中
  • [1] Adachi I et al. (Belle collaboration). arXiv:1105.4583 [hep-ex][2] Ablikim M et al. (BESⅢ collaboration). Phys. Rev. Lett., 2013, 110: 252001[3] Ablikim M et al. (BESⅢ collaboration). Phys. Rev. Lett., 2013, 111, 242001[4] Ablikim M et al. (BESⅢ collaboration). arXiv:1308.2760 [hep-ex][5] KE H W, LI X Q, SHI Y L, et al. JHEP, 2012, 1204: 056[6] KE H W, WEI Zheng-Tao, LI Xue-Qian. Eur. Phys. J. C, 2013, 73: 2561[7] Patel S, Shah M, Vinodkumar P C. Eur. Phys. J. A, 2014, 50: 131[8] ZHANG J R. Phys. Rev. D, 2013, 87: 116004[9] SUN Z F, HE J, LIU X et al. Phys. Rev. D, 2011, 84: 054002[10] Cleven M, GUO F K, Hanhart C, Meissner U G. Eur. Phys. J. A, 2011, 47: 120[11] Cleven M, WANG Q, GUO F K et al. Phys. Rev. D, 2013, 87: 074006[12] Maiani L, Piccinini F, Polosa A D, Riquer V. Phys. Rev. D, 2005, 71: 014028[13] Kleiv R T, Steele T G, ZHANG A, Blokland I. Phys. Rev. D, 2013, 87: 125018[14] Born M, Oppenheimer J R. Annalen der Physik, 1927, 389: 457[15] Heitler W, London F. Z. Phys., 1927, 44: 455[16] Braaten E, Langmack C, Smith D H. Phys. Rev. D, 2014, 90: 014044[17] Eichten E, Gottfried K, Kinashita T et al. Phys. Rev. D, 1978, 17: 3090[18] Eichten E, Gottfried K, Kinashita T et al. Phys. Rev. D, 1980, 21: 203[18] PING J L, WANG F, Goldman J T. Nucl. Phys. A, 1999, 657: 95[19] Vijande J, Fernandez F, Valcarce A. J. Phys. G, 2005, 31: 481[20] Weinstein J D, Isgur N. Phys. Rev. D, 1983, 27: 588[21] Vijande J, Fernandez F, Valcarce A, Silvestre-Brac B. Eur. Phys. J. A, 2004, 19: 383[22] Chang C H, PANG H R. Commun. Theor. Phys., 2005, 43: 275-282[23] Faessler A, Lübeck G, Shimizu K. Phys. Rev. D, 1982, 26: 3280-3283[24] Entem D R, Fernandez F. Phys. Rev. C, 2006, 73: 045214[25] Brodsky S J, Hwang D S, Lebed R F. Phys. Rev. Lett., 2014, 113(11): 112001[26] Carlson J, Kogut J B, Pandharipande V R. Phys. Rev. D, 1983, 27: 233[27] Kokoski R, Isgur N. Phys. Rev. D, 1987, 35: 907[28] Kumano S, Pandharipande V R. Phys. Rev. D, 1988, 38: 146[29] YANG M Z. Eur. Phys. J. C, 2012, 72: 1880[31] LIU J B, YANG M Z. JHEP, 2014, 1407: 106[30] Olive K A et al. (Particle Data Group collaboration). Chin. Phys. C, 2014, 38: 090001[31] Weinstein J D, Isgur N. Phys. Rev. D, 1990, 41: 2236[32] Vijande J, Valcarce A. Symmetry, 2009, 1: 155-179[33] Bondar A E, Garmash A, Milstein A I et al. Phys. Rev. D, 2011, 84: 054010[34] Ali A, Hambrock C, WANG W. Phys. Rev. D, 2012, 85: 054011[12103170] Ohkoda S, Yamaguchi Y, Yasui S, Hosaka A. Phys. Rev. D, 2012, 86: 117502[0412098] Maiani L, Piccinini F, Polosa A D, Riquer V. Phys. Rev. D, 2005, 71, 014028[35] HE J, LIU X, SUN Z F, ZHU S L. Eur. Phys. J C, 2013, 73: 2635[36] HE X G, LI X Q, LIU X, ZENG X Q. Eur. Phys. J. C, 2005, 44: 419 [Erratum-ibid. C 44, 459 (2005)][37] YUAN X Q, ZHANG Z Y, YU Y W, SHEN P N. Phys. Rev. C, 1999, 60: 045203[38] SHEN P N, ZHANG Z Y, YU Y W, YUAN X Q, YANG S. J. Phys. G, 1999, 25: 1807
  • 加载中

Get Citation
LIU Xue-Wen, KE Hong-Wei, DING Yi-Bing and LI Xue-Qian. Study of the structures of four-quark states in terms of the Born-Oppenheimer approximation[J]. Chinese Physics C, 2015, 39(8): 083103. doi: 10.1088/1674-1137/39/8/083103
LIU Xue-Wen, KE Hong-Wei, DING Yi-Bing and LI Xue-Qian. Study of the structures of four-quark states in terms of the Born-Oppenheimer approximation[J]. Chinese Physics C, 2015, 39(8): 083103.  doi: 10.1088/1674-1137/39/8/083103 shu
Milestone
Received: 2015-02-06
Revised: 1900-01-01
Article Metric

Article Views(968)
PDF Downloads(250)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Study of the structures of four-quark states in terms of the Born-Oppenheimer approximation

    Corresponding author: LIU Xue-Wen,
    Corresponding author: KE Hong-Wei,
    Corresponding author: DING Yi-Bing,
    Corresponding author: LI Xue-Qian,

Abstract: In this work, we use the Born-Oppenheimer approximation, where the potential between atoms can be approximated as a function of distance between the two nuclei, to study the four-quark bound states. By this approximation, Heitler and London calculated the spectrum of the hydrogen molecule, which includes two protons (heavy) and two electrons (light). Generally, the observed exotic mesons Zb(10610), Zb(10650), Zc(3900) and Zc(4020) (Zc(4025)) may be molecular states made of two physical mesons and/or diquark-anti-diquark structures. Analogous to the Heitler-London method for calculating the mass of the hydrogen molecule, we investigate whether there exist energy minima for these two structures. Contrary to the hydrogen molecule case where only the spin-triplet possesses an energy minimum, there exist minima for both of these states. This implies that both molecule and tetraquark states can be stable objects. Since they have the same quantum numbers, however, the two states may mix to result in the physical states. A consequence would be that partner exotic states co-existing with Zb(10610), Zb(10650), Zc(3900) and Zc(4020) (Zc(4025)) are predicted and should be experimentally observed.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return