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Abstract: In this work, we use the Born-Oppenheimer approximation, where the potential between atoms can

be approximated as a function of distance between the two nuclei, to study the four-quark bound states. By this

approximation, Heitler and London calculated the spectrum of the hydrogen molecule, which includes two protons

(heavy) and two electrons (light). Generally, the observed exotic mesons Zb(10610), Zb(10650), Zc(3900) and Zc(4020)

(Zc(4025)) may be molecular states made of two physical mesons and/or diquark-anti-diquark structures. Analogous

to the Heitler-London method for calculating the mass of the hydrogen molecule, we investigate whether there exist

energy minima for these two structures. Contrary to the hydrogen molecule case where only the spin-triplet possesses

an energy minimum, there exist minima for both of these states. This implies that both molecule and tetraquark

states can be stable objects. Since they have the same quantum numbers, however, the two states may mix to result

in the physical states. A consequence would be that partner exotic states co-existing with Zb(10610), Zb(10650),

Zc(3900) and Zc(4020) (Zc(4025)) are predicted and should be experimentally observed.
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1 Introduction

The naive quark model suggests that a meson is made
of a quark and an anti-quark, whereas a baryon consists
of three quarks. The constituents in hadrons are bound
together by the QCD interaction to constitute a color
singlet. However, neither the quark model nor the QCD
theory ever forbids the existence of multi-quark states as
long as they are color-singlets. The fact that after several
years of hard work all experimental trials to observe pen-
taquarks have failed, has greatly discouraged high energy
physics theorists and experimentalists, even though the
idea of pentaquarks is really stimulating. One may ask if
nature indeed only favors the most economic structures
for hadrons. The situation has changed with the dis-
covery of the exotic states Zb(10610) and Zb(10650) [1],
and especially the newly observed Zc(3900) [2], Zc(4020)
[3] and Zc(4025) [4]. The characteristics of such states
are that Zb and Zc-mesons contain hidden bottom bb̄ or

charm cc̄ respectively and both are charged; therefore,
they cannot be simple bb̄ or cc̄ bound states, but multi-
quark states, and compared to the regular structures are
called exotic states.

The inner structure of the multi-quark states is more
complicated than the regular mesons, in that the exotic
states can be molecular states or tetraquarks or their
mixtures. The molecular state is constructed by two
color singlet mesons. A strong point in support of such a
structure is that the mass of the newly discovered meson
Zb(10610) is close to the sum of the masses of B and B̄∗,
while the mass of Zc(3900) is also close to a sum of D
and D∗ masses. The study of the decay modes of such
mesons, however, seems to support the tetraquark struc-
ture [5, 6]. To clarify the structures of those exotic states,
one may need to investigate their overall characteristics
based on fundamental dynamics, instead of simply con-
sidering the closeness of their masses to the sum of the
constituents.
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One observation may draw our attention. The res-
onances Zb(10610), Zb(10650), Zc(3900), Zc(4020) and
Zc(4025) have been experimentally observed and con-
firmed as exotic four-quark states. Many authors [7–11]
have assumed them to be molecular states of B, B∗, D
and D∗ (and the corresponding anti-mesons) which are
well-measured experimentally. A common point is that
the masses of the observed exotic mesons are larger than
the sum of the supposed constituent mesons. Specifically,
10608.4±2.0 MeV [1] (the mass of Zb(10610)) is larger
than the sum of the masses of B and B∗ (10604.45 MeV);
10653.2±1.5 MeV [1] (the mass of Zb(10650)) is larger
than the sum of the masses of B∗ and B∗ (10650.4 MeV);
3899±3.6±4.9 MeV [2] (the mass of Zc(3900)) is larger
than the sum of D and D∗ (3876.6 MeV); 4022.9±0.8±
2.7 MeV [3] (the mass of Zc(4020)) is larger than the sum
of D∗ and D∗ (4013.96 MeV). Generally, unless there
exists a linearly increasing potential (such as the con-
finement potential for quarks) or a barrier, the bind-
ing energy of two constituent mesons which is caused
by exchanging color-singlet hadrons must be negative.
Thus, the mass of a composite meson should be smaller
than the sum of the two (or more) constituent masses.
Moreover, as estimated by some authors [12, 13], the
masses of those exotic states are also larger than the
sums of the masses of the diquark and anti-diquark con-
cerned. In our calculation, even though the sum of the
two diquark masses is larger than the mass of the corre-
sponding exotic meson, the negative binding energy still
makes the resultant total energy smaller than the ex-
otic meson. This may imply that neither molecular nor
tetraquark states alone correspond to the observed ex-
otic mesons. Our study indicates that only their mixture
provides a reasonable picture for the four-quark states.
Thus, both molecular and tetraquark states should exist,
even though they may not be the physical states which
we observe in experiments.

By the Born-Oppenheimer [14] approximation, the
potential between atoms can be approximated as a func-
tion of the distance between the two nuclei; by this
scheme, Heitler and London [15] calculated the spectrum
of the hydrogen molecule. In that case, the two protons
are supposed to be at rest and the two electrons are mov-
ing. Since the two electrons are identical fermions, the
wavefunction of the two-electron system must be totally
anti-symmetric. It was found that there is only one en-
ergy minimum corresponding to the triplet. Namely, in
the hydrogen molecule the two electrons must be in the
spin-triplet.

Compared with the hydrogen molecule, Zb (or Zc) is
made of four quarks: Q, Q̄, u(ū), d̄(d), where Q stands
for b or c quark. Since Q, Q̄ are much heavier than
the light flavors, we can approximate them to be at rest.
Thus it is natural that we separate the four quarks into

two groups. One possibility is that each group is in a
color singlet, which corresponds to a molecular state,
whereas another possibility is that one group contain-
ing Qu is in a color-anti-triplet (or a sextet) and the
other group containing Q̄d̄ is in a color-triplet (or an
anti-sextet), i.e. the dipole-anti-dipole structure. Since
u and d̄ are not identical particles, the wavefunction
does not need to be anti-symmetrized. By the Born-
Oppenheimer approximation, the potential between two
groups can be a function of distance between Q and Q̄
and interactions between the two groups are taken as a
perturbation. Since the interactions between quarks are
complicated, calculation of the energy spectrum of the
exotic states is much more difficult than for the hydro-
gen molecule. It is noted that Braaten et al. [16] also
consider the Born-Oppenheimer potential to deal with
the four-quark states.

First we need to determine the wavefunctions of the
color singlet of Qd̄(Q̄u) and the color-anti-triplet (or sex-
tet) dipole Qu (color-triplet or anti-sextet Q̄d̄). Here we
use the Cornell potential [17, 18] as the interaction be-
tween the quarks and since the light flavors are relativis-
tic, following the literature, we employ the Schrödinger-
like equation with relativistic kinematics. The effec-
tive interaction between the quarks (quark-anti-quark)
which belong to different groups is complicated, be-
cause not only is there the short-distance QCD inter-
action, but the long-distance interaction, which can be
treated by exchanging color-singlet light mesons such
as π, σ and ρ (for the molecule case) or the color-
flux tube (for the tetraquark case), plays an important
role. Here we do not involve the strange flavor. Anal-
ogous to the hydrogen molecule, we calculate the spec-
trum of the ground state of the four-quark system (the
molecule and tetraquark separately). Our strategy is
similar to the Heitler-London approximation, namely we
take the products of the two meson wavefunctions (for
the molecule) and diquark-anti-diquark wavefunctions
(for the tetraquark) as two independent trial functions
and calculate the interaction between the two groups to
obtain the spectra as functions of the distance between
b and b̄ (c and c̄). Our goal is to see whether the molec-
ular state or tetraquark state can possess energy minima
with respect to the distance between Q and Q̄, by which
one can judge if the molecule or tetraquark is physically
allowed. If there exist minima for both cases, we can
conclude that both structures are probable and the real
physical state could be a mixture of the two structures.
(In fact, our computations confirm that there are minima
for both.)

This work is organized as follows. After this long in-
troduction, we formulate the expressions for the energy
spectra. We first present relevant effective potentials for
the meson and diquark composed of a heavy quark and
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a light flavor, and then derive the Born-Oppenheimer
potentials for both molecule and tetraquark. In Sec-
tion 2, we discuss the explicit color and spin struc-
tures of the molecular and tetraquark states and solve
the Schrödinger-like equation to obtain the spatial wave-
functions of color-singlet meson and color-anti-triplet di-
quark. In Section 3, along with all input parameters, we
present our numerical results, which show that for both
molecule and tetraquark there exist minima with repect
to the distance between Q and Q̄. The last section is
devoted to the discussion and conclusions.

2 Derivation of the relevant formulae

In this section, we derive the theoretical formulae
for calculating the mass spectra and wavefunctions of
both molecular and tetraquark states. We first solve
the Schrödinger-like equations to obtain the mass spec-
tra and wavefunctions of the mesons B, B∗, D and D∗

and diquark (anti-diquark), which will be the trial func-
tions for later calculations. Note that since the diquark
is not a physical state, we determine its mass spectrum
and wavefunction via theoretical computations. We go
on using the Born-Oppenheimer approximation to eval-
uate the mass spectra of molecular and tetraquark states
as functions of the distance between the two heavy con-
stituents Q and Q̄.

2.1 Derivation of potentials

Here we first obtain the effective potentials be-
tween the relevant constituents inside a color-singlet, i.e.
mesons and color-triplet (anti-triplet), i.e. anti-diquark
(diquark). Then we go on to derive the potential between
constituents from the different groups. For the two dis-
tinct configurations (the molecular state and tetraquark
(diquark-antidiquark) state) (see Fig. 1), the effective
interactions are different.

Fig. 1. Configurations of the four-quark system
(left: molecular state, right: tetraquark state).

2.1.1 Meson and diquark (antidiquark) states

In this subsection, let us first discuss the interactions
among the constituents inside a meson (qQ̄(q̄Q)) or an
(anti) diquark (qQ(q̄Q̄)). The general Hamiltonian can
be written as

H =
√

p2
i +m

2
i +
√

P 2
j +m2

j+V (r),

i = q(q̄);j=Q(Q̄). (1)

where the pi and Pj are the 3-momenta of the light flavor
q(q̄) and heavy flavor Q(Q̄) respectively. The interaction
potential is

V (rij)=Voge(rij)+Vcon(rij), (2)

and rij is the distance between the quarks (quark-
antiquark). The one-gluon exchange (oge) term Voge(rij),
which plays the main role at short distances, is [19]

Voge(rij) =
1

4
αs(λ

c
i ·λ

c
j)

[

1

rij

−
π

2

(

1

m2
i

+
1

m2
j

+
4

3mimj

σi·σj

)

δ(rij)

]

, (3)

and the confinement part Vcon(rij) takes the linear form
[17]

Vcon(rij)=−
1

4
(λc

i ·λ
c
j)(brij+c) (4)

where λc
i and σi are, respectively, the color SUc(3) and

spin operators acting on quark i, and mi is the quark
mass. b is the string tension, and c is a global zero-point
energy. αs is the QCD running coupling constant, which
depends on the re-normalization scale µ2 [20]

αs(µ
2)=

α0

ln

(

µ2+µ2
0

Λ2
0

) , (5)

where µ=mimj/(mi+mj) is the reduced mass of the qiQ̄j

system and Λ0, α0, µ0 are fitted parameters. The frame-
work can be generalized to the case for a diquark (anti-
diquark) which involves two quarks (two anti-quarks).

The δ-function in Eq. (3) is replaced by a Gaussian
smearing function [21] with a fitted parameter h

δ(rij)→
h3

π3/2
e−h2r2

ij . (6)

2.1.2 Molecular states

Now we specify the interaction between the two
mesons for the molecular structures (Fig. 1, left). Since
the constituent mesons are in a color singlet, the quarks
(antiquarks) in one meson do not interact with the
quarks in another meson via exchanging a single gluon,
thus the interaction between B(∗)B(∗) (or D(∗)D(∗)) only
comes from meson-exchange between the light flavors qq̄.

The constituent quark model has been thoroughly
studied by many authors, for example, Vijande et al.
[20, 22], and its successful applications to phenomenology
are noted, thus here we employ it to derive the effective
interaction between mesons. The interactions Vme(rij)
induced by meson-exchange(me) between q and q̄ include
the contributions of pseudoscalar (p) and scalar (s),

Vme(rij) =

3
∑

a=1

Vπ(rij)F
a
i ·F

a
j +

7
∑

a=4

VK(rij)F
a
i ·F

a
j

+Vη(rij)[cosθp(F
8
i ·F

8
j )−sinθp]+Vσ(rij), (7)
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and the explicit forms of the interactions are

Vχ(rij) =
g2

ch

4π

m2
χ

12mimj

Λ2
χ

Λ2
χ
−m2

χ

mχ

[

Y(mχrij)

−
Λ3

χ

m3
χ

Y (Λχrij)
]

(σi·σj), (8)

Vσ(rij) = −
g2

ch

4π

Λ2
σ

Λ2
σ
−m2

σ

mσ

[

Y(mσrij)

−
Λσ

mσ

Y (Λσrij)
]

, (9)

with χ=π, K, η and F a
i (a=1, 2, ··· , 8) being the SU(3)

flavor matrices. Y (x) = e−x/x is the Yukawa function,
gch is the chiral coupling constant, θp is the mixing angle
for the physical η and η′, and the Λs are the chiral sym-
metry breaking scales. Once the potential between qq is
determined, the corresponding potential for qq̄ can also
be obtained from a G-parity transformation [23]. It is
noted that the employed framework is the SU(3) chiral
quark model where the heavy quark (c or b) does not
couple to the SU(3) mesons.

Furthermore, in the effective potential there also ex-
ists a part Vann(rij) induced by quark-antiquark (q,q̄)
pair annihilation into light mesons which mediate inter-
actions in the s-channel. To the lowest order the quark-
antiquark pair resides in an S-wave state and the contri-
bution of the σ-meson(Jpc=0++) can be neglected [23].
So here we only keep the contributions of π and ρ to the
potential [24, 25]

Vann,π(rij) =
g2
chδ(rij)

4m2
q−m

2
π

(

1

3
+

1

2
λ

c
q·λ

c
q̄

)

×

(

1

2
−

1

2
σq·σq̄
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3

2
+

1

2
τ q·τ q̄

)

, (10)

and

Vann,ρ(rij) = −
g2

vδ(rij)

4m2
q−m

2
ρ

(

1

3
+

1

2
λ

c
q·λ

c
q̄

)

×

(

3

2
+

1

2
σq·σq̄

)(

3

2
+

1

2
τ q·τ q̄

)

. (11)

τ is the isospin operator, and the δ-function is also
rewritten in the same form as Eq. (6).

Summing all the individual parts, the interaction be-
tween the two mesons of the molecule is

H(mol)
int =Vme(rij)+Vann(rij). (12)

2.1.3 Tetraquark states

For the case of the tetraquark, we are dealing with
the interaction between the two groups qQ and q̄Q̄. The
key point is to derive an effective potential. The total
Hamiltonian is written as

H(tetra)
int =

∑

i=u,b;

j=d̄,b̄

[

Voge(rij)+V
′

con(rij)
]

. (13)

The interaction among the constituents in the di-
quark and anti-diquark is not simply determined by
perturbative QCD, becuse the short-distance and long-
distance contributions exist simultaneously. Following
Brodsky et al. [26], the flux tube model may properly
describe the interaction for the tetraquark case. Mean-
while in this case the contribution of meson exchange can
be safely ignored compared with that of gluon exchange
[27]. The general form of Hamiltonian in the flux-tube
model can also be decomposed into the Coulomb-type
part, which is responsible for short distance interaction,
and the confinement part, for long-distance interaction.
As Brodsky et al. [26] suggested, in a “substantial sep-
aration”, diquark and antidiquark are connected by the
flux-tube. It is noted that in our pictures according to
the Heitler-London approximation, we need to consider
all the interactions among the constituents of different
groups, thus we account for the interactions as shown on
the right-hand side of Fig. 1. Obviously, summing over
all the contributions a resultant Born-Oppenheimer po-
tential would be obtained, which is also an effective flux
tube between the diquark and anti-diquark and is the
picture from Ref. [26]. Moreover, as is well known, when
the tension on the string goes beyond a certain bound,
the string will break into two strings and at the new ends
a quark-anti-quark pair is created [28, 29]. One can use
a step function to describe the breaking effect as

(brij+c)θ(r−r0), (14)

where r0 is a parameter corresponding to the strength
limit of the string. A typical scale for non-perturbative
QCD is ΛQCD, therefore it is natural to consider r0 =
1/ΛQCD. Just as for smearing the delta function, we
need also to smear the step function. In fact

θ(r−r0)=lim
ε→0

1

e
1
ε
(rij−r0)+1

,

so smearing the step function implies that we keep ε as
a non-zero free parameter to be determined.

Here the interaction between q from the diquark and
q̄ from the antidiquark at a relatively large distance is
described by a modified form as

V ′

con(rij)=−
1

4
(λc

i ·λ
c
j)(brij+c)

1

e
1
ε
(rij−r0)+1

, (15)

where ε is a parameter in fm, and we set ΛQCD=280 MeV
in this work.

2.2 Wave functions of four-quark states

Combining all the degrees of freedom of the con-
stituent quarks, the total wave function is a direct prod-
uct of the radial, spin, color, and isospin (flavor) parts:

|ψα〉 = |Cα〉⊗|Iα〉⊗[|φα〉⊗|Sα〉]
JM ,

α = (mol),(tetra). (16)
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For molecular state and tetraquark state separately,
unlike the hydrogen molecules, the quarks (antiquarks)
involved are not identical, so the Pauli principle does not
impose any restrictions on the compositions.

2.2.1 Radial wave function

In the essence of the Born-Oppenheimer approxima-
tion, we can choose the product of the two clusters’ wave-
functions as the basis shown in Fig. 1

φ(mol)=φuQ̄⊗φd̄Q, φ(tetra)=φuQ⊗φd̄Q̄. (17)

The radial wave function for each cluster is obtained
by solving the Schrödinger-like equation

[√

p2
q+m

2
q+
√

P 2
Q+m2

Q+V (r)
]

φκ=Eφκ,

κ=uQ̄,d̄Q,uQ,d̄Q̄, (18)

where the potential V (r) takes the Cornell type potential
(see Eq. (3) and Eq. (4)), mq and mQ are the masses of
light (u, d) and heavy (c, b) quarks. It applies to both
meson and diquark cases with different color factors.

We solve the Schrödinger-like equation numerically
using the program offered by the authors of Ref. [30, 31]
to deduce the radial wavefunction u(r), defined as

φκ(r) =
ul(r)

r
Ylm(r̂), with l = 0. In Fig. 2 the wave-

functions of B(∗) and D(∗) are shown. The eigenvalues
are given in Table 1 where the constituent quark masses
are input parameters.

2.2.2 Color factors in the wave function

We now turn to discuss the color part of the four-
quark states. The color singlet state of a four-quark sys-

tem is constructed as follows:

|3̄uQ⊗3Q̄d̄〉, |6uQ⊗6̄Q̄d̄〉, (19)

|1ud̄⊗1QQ̄〉, |8ud̄⊗8QQ̄〉, (20)

|1uQ̄⊗1Qd̄〉, |8uQ̄⊗8Qd̄〉, (21)

which stand as three orthonormal basis-vectors. The ex-
pression in Eq. (19) is the so-called tetraquark state with
a diquark-anti-diquark structure; we only consider the
state |3̄uQ⊗3Q̄d̄〉 (denoted as |C(tetra)〉) here [26]. Eq. (20)
and Eq. (21) are for the molecular states with a meson-
meson structure; in particular, the state |1uQ̄⊗1Qd̄〉
(denoted as |C(mol)〉) corresponds to the B(∗)B(∗) (or
D(∗)D(∗)), which is the concern of this work.

The three basis vectors are related to each other
through rearrangements [33]

|1uQ̄⊗1Qd̄〉 =

√

1

3
|3̄uQ⊗3Q̄d̄〉+

√

2

3
|6uQ⊗6̄Q̄d̄〉, (22)

|8uQ̄⊗8Qd̄〉 = −

√

2

3
|3̄uQ⊗3Q̄d̄〉+

√

1

3
|6uQ⊗6̄Q̄d̄〉, (23)

and

|1ud̄⊗1QQ̄〉 = −

√

1

3
|3̄uQ⊗3Q̄d̄〉+

√

2

3
|6uQ⊗6̄Q̄d̄〉, (24)

|8ud̄⊗8QQ̄〉 =

√

2

3
|3̄uQ⊗3Q̄d̄〉+

√

1

3
|6uQ⊗6̄Q̄d̄〉. (25)

The color matrix elements which we need in Sec. 3
are summarized in Table 2.

Fig. 2. (color online) The reduced wavefunction u(r) in coordinate space. (a) The solid curve is for B and the
dashed for B∗. (b) The solid curve is for D and the dashed for D∗.

Table 1. Masses of heavy mesons and diquark (with spin-0 and spin-1) calculated by solving the Schrödinger-like
equation, with experimental data [32] and results from QCD sum rules presented for comparison.

mesons B B∗ D D∗

Exp./MeV 5279.26±0.17 5325.2±0.4 1864.84±0.7 2010.26±0.07

this work/GeV 5.279 5.325 1.863 2.010

diquarks (bq)S=0 (bq)S=1 (cq)S=0 (cq)S=1

this work/GeV 5.344 5.355 1.963 2.00

QCD sum rules [13]/GeV 5.08±0.04 5.08±0.04 1.86±0.05 1.87±0.10
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Table 2. Color matrix elements [34].

Ô (~λu·~λQ) (~λQ̄·~λd̄) (~λu·~λQ̄) (~λQ·~λd̄) (~λu·~λd̄) (~λQ·~λQ̄)

〈3̄uQ3Q̄d̄|Ô|3̄uQ3Q̄d̄〉 −8/3 −8/3 −4/3 −4/3 −4/3 −4/3

〈6uQ6̄Q̄d̄|Ô|6uQ6̄Q̄d̄〉 4/3 4/3 −10/3 −10/3 −10/3 −10/3

〈3̄uQ3Q̄d̄|Ô|6uQ6̄Q̄d̄〉 0 0 −2
√

2 −2
√

2 2
√

2 2
√

2

2.2.3 Spin and flavor parts of the wave function

The flavor and spin parts of the molecular states
and tetraquark states associated with physical mesons
Z+

b (10610), Z+
b (10650), Z+

c (3900), Z+
c (4020) are listed in

Table 3, and the quantum numbers IG(JP ) = 1+(1+)
for all states. Specifically, for the quantum number (I ,
I3)=(1, +1) of light flavors u and d̄, the isospin states
are |Iα〉 = −ud̄. A special note is that our discussion
in the Introduction and numerical computation made in
the next section confirm that neither molecular state nor
tetraquark but their mixtures correspond to the observed
physical states Zb and Zc. Therefore, the use here of the
subscripts [10610], [10650], [3900] and [4020] only means
that their quantum numbers correspond to the exotic
mesons concerned.

Table 3. Flavor and spin parts of the wave func-
tions for molecular states and tetraquark states;
the subscripts [10610], [10650], [3900] and [4020]
denote that those pure tetraquark states might be
associated with Z+

b (10610), Z+
b (10650), Z+

c (3900)
and Z+

c (4020) respectively.

state flavor configuration spin wave function

molecular
1√
2
(B+B̄∗−B∗+B̄)

1√
2

(0bb̄⊗1ud̄+1bb̄⊗0ud̄) [35]

tetraquark (bu)(b̄d̄)[10610]
1√
2

(0bu⊗1b̄d̄−1bu⊗0b̄d̄) [36]

molecular B∗+B̄∗
1√
2

(0bb̄⊗1ud̄−1bb̄⊗0ud̄) [35]

tetraquark (bu)(b̄d̄)[10650] 1bu⊗1b̄d̄ [36]

molecular
1√
2
(D̄∗D++D∗+D̄0) [6] 1cc̄⊗1ud̄ [37]

tetraquark (cu)(c̄d̄)[3900]
1√
2

(0cu⊗1c̄d̄−1cu⊗0c̄d̄) [38]

molecular D∗+D̄∗ [39]
1√
2

(0cc̄⊗1ud̄−1cc̄⊗0ud̄)

tetraquark (cu)(c̄d̄)[4020] 1cu⊗1c̄d̄

3 Numerical results

As believed by theorists, the two clusters in an exotic
state are bound by the QCD Van der Waals interaction.
In fact, the interactions among the quarks belonging to
different clusters reduce to an effective interaction be-
tween the two clusters. Following the Born-Oppenheimer
approximation, we can write the binding energy between
the two clusters (for molecule or tetraquark case) as a
function of the distance of two heavy constituents, and
the interactions among quarks(antiquarks) from the two
clusters are taken as a perturbation. In this work, al-
though we do not write up the effective interaction be-

tween the two clusters, we do assume it. We will de-
rive an explicit form for the effective interaction in a fu-
ture work. Using the wave function described above, we
can calculate the binding energy with the Heitler-London
method. The binding energy is

Wα=〈ψα |H
α
int|ψα〉, (26)

where Hα
int (see Sec.2.1 for details) is a perturbative term

for both the molecular structure and the tetraquark.
In this work, we take the meson-quark coupling con-

stants gch and cut-off parameters Λχ from Ref. [20]. The
masses of the light mesons are taken from the Particle
Data Group (PDG) values [32], and the other parame-
ters, such as b, c, h, α0 etc, have been determined by
fitting the heavy meson spectra (see Table 1). They are
presented in Table 4.

3.1 Molecular structure

In this subsection, we discuss the case of molecular
structure. In terms of the obtained wave functions and
eigen-energies of the two constituent mesons, we estimate
the expectation values shown in Eq. (26). The color,
spin and flavor parts of Eq. (26) are shown in Table 2
and Table 3, and integration of the radial part is carried
out numerically. The binding energy of molecular states
W(mol) versus the distance between Q and Q̄ is drawn
in Fig. 3. The plots indicate that there exist minima
E(mol) for all the states concerned. As we expect, in the
Born-Oppenheimer approximation, a molecular state of
the four-quark system possesses a minimum which cor-
responds to a stable structure. Then, the masses of the
molecular states are M(mol) =m1+m2+E(mol), where m1

and m2 are the masses of the constituent mesons, and
are presented in Table 5.

Here we define R as the distance between Q and Q̄.
The minima are located at aroundR∼1 fm, and the B(∗)–
B̄(∗), D(∗)–D̄(∗) structures can be considered as loosely
bound states with binding energies of −3–−5 MeV.

3.2 Tetraquark structure

Now let us turn to discuss the tetraquark case. With
the same procedure as for the molecular states, we ob-
tain the dependence of the binding energies of tetraquark
W(tetra) on the distance between Q and Q̄ with various
values of the parameter ε. The results are shown in Fig. 4
and Fig. 5.

Interestingly, we find that there indeed exists a min-
imum E(tetra) with respect to the distance between Q
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Fig. 3. (color online) The obtained binding energies for BB̄∗, B∗B̄∗, DD̄∗ and D∗D̄∗ molecular structures.

Table 4. Parameters of the model and masses of related mesons.

mu(d) mb mc µσ µπ µη

0.313 GeV 4.80 GeV 1.40 GeV 490 MeV 139.57 MeV 547.862 MeV

µρ g2
ch/4π Λπ Λσ Λη Λ0

775.26 MeV 0.54 4.2 fm−1 4.2 fm−1 5.2 fm−1 0.113 fm−1

µ0 α0 h b c

36.976 MeV 2.118 0.79 GeV 0.148 GeV2 −0.319 GeV

Table 5. Binding energy minima (E(mol) (MeV)), distance R (fm) between QQ̄ and the calculated masses M(mol)

(MeV) of BB̄∗, B∗B̄∗, DD̄∗ and D∗D̄∗ molecular structures.

(b̄u)(bd̄)BB̄∗ (b̄u)(bd̄)B∗B̄∗ (c̄u)(cd̄)DD̄∗ (c̄u)(cd̄)D∗D̄∗

R E(mol) M(mol) R E(mol) M(mol) R E(mol) M(mol) R E(mol) M(mol)

1.17 −5.034 10598.966 1.2 −4.717 10645.283 1.15 −4.909 3868.091 1.35 −3.705 4016.295

Table 6. Binding energy minima (E(tetra) (MeV)), distance R (fm) between QQ̄ and the calculated masses M(tetra)

(MeV) of (bu)(b̄d̄)[10610], (bu)(b̄d̄)[10650], (cu)(c̄d̄)[3900] and (cu)(c̄d̄)[4020] tetraquark structures, with respect to the
free parameter ε(fm) .

(bu)(b̄d̄)[10610] (bu)(b̄d̄)[10650] (cu)(c̄d̄)[3900] (cu)(c̄d̄)[4020]
ε

R E(tetra) M(tetra) R E(tetra) M(tetra) R E(tetra) M(tetra) R E(tetra) M(tetra)

0.02 0.79 −97.387 10601.613 0.79 −98.158 10611.842 0.79 −105.080 3857.92 0.79 −104.813 3895.187

0.03 0.82 −94.181 10604.819 0.82 −94.846 10615.154 0.82 −101.780 3861.22 0.82 101.533 3898.467

0.04 0.865 −90.99 10608.010 0.85 −91.510 10618.490 0.85 −98.495 3864.505 0.85 −98.241 3901.759

0.05 0.88 −88.136 10621.864 0.88 −95.146 3867.854 0.88 −94.916 3905.084

0.06 0.94 −84.735 10625.265 0.91 −91.753 3871.247 0.91 −91.552 3908.448

0.07 0.97 −81.380 10628.62 0.97 −88.335 3874.665 0.94 −88.157 3911.843

0.08 1.0 −78.010 10631.990 1.0 −84.925 3878.048 1.0 −84.767 3915.233

0.09 1.06 −74.661 10635.339 1.03 −81.562 3881.438 1.03 −81.408 3918.592

0.10 1.09 −71.421 10638.579 1.09 −78.180 3884.820 1.06 −78.052 3921.948

0.11 1.15 −68.289 10641.711 1.12 −74.911 3888.089 1.12 −74.760 3925.234

0.12 1.21 −65.296 10644.704 1.18 −71.717 3891.283 1.18 −71.555 3928.445

0.13 1.30 −62.463 10647.537 1.24 −68.646 3894.354 1.24 −68.468 3931.532

0.14 1.36 −59.826 10650.174 1.3 −65.720 3897.280 1.30 −65.530 3934.470

0.16 1.45 −60.138 3939.862

0.17 1.51 −57.705 3942.295

083103-7



Chinese Physics C Vol. 39, No. 8 (2015) 083103

Fig. 4. (color online) Variation of the obtained binding energy for (bu)(b̄d̄)[10610], (bu)(b̄d̄)[10650] tetraquark struc-
tures, for values of ε from 0.02 to 0.12 fm.

Fig. 5. (color online) Obtained binding energies for (cu)(c̄d̄)[3900] and (cu)(c̄d̄)[4020] tetraquark structures, for values
of ε from 0.02 to 0.12 fm.

and Q̄, and the stable point corresponds to the dis-
tance at R≈0.79–1.5 fm, which is comparable with that
for molecular states, but is generally shorter. It seems
reasonable. The masses of the tetraquark (defined as
M(tetra) =mD1+mD2+E(tetra)), where mD1 and mD2 are
the masses of the diquark and anti-diquark, are presented
in Table 6.

4 Discussion and conclusion

As discussed in the introduction, many authors
suggested that the newly observed four-quark states
Zb(10610), Zb(10650), Zc(3900), Zc(4020) etc. are
hadronic molecules, the reason being that their masses
are close to the sums of some mesons B, B∗, D, D∗. How-
ever, for all of them the sum of the masses of the con-
stituent mesons is smaller than the mass of the concerned
exotic meson. By the potential model, the binding en-
ergy should be negative, and the calculated values of the
binding energies shown in Table 5 confirm this allega-
tion. Therefore, assuming them to be molecular states
brings up an inconsistency. To solve this puzzle, there
must be corresponding tetraquark states which mix with
the molecular states to result in the observed physical
hadrons.

The possible energy matrix is written as

H=

(

M(mol) ∆Q

∆Q M(tetra)

)

, (27)

where M(mol) and M(tetra) are the masses of a pure molec-
ular state and a tetraquark calculated in the theoretical
framework, and the off-diagonal element ∆Q whose sub-
script Q means that it may be flavor-dependent (b or c),
and is a mixing parameter. Solving the secular equation:

∣

∣

∣

∣

∣

M(mol)−λ ∆Q

∆Q M(tetra)−λ

∣

∣

∣

∣

∣

=0 (28)

we obtain two eigenvalues

λ±=
M(mol)+M(tetra)±

√

(M(mol)−M(tetra))2+4∆2
Q

2
,

(29)
and λ± are the masses of physical states i.e. mixtures of
molecular states and tetraquarks.

It is noted that λ+ > Max(M(mol), M(tetra)) and
λ−<Min(M(mol), M(tetra)). In our framework, the masses
of both molecular states and tetraquark states are below
those of the observed exotic mesons, so we expect that
the λ+’s correspond to the physical exotic states which
are the experimentally observed Zb(10610), Zb(10650),
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Zc(3900) and Zc(4020). If so, it is natural to predict the
existence of partner exotic states whose masses are λ−’s
smaller than the observed states, as listed in Table 7.

In this scheme, we conclude that the tetraquark states
must exist.

Our numerical results indicate that for both molecule
and tetraquark states, the functions of the binding en-
ergies possess minima. For the case of molecular states,
the minimum occurs at R ∼ 1 fm (for Zb and Zc, see
Table 5), whereas, for the tetraquark, R=0.79–1.5 fm
depending on the parameter ε where R is the distance
between Q and Q̄. The situations for Zb and Zc are
slightly different, but the tendency is roughly the same.
It is also noted that the resultant R is flavor dependent,
but no matter whether c or b, it falls within a reasonable
range i.e. roughly 1/ΛQCD.

The following are a few observations on the results.
First, from Fig. 4 and Fig. 5, one notices that the local
minimum is a metastable one and for R < 0.6 fm, the
binding energy drops drastically. This may imply that
there could be an anarchy state for a four-quark system.
This is only a qualitative inference, though, and in that
case the computed value for the binding energy would
not be reliable because here the adopted picture is only
valid for the diqark-anti-diquark structure rather than
the anarchy state.

The main conclusion is that there are minima for both
molecule and tetraquark structures, so both of them can
exist, and a mixture would naturally be expected. The
mixing between molecular structure and tetraquark is
induced by exchanging quarks and anti-quarks which re-
side in different groups (Fig. 6). Such a mechanism has
been discussed in the literature [40], and a more specific

study can be found in Ref. [41, 42]. Because it is a non-
perturbative QCD effect, however, in this work we do not
directly calculate ∆Q from an underlying principle or a
concrete model. Instead, we fix it phenomenologically;
for example, using the values given in Table 5, Table 6
and λ+ of Eq. (29), we obtain ∆Q=2–35 MeV.

Fig. 6. Mixing mechanism.

With the provided model, we predict the positions
of the partners of Zb(10510), Zb(10650), Zc(3900) and
Zc(4020)(Zc(4025)) which weakly depend on the value of
ε. Therefore, the key point to validate or negate our
model is to look for the counter-partners of the observed
exotic mesons. However, since the masses of the expected
mesons are below the production thresholds of B(∗)-B̄(∗)

or D(∗)-D̄(∗) (which can be realized in Zb decays but not
in Zc’s), one should look for them in the decay modes
such as KKπ etc.

Table 7. The mixing parameter ∆Q and the masses M
′ of the predicted counterparts of Zb(10610), Zb(10650),

Zc(3900) and Zc(4020), with respect to the free parameter ε.

Zb(10610) Zb(10650) Zc(3900) Zc(4020)

ε/fm ∆b/MeV M ′/MeV ∆b/MeV M ′/MeV ∆c/MeV M ′/MeV ∆c/MeV M ′/MeV

0.02 8.0 10592.2 18.10 10603.9 35.63 3827.01 29.04 3888.58

0.03 5.81 10595.4 17.36 10607.2 34.17 3830.31 28.67 3891.86

0.04 1.92 10598.6 16.58 10610.6 32.65 3833.60 28.29 3895.15

0.05 15.75 10613.9 31.03 3836.94 27.90 3898.48

0.06 14.87 10617.3 29.29 3840.34 27.49 3901.84

0.07 13.95 10620.7 27.43 3843.76 27.08 3905.24

0.08 12.96 10624.1 25.45 3847.14 26.67 3908.63

0.09 11.89 10627.4 23.30 3850.53 26.25 3911.99

0.10 10.76 10630.7 20.94 3853.91 25.82 3915.34

0.11 9.54 10633.8 18.36 3857.18 25.40 3918.63

0.12 8.20 10636.8 15.44 3860.37 24.98 3921.84

0.13 6.70 10639.6 11.98 3863.44 24.57 3924.93

0.14 4.89 10642.3 7.29 3866.37 24.17 3927.87

0.16 23.42 3933.26

0.17 23.07 3935.69
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For a quantitatively reliable conclusion, more in-
formation (theoretical and especially experimental) is
needed. Indeed, more accurate data are being accumu-
lated, and we hope that further measurements will be

carried out at BES, SuperBelle and LHCb, as well as the
other proposed colliders.

We sincerely thank HY Cheng for helpful discussions.
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