Dirac oscillator in noncommutative space

  • We study the Dirac oscillator problem in the presence of the Aharonov-Bohm effect with the harmonic potential in commutative and noncommutative spaces in S=V and S=-V symmetry limits. We calculate exact energy levels and the corresponding eigenfunctions by the Nikiforov-Uvarov (NU) method and report the impact of the spin and the magnetic flux on the problem. Helpful numerical data is included.
      PCAS:
  • 加载中
  • [1] Moshinsky M, Szczepaniak A. J. Phys. A: Math. Gen, 1989, 22: 817[2] Moshinsky M, Smirnov Y F. The Harmonic Oscillator in Modern Physics. Amsterdam: Harwood Academic Publishers, 1996[3] Rozmej P, Arvieu R. J. Phys. A, 1999, 32: 5367[4] Pacheco M H, Landim R R, Almeida C A S. Phys. Lett. A, 2003, 311: 93[5] Seiberg N, Witten E. JHEP, 1999, 09: 032[6] Seiberg N, Susskind L, Toumbas N. JHEP, 2000, 06: 044[7] Douglas M R, Nekrasov N A. Rev. Mod. Phys., 2001, 73: 977[8] Connes A, Douglas M R, Schwarz A. JHEP, 1998, 02: 003[9] Susskind L. arXiv: hepth/0101029[10] Moffat J W. Phys. Lett. B, 2000, 493: 142[11] Duval C, Horvathy P A. Phys. Lett. B, 2000, 479: 284[12] Chaichian M, Sheikh-Jabbari M M, Tureanu A. Phys. Rev. Lett., 2001, 86: 2716[13] Mirza B, Zarei M. Eur. Phys. J. C, 2004, 32: 583[14] Horvathy P A. Ann. Phys. (N.Y.), 2002, 299: 128[15] Gol'dman I I et al. Problems in Quantum Mechanics. New York: Academic Press, 1960. 308[16] Seiberg N, Witten E. JHEP, 1999, 09: 032[17] Douglas M R, Nekrasov N A. Rev. Mod. Phys., 2001, 73: 977[18] Bertolami O et al. Phys. Rev. D, 2005, 72: 025010[19] Araki T, Ito K, Ohtsuka A. Phys. Lett. B, 2003, 573: 209[20] Aharonov Y, Bohm D. Phys. Rev., 1959, 115: 485[21] Connes A, Douglas M, Schwarz A. JHEP, 1998, 9802: 003[22] Cheung Y, Krogh M. Nucl. Phys. B, 1999, 528: 185[23] Chu C, Ho P. Nucl. Phys. B, 1999, 550: 151[24] Zhang J Z. Phys. Lett. B, 2004, 584: 204[25] Ferkous N, Bounames A. Phys. Lett. A, 2004, 325: 21[26] Hagen C R. Phys. Rev. Lett., 1990, 64: 503[27] Hagen C R. Int. J. Mod. Phys. A, 1991, 6: 3119[28] DONG S H, SUN G H , Lozada-Cassou M. Phys. Lett. A, 2004, 328: 299[29] ZHANG M C, SUN G H, DONG S H. Phys. Lett. A, 2010, 374: 704[30] Miranda M G, SUN G H, DONG S H. Int. J. Mod. Phys. E, 2010, 19: 123[31] Nikiforov A F, Uvarov V B. Special Function of Mathematical Physics. Basel: Birkhauser, 1988[32] Tezcan C, R. Sever R. Int. J. Theor. Phys, 2009, 48: 337
  • 加载中

Get Citation
S. S. Hosseini and S. Zarrinkamar. Dirac oscillator in noncommutative space[J]. Chinese Physics C, 2014, 38(6): 063104. doi: 10.1088/1674-1137/38/6/063104
S. S. Hosseini and S. Zarrinkamar. Dirac oscillator in noncommutative space[J]. Chinese Physics C, 2014, 38(6): 063104.  doi: 10.1088/1674-1137/38/6/063104 shu
Milestone
Received: 2013-07-11
Revised: 2013-12-09
Article Metric

Article Views(1289)
PDF Downloads(249)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Dirac oscillator in noncommutative space

Abstract: We study the Dirac oscillator problem in the presence of the Aharonov-Bohm effect with the harmonic potential in commutative and noncommutative spaces in S=V and S=-V symmetry limits. We calculate exact energy levels and the corresponding eigenfunctions by the Nikiforov-Uvarov (NU) method and report the impact of the spin and the magnetic flux on the problem. Helpful numerical data is included.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return