Cumulants in the 3-dimensional Ising, O(2) and O(4) spin models

  • Based on the universal properties of a critical point in different systems and that the QCD phase transitions fall into the same universality classes as the 3-dimensional Ising, O(2) or O(4) spin models, the critical behavior of cumulants and higher cumulant ratios of the order parameter from the three kinds of spin models is studied. We found that all higher cumulant ratios change dramatically the sign near the critical temperature. The qualitative critical behavior of the same order cumulant ratio is consistent in these three models.
      PCAS:
  • 加载中
  • [1] Stephanov M A, Rajagopal K, Shuryak E V. Phys. Rev. D, 1999, 60: 114028[2] Berdnikov B, Rajagopal K. Phys. Rev. D, 2000, 6: 105017[3] Stephanov M A. Phys. Rev. Lett., 2009, 102: 032301[4] Asakawa M, Ejiri S, Kitazawa M. Phys. Rev. Lett., 2009, 103: 262301[5] Gavai R V, Gupta S. Phys. Lett. B, 2011, 696: 459[6] Stephanov M A. Phys. Rev. Lett., 2011, 107: 052301[7] Friman B, Karsch F, Redlich K et al. Eur. Phys. J. C, 2011, 71: 1694[8] Pisarski R D, Wilczek F. Phys. Rev. D, 1984, 29: 338[9] de Forcrand P, Philipsen O. Phys. Rev. Lett., 2010, 105: 152001[10] Stephanov M, Rajagopal K, Shuryak E. Phys. Rev. Lett., 1998, 81: 4816[11] Asakawa M. J. Phys. G, 2009, 36: 064042[12] Rajagopal K, Wilczek F. Nucl. Phys. B, 1993, 399: 395[13] Hatta Y, Ikeda T. Phys. Rev. D, 2003, 67: 014028[14] Bernard C, DeTar C, Gottlieb S et al. Phys. Rev. D, 2000, 61: 054503[15] Ejiri S, Karsch F, Laermann E et al. Phys. Rev. D, 2009, 80: 094505[16] Kaczmarek O, Karsch F, Laermann E et al. Phys. Rev. D, 2011, 83: 014504[17] Engels J, Karsch F. arXiv: 1105.0584[18] Talapov A L, Blte H W. J. Phys. A, 1996, 29: 5727[19] Rchr J J, Mcrmin N D. Phys. Rev. A, 1973, 8: 472[20] Wilding N B. J. Phys.: Condens. Matter, 1997, 9: 585[21] Nonaka C, Asakawa M. Phys. Rev. C, 2005, 71: 044904[22] Garcia J, Gonzalo J A. Phys. A, 2003, 326: 464[23] Wolff U. Phys. Rev. Lett., 1989, 62: 361[24] Ballesteros H G, Fernández L A, Marín-Mayor V et al. Phys. Lett. B, 1996, 387: 125[25] Karsch F, Laermann E. Phys. Rev. D, 1994, 50: 6954[26] Fukushima K. Phys. Lett. B, 2004, 591: 277[27] CHEN Li-Zhu, PAN Xue, CHEN Xiao-Song et al. Chin. Phys. C (HEP NP), 2012, 36(7): 1[28] Engels J, Holtmann S, Mendes T et al. Phys. Lett. B, 2000, 492: 219[29] Engels J, Mendes T. Nucl. Phys. B, 2000, 572: 289
  • 加载中

Get Citation
PAN Xue, CHEN Li-Zhu, CHEN Xiao-Song and WU Yuan-Fang. Cumulants in the 3-dimensional Ising, O(2) and O(4) spin models[J]. Chinese Physics C, 2013, 37(12): 124103. doi: 10.1088/1674-1137/37/12/124103
PAN Xue, CHEN Li-Zhu, CHEN Xiao-Song and WU Yuan-Fang. Cumulants in the 3-dimensional Ising, O(2) and O(4) spin models[J]. Chinese Physics C, 2013, 37(12): 124103.  doi: 10.1088/1674-1137/37/12/124103 shu
Milestone
Received: 2013-03-05
Revised: 2013-06-27
Article Metric

Article Views(1653)
PDF Downloads(180)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Cumulants in the 3-dimensional Ising, O(2) and O(4) spin models

    Corresponding author: PAN Xue,
    Corresponding author: CHEN Li-Zhu,

Abstract: Based on the universal properties of a critical point in different systems and that the QCD phase transitions fall into the same universality classes as the 3-dimensional Ising, O(2) or O(4) spin models, the critical behavior of cumulants and higher cumulant ratios of the order parameter from the three kinds of spin models is studied. We found that all higher cumulant ratios change dramatically the sign near the critical temperature. The qualitative critical behavior of the same order cumulant ratio is consistent in these three models.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return