Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space

  • In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presented in terms of the confluent hypergeometric function. It is shown that in the non-commutative space,the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.

  • 加载中
  • [1] . LI K, WANG J H, CHEN C Y. Modern Physics Letter A,2005, 20: 342. Connes A, Douglas M R, Schwarz A. JHEP, 1998, 9802:003. hep-th/97111623. Douglas M R, Hull C M. JHEP, 1998, 9802: 008. hep-th/97111654. Ardalan F, Arfaei H, Sheikh-Jabbari M M. JHEP, 1999,9902: 16. hep-th/98100725. Seiberg N, Witten E. JHEP, 1999, 9909: 032. hep-th/99081426. CHU C S, Ho P M. Nucl. Phys. B, 1999, 550: 151.hep/98122197. CHU C S, Ho P M. Nucl. Phys. B, 2000, 568: 447.hep/99061928. Ardalan F, Arfaei H, Sheikh-Jabbari M M. Nucl. Phys. B,2000, 576: 578. hep/99061919. Ezawa Z F. Quantum Hall Effects: Field Theoretical Approach and Related Topics. Singapore: World Scientific,200010. Minwalla S, Raamsdonk M V, Seiberg N. JHEP, 2000,0002: 020. hep-th/991207211. Chaichain M, Sheikh-Jabbari M M, Tureanu A. Phys. Rev.Lett., 2001, 86: 271612. Bellucci S, Nersessian A, Sochichiu C. Phys. Lett. B, 2001,522: 34513. Bertolami O, Rosa J G. Phys. Rev. D, 2005, 72: 02501014. Muthukumar B, Mitra P. Phys. Rev. D, 2002, 66: 02770115. LI K, CAO X H, WANG D Y. Chin. Phys., 2006, 15: 223616. ZENG J Y. Quantum Mechanics. Volume Ⅰ. Beijing: Science Press, 1997. 326-32917. Bertolami O, Rosa J G. Phys. Rev. D, 2005, 72: 025010
  • 加载中

Get Citation
WEI Gao-Feng, LONG Chao-Yun, LONG Zheng-Wen and QIN Shui-Jie. Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space[J]. Chinese Physics C, 2008, 32(4): 247-250. doi: 10.1088/1674-1137/32/4/001
WEI Gao-Feng, LONG Chao-Yun, LONG Zheng-Wen and QIN Shui-Jie. Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space[J]. Chinese Physics C, 2008, 32(4): 247-250.  doi: 10.1088/1674-1137/32/4/001 shu
Milestone
Received: 2007-06-19
Revised: 2007-09-10
Article Metric

Article Views(2474)
PDF Downloads(976)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space

    Corresponding author: WEI Gao-Feng,

Abstract: 

In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presented in terms of the confluent hypergeometric function. It is shown that in the non-commutative space,the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return