Properties of Isospin Asymmetric Nuclear Matter and Extended Brueckner-Hartree-Fock Approach (Ⅱ) Equation of State,Symmetry Energy and Three-Body Force Effects

  • Within the isospin dependent Brueckner-Hartree-Fock approach,the equation of state of isospin asymmetric nuclear matter and its isospin dependence have been investigated in the whole isospin range. The present work has been focused on the effects of a microscopic three-body force on the equation of state of asymmetric nuclear matter and nuclear symmetry energy. It is shown that,even with the presence of the three-body force,the empirical parabolic law of the energy per nucleon vs isospin asymmetry is still fulfilled accurately in the whole isospin range (0≤ β ≤1). Around the empirical saturation density ρ0=0.17fm-3,the three-body force effect on the symmetry energy is rather small and the symmetry energy at the saturation density obtained in the presence of the three-body force is 30.71MeV in good agreement with its empirical value 30±4MeV;while at high density,the three-body force provides a strong enhancement of the symmetry energy and makes the symmetry energy increase much more rapid as increasing density. A simple parametrization of the symmetry energy as a function of density is proposed
  • 加载中
  • [1] . Pethick C J.Rev.Mod.Phys.,1992,64:1133 2. Morten H jorth Jensen,Phys.Rev.Lett.,1998,80:5485;EngvikL ,Hjorth Jensen M ,Osnes E et al.Phys.Rev.Lett.,1994,73:2650 3. Arnett W D ,Bowers R L .Astrophys.J.Suppl.,1977,33:415;Weber F ,Glendenning N K .Invitted Courseon Hadronic Matter and Rotating Relativistic Neutron Stars at the International Summer Schoolon Nuclear Astrophysics,Tianjin,1991;BombaciⅠ.Neutron Star Structure and Nuclear Equation of State,in Nuclear Methods and Nuclear Equation of State,Ed.Boldo M ,Singa pore:World Scientific,1999 4. Prakash M ,Ainsworth T L ,Lattimer J M .Phys.Rev.Lett.,1988,61:2518;Lattimer J M ,Pethick C J,Prakash M .Phys.Rev.Lett.,1991,66:2701 5. Tanihata I.Nucl.Phys.,1997,A616:56c 6. Scheit H et al.Phys.Rev.Lett.,1996,77:3937;Glasmacher T et al.Phys.Lett.,1997,B395:163 7. FarineM ,SamiT ,RemaudBetal.Z .Phys.,1991,A339:3638. Li B A ,KoC M ,Bauer M .Inter.J.Mod.Phys.,1998,E7:147 9. Toro M Di,Baran V ,Colonna M etal.Progr.Part.and Nucl.Phys.,1999,42:125 10. Scalone L ,Colonna M ,Toro M Di.Phys.Lett.,1999,B461:9 11. LI B A ,KoC M ,Ren Z Z .Phys.Rev.Lett.,1997,78:164412. Tsang M B ,Friedman W A ,Gelbke C K et al.Phys.Rev.Lett.,2001,86:5023 13. LI B A .Phys.Rev.Lett.,2000,85:422114. Friedman B ,Pandharipande V R .Nucl.Phys.,1981,A361:50215. Wiringa R B ,Fiks V ,Fabrocini A .Phys.Rev.,1988,C38:1010 16. Akmal A ,Pandharipande V R .Phys.Rev.,1997,C56:2261;Phys.Rev.,1998,C58:1804 17. Machleidt R .Adv.Nucl.Phys.,1989,16:189;Brockmann R ,Machleidt R .The Dirac Brueckner Approach,in Nuclear Meth ods and the Nuclear Equation of State,Ed.M .Baldo,Singapore:World Scientific,1999 18. Haar Bter,Malfliet R .Phys.Rep.,1987,149:207;Phys.Rev.Lett.,1987,59:1652 19. Serot B D ,Walecka J D .Int.Journ.Mod.Phys.,1997,E6:515;Horowitz C J,Serot B D .Nucl.Phys.,1987,A464:613 20. Engvik L ,HjorthJensen M ,Osnes E et al.Phys.Rev.Lett.,1994,73:2650;Astrophys.Journ.,1996,469:794 21. Sehn L ,Fuchs C ,Faessler A .Phys.Rev.,1997,C56:216 22. Fuchs C ,Waindzoch T ,Faessler A et al.Phys.Rev.,1998,C58:2022 23. Gross Boelting T ,Fuchs C ,Faessler A .Nucl.Phys.,1999,A648:105 24. deJong F ,Lenske H .Phys.Rev.,1998,C57:3099 25. Lee C H ,Kuo T T S ,LI G Q et al.Phys.Rev.,1998,C57:3488 26. Jeukenne J P ,Lejeune A ,Mahaux C .Phys.Rep.,1976,25:83 27. Bombaci I,Kuo T T S ,Lombardo U .Phys.Rep.,1994,242:165 28. SONG H Q ,Baldo M ,Giansiracusa G et al.Phys.Rev.Lett.,1998,81:1584 29. Baldo M .The Many body Theory of the Nuclear Equation of State.In:Nuclear Methods and the Nuclear Equation of State,Ed.M .Baldo,Singapore:World Scientific,199930. Grange P ,Lejeune A ,Martzolff M et al.Phys.Rev.,1989,C40:104031. Baldo M ,Bombaci I,Burgio G F et al.Astron.Astrophys.,1997,328:274 32. Lejeune A ,Lombardo U ,ZUO W .Phys.Lett.,2000,477:45 33. Baldo M ,Giansiracusa G ,Lombardo U et al.Nucl.Phys.,1995,A583:59934. Coestor.Phys.Rev.,1970,C1:765 35. ZUO Wei,Lombardo U ,LI ZengHua etal.HEPNP ,2002,26(7):703(in Chinese)(左维,Lombardo U ,李增花等.高能物理与核物理,2002,26(7):703)36. Wiringa R B ,Stoks V G J,Schiavilla R .Phys.Rev.,1995,C51:2837. Skyrme T H R .Nucl.Phys.,1959,9:615;ZHUO Y Z ,HAN L Y ,WU X Z .Prog.Theor.Phys.,1988,79:100 38. AichelinJ,Rosenhauer A ,Peilert G et al.Phys.Rep.,1991,202:233;Bertsch G F ,Gupta S D as.Phys.Rep.,1988,160:189 39. Greco V ,Matera F ,Colonna M et al.Phys.Rev.,2001,63:035202;Greco V ,Colonna M ,Toro MDi.Phys.Rev.,2001,C64:045203 40. Kaiser N ,Fritsch S ,Weise W .Nucl.Phys.,2002,A697:255 41. XU H S et al.Phys.Rev.Lett.,2000,85:1998 42. Blaizot J P .Phys.Rep.,1980,65:171
  • 加载中

Get Citation
ZUO Wei, U.Lombardo, LIU Jian-Ye, LI Zeng-Hua and LI Jun-Qing. Properties of Isospin Asymmetric Nuclear Matter and Extended Brueckner-Hartree-Fock Approach (Ⅱ) Equation of State,Symmetry Energy and Three-Body Force Effects[J]. Chinese Physics C, 2002, 26(12): 1238-1246.
ZUO Wei, U.Lombardo, LIU Jian-Ye, LI Zeng-Hua and LI Jun-Qing. Properties of Isospin Asymmetric Nuclear Matter and Extended Brueckner-Hartree-Fock Approach (Ⅱ) Equation of State,Symmetry Energy and Three-Body Force Effects[J]. Chinese Physics C, 2002, 26(12): 1238-1246. shu
Milestone
Received: 2001-12-27
Revised: 1900-01-01
Article Metric

Article Views(4068)
PDF Downloads(761)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Properties of Isospin Asymmetric Nuclear Matter and Extended Brueckner-Hartree-Fock Approach (Ⅱ) Equation of State,Symmetry Energy and Three-Body Force Effects

    Corresponding author: ZUO Wei,
  • Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China2 Center of Theoretical Nuclear Physics,National Laboratory of Heavy Ion Accelerator Lanzhou,Lanzhou 730000,China3 INFN-LNS,44 Via S. Sofia,I-95123 Catania,Italy

Abstract: Within the isospin dependent Brueckner-Hartree-Fock approach,the equation of state of isospin asymmetric nuclear matter and its isospin dependence have been investigated in the whole isospin range. The present work has been focused on the effects of a microscopic three-body force on the equation of state of asymmetric nuclear matter and nuclear symmetry energy. It is shown that,even with the presence of the three-body force,the empirical parabolic law of the energy per nucleon vs isospin asymmetry is still fulfilled accurately in the whole isospin range (0≤ β ≤1). Around the empirical saturation density ρ0=0.17fm-3,the three-body force effect on the symmetry energy is rather small and the symmetry energy at the saturation density obtained in the presence of the three-body force is 30.71MeV in good agreement with its empirical value 30±4MeV;while at high density,the three-body force provides a strong enhancement of the symmetry energy and makes the symmetry energy increase much more rapid as increasing density. A simple parametrization of the symmetry energy as a function of density is proposed

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return