Physical Property Measurement of Therapeutic Carbon Ion Beam in the Shallow-Seated Tumor Therapy Terminal at HIRFL

Get Citation
DAI Zhong-Ying, LI Qiang, YAN Zheng, JIN Xiao-Dong, HU Zheng-Guo and XIAO Guo-Qing. Physical Property Measurement of Therapeutic Carbon Ion Beam in the Shallow-Seated Tumor Therapy Terminal at HIRFL[J]. Chinese Physics C, 2006, 30(9): 920-924.
DAI Zhong-Ying, LI Qiang, YAN Zheng, JIN Xiao-Dong, HU Zheng-Guo and XIAO Guo-Qing. Physical Property Measurement of Therapeutic Carbon Ion Beam in the Shallow-Seated Tumor Therapy Terminal at HIRFL[J]. Chinese Physics C, 2006, 30(9): 920-924. shu
Milestone
Received: 2005-11-28
Revised: 2006-01-20
Article Metric

Article Views(4585)
PDF Downloads(678)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Physical Property Measurement of Therapeutic Carbon Ion Beam in the Shallow-Seated Tumor Therapy Terminal at HIRFL

    Corresponding author: LI Qiang,
  • Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: For the first time the physical properties of therapeutic carbon-ion beam supplied by the shallow-seated tumor therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL) are measured. For a 80.55MeV/u 12C ion beam delivered to the therapy terminal, the homogeneity of irradiation fields is 73.48%, when the beam intensity varied in the range of 0.001—0.1nA (i.e. 1×106—1×108 particles per second). The stability of the beam intensity within a few minutes is estimated to be 80.87%. The depth-dose distribution of the beam at the isocenter of the therapy facility is measured, and the position of the high-dose Bragg peak is found to be located at the water-equivalent depth of 13.866mm. Based on the relationship between beam energy and Bragg peak position, the corresponding beam energy at the isocenter of the therapy terminal is evaluated to be 71.71MeV/u for the original 80.55MeV/u 12C ion beam, which consisted basically with calculation. The readout of the previously-used air-free ionization chamber regarding absorbed dose is calibrated as well in this experiment. The results indicate that the performance of the therapy facility should be optimized further to meet the requirements of clinical trial.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return