SPACE-TIME PROPERTY OF FERMION NUMBER

  • Enlarging the dimensionality of Minkowski space from 4 to 5,and relating the restmass of particle with x5 as m=—i∂/(∂x5)))we discuss the 5-dimensional non-linear con-formal group CM5)under which dx12+dx22+dx32-dx02+dx52=0 is invariant.The CM5)group is isomorphic to the linear group SO(5,2)from which we study thespace-time property of Fermion number,and the relations between half-integral(in-tegral)spin and odd(even)Fermion number are obtained.
  • 加载中
  • [1] C. Garrod, Rev. Mod. Phys., 38 (1966), 483.[2] B. Robertson, Phys. Rev. Lett., 27 (1971), 1545[3] H. Bateman, J. Lond. Math. Soc., 8 (1908), 70.[4] A. O. Barut and R. B. Hangen, Ann. Phys., 71 (1972), 519.[5] G. 拉卡著,《群论和核谱》,高等教育出版社,1959.[6] R. H. Behrends at. al., Rev. Mod. Phys., 34 (1962), 1.r.L r.L工..‘rl
  • 加载中

Get Citation
XU BO-WEI. SPACE-TIME PROPERTY OF FERMION NUMBER[J]. Chinese Physics C, 1979, 3(1): 60-66.
XU BO-WEI. SPACE-TIME PROPERTY OF FERMION NUMBER[J]. Chinese Physics C, 1979, 3(1): 60-66. shu
Milestone
Received: 1978-03-21
Revised: 1900-01-01
Article Metric

Article Views(1543)
PDF Downloads(250)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

SPACE-TIME PROPERTY OF FERMION NUMBER

  • Lanzhou University

Abstract: Enlarging the dimensionality of Minkowski space from 4 to 5,and relating the restmass of particle with x5 as m=—i∂/(∂x5)))we discuss the 5-dimensional non-linear con-formal group CM5)under which dx12+dx22+dx32-dx02+dx52=0 is invariant.The CM5)group is isomorphic to the linear group SO(5,2)from which we study thespace-time property of Fermion number,and the relations between half-integral(in-tegral)spin and odd(even)Fermion number are obtained.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return