Exact Solutions of Non-autonomous Quantum Systems With Semisimple Lie Algebraic Structure

  • For quantum systems with semi-simple Lie algebraic structures,the exact solutions of the equations of motion are obtained by means of algebraic dynamics.The Hamiltonian is transformed into a linear function of Cartan operators by a set of gauge transformations. The coefficients of the gauge transformations are determined by a set of ordinary differential equations.From the inverses of these gauge transformations,the solutions of the Schrodinger equation,as well as a set of dynamic constants of motion (dynamic invariant operators) are obtained. An SU(3) model serves as an example.
  • 加载中
  • [1] Wang S J, Li F L, Weiguny A. Phys. Lett, 1993,A180 (1):189-196[2] Paul W. Rev. Mod. Phys., 1990,62 (3):531-540[3] Brown L S. Phys. Rev. Lett, 1991, 66 (5):527-529[4] Wang S J, Zuo W, Weiguny A et al. Phys. Lett, 1994, A196 (1):7-12; Wang S J, Zuo W. Phys. Lett, 1994, A196 (1):13-19; Zuo W, Wang S J. Acta Physica Sinica, 1995, 44 (9):1353-1362,1363-1372[5] Shore B W, Knihgt P L. J. Mod. Optics, 1993, 40 (7): 1195-1238[6] Yu S, Rauch H, Zhang Y. Phys. Rev., 1995, A52 (4):2585-2590[7] Kibler M, Negadi T. Lett. Nuovo Cimento, 1980, 37 (1):225-229[8] Cornish F H. J. Phys., 1984, A17 (2):323-334.[9] Chen A C, Kibler M. Phys. Rev., 1985, A31 (7):3960-3969[10] Xu B W, Zeng Q. Acta Physica Sinica, 1991, 40 (8):1212-1216[11] Xu B W, Gu W H. Acta Physica Sinica, 1993, 42 (7):1050-1056[12] Wei J, Norman E. J. Math. Phys., 1963, 4 (1):575-582[13] Shi S, Rabitz H. J. Chem. Phys., 1988, 88 (12):7508-7521[14] Gilmore R, Yuan J M. J. Chem. Phys., 1987,86 (1):130-139; 1989,91(2):917-923[15] Recamier J, Micha D A, Gazdy B. Chem. Phys. Lett., 1985, 119(5): 383-387; J. Chem. Phys., 1986,85 (9):5093-5 100[16] Benjamin I. J. Chem. Phys., 1986, 85(10):5611-5624[17] Gilmore R Lie Group, Lie Algebra and Some of Their Applications. New York: Wiley, 1974; Cheng J Q. Group Representation Theory for Physicists. Singapore: World Scientific, 1989[18] Lewis H R J. Math. Phys., 1969, 10 (8):1458-1473[19] Wan Zhexian. Lie Algebra(in Chinese). Beijin: Scientific Press, 1964(万哲先. 李代数. 北京:科学出版社. 1964)[20] Singh S. Phys. Rev., 1982, A25(7):3206-3211[21] Bonatsos D, Daskaloyannis C, Lalazissis G A. Phys. Rev., 1993, A47 (7):3448--3452[22] Khidekel V. Phys. Rev., 1995, E52 (3):2510-2521
  • 加载中

Get Citation
Jie Quanlin, Wang Shunjin and Wei Lianfu. Exact Solutions of Non-autonomous Quantum Systems With Semisimple Lie Algebraic Structure[J]. Chinese Physics C, 1998, 22(2): 111-116.
Jie Quanlin, Wang Shunjin and Wei Lianfu. Exact Solutions of Non-autonomous Quantum Systems With Semisimple Lie Algebraic Structure[J]. Chinese Physics C, 1998, 22(2): 111-116. shu
Milestone
Received: 1900-01-01
Revised: 1900-01-01
Article Metric

Article Views(3238)
PDF Downloads(583)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Exact Solutions of Non-autonomous Quantum Systems With Semisimple Lie Algebraic Structure

    Corresponding author: Jie Quanlin,
  • Institute of Modern Physics Southwest Jiaotong University,Chengdu 610031

Abstract: For quantum systems with semi-simple Lie algebraic structures,the exact solutions of the equations of motion are obtained by means of algebraic dynamics.The Hamiltonian is transformed into a linear function of Cartan operators by a set of gauge transformations. The coefficients of the gauge transformations are determined by a set of ordinary differential equations.From the inverses of these gauge transformations,the solutions of the Schrodinger equation,as well as a set of dynamic constants of motion (dynamic invariant operators) are obtained. An SU(3) model serves as an example.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return