Equation of State of Spin-Polarized Nuclear Matter

  • Within the spin-dependent Brueckner-Hartree-Fock framework, the equation of state of the spin-polarized nuclear matter has been investigated by adopting the realistic nucleon-nucleon interaction AV18 supplemented with a microscopic three-body force. The related physical quantities such as the Landau parameters G0 in spin channel and G′0 in spin-isospin channel, have been calculated. The three-body force effects have been studied and stressed with a special attention. It is shown that in the Brueckner-Hartree-Fock framework the predicted energy per particle of spin-polarized nuclear matter versus the neutron and proton spin-polarization parameters fulfills a quadratic law in the whole range of spin-polarization. At the empirical saturation density, the calculated Landau parameter G′0 is 1.22 and 1.28 respectively for the two-cases with and without including the three-body force, both are in agreement with its experimental value. Both the Landau parameters G0 and G′0 are positive in the density region up to ρ=0.5fm-3 and increase monotonically as increasing density so that no any evidence is found for a spontaneous transition to a ferromagnetic state in nuclear matter. The three-body force effect is to strongly increase the Landau parameters G0 and G′0 at high densities, making the nuclear matter at high densities more stable against spin and spin-isospin fluctuations. The obtained Landau parameters G0 and G′0 together with their density dependences may serve as constraints on the spin-spin parts and spin-isospin dependent parts of the phenomenological Skyrme and Skyrme-like interactions.
  • 加载中
  • [1] .Reddy S,Prakash M,Lattimer J Met al.Phys.Rev.,1999,C59:28882.Osterfeld F.Rev.Mod.Phys.,1992,64:4913.Migdal A B.Theory of Finite Fermi Systems and Applications to AtomicNuclei,New York:Interscience,19674.Pacini F.Nature,1967,216:567;Gold T.Nature,1968,218:7315.Taylor J H,Stinebring D R.Annu.Rev.Astron.Astrophys.,1986,24:2856.Kouveliotou C et al.Nature,1998,393:235; Hurley K et al.Astro2phys.J.,1999,510:L1117.Silverstein S D.Phys.Rev.Lett.,1969,23:139;Clark J W.Phys.Rev.Lett.,1969,23:1463; Pearson J M,Saunier G.Phys.Rev.Lett.,1970,24:325; Pandharipande V R,Garde V K,Srivastava J K.Phys.Lett.,1972,B38:485; Vidaurre A,Navarro J,Bernabeu J.As2tron.Astrophys.,1984,135:361; Niembro R,Narcos S,Quelle MLet al.Phys.Lett.,1990,B249:373; Cugnon J,Deneye P,LejeuneA.Europhys.Lett.,1992,17:129; Fantoni S,Sarsa A,Schmidt KE.Phys.Rev.Lett.,2001,87:181101; Vidana I,Polls A,RamosA.Phys.Rev.,2002,C65:035804; SUN Bao2Xi,J IA Huan2Yu,MENG Jie et al.High Energy Phys.and Nucl.Phys.,2000,24(Supp.):69 (in Chinese)(孙宝玺,贾焕玉,孟杰等.高能物理与核物理,2000,24 (增刊):69);J IA Huan2Yu,LU Hong2Feng,MENGJie.High Energy Phys.and Nu2cl.Phys.,2002,26:1050 (in Chinese)(贾焕玉,吕洪凤,孟杰.高能物理与核物理,2002,26:1050);J IA Huan2Yu,MENGJie,ZHAO En2Guang et al.High Energy Phys.and Nucl.Phys.,2003,2(in Chinese)(贾焕玉,孟杰,赵恩广等.高能物理与核物理,2003,27:200);ZUO Wei,Lejeune A,Lombardo U et al.Commun.Theor.Phys.,2003,39:3858.Vidana I,Bombaci N.Phys.Rev.,2002,C66:0458019.Coestor F,Cohen S,Day B et al.Phys.Rev.,1970,C1:76910.Baldo M.The Many2body Theory of the Nuclear Equation of State,inNuclear Methods and the Nuclear Equation of State,Ed.Baldo M,Sin2gapore:World Scientific,1999; Machleidt R.Adv.Nucl.Phys.,1989,16:18911.ZUO Wei,Lombardo U,LIU Jian2Ye et al.High Energy Phys.andNucl.Phys.,2002,26:1238 (in Chinese)(左维,Lombardo U,刘建业等.高能物理与核物理,2002,26:1238)ZUO Wei,Lombardo U,LIU Jian2Ye et al.High Energy Phys.andNucl.Phys.,2003,27:416 (in Chinese)(左维,Lombardo U,刘建业等.高能物理与核物理,2002,27:41612.ZUO Wei,Lombardo U,LI Zeng2Hua et al.High Energy Phys.andNucl.Phys.,2002,26:1134 (in Chinese)(左维,Lombardo U,李增花等.高能物理与核物理,2002,26:1134)13.Bethe H A,Brandow B H,Petschek A G.Phys.Rev.,1963,129:225; Day B D.Rev.Mod.Phys.,1967,39:719; Jeukenne J P,Leje2une A and Mahaux C.Phys.Rep.,1976,25:8314.Baldo M,Bombaci I,Giansiracusa G et al.Phys.Rev.,1990,C41:1748; ZUO Wei,Lombardo U,LI Zeng2Hua et al.High Energy Phys.and Nucl.Phys.,2002,26:703 (in Chinese)(左维,Lombardo U,李增花等.高能物理 与核物理,2002,26:703)15.Suzuki K,Okamoto R,Kohno M et al.Nucl.Phys,.2000,A665:9216.SONG H Q,Baldo M,Giansiracusa Get al.Phys.Rev.Lett.,1998,81:158417.Sartor R.Chapter 6 in Nuclear Methods and the Nuclear Equation ofState,Ed.Baldo M.Singapore:World Scientific,199918.Wiringa R B,Stoks V GJ,Schiavilla R.Phys.Rev.,1995,C51:2819.Grange P,Lejeune A,Martzolff Met al.Phys,Rev.,1989,C40:104020.Landau L D.Sov.Phys.JETP,1956,3:920;1957,5:101;1959,8:7021.Iwamoto N,Pethick C J.Phys.Rev.,1982,D25:31322.Skyrme T H R.Nucl.Phys.,1959,9:615; ZHOU Y Z,HAN L Y,WU X Z et al.Prog.Theor.Phys.,1998,79:10023.Backman S O,Brown G E,Niskanen J A.Phys.Reps.,1985,124:124.Bender M,Dobaczewski J,Engel J et al.Phys,Rev.,2002,C65:05432225.Margueron J,Navarro J,Van Giai N.Phys.Rev.,2002,C66:014303
  • 加载中

Get Citation
ZUO Wei, Lombardo U, SHEN Cai-Wan, LIU Jian-Ye and LI Jun-Qing. Equation of State of Spin-Polarized Nuclear Matter[J]. Chinese Physics C, 2004, 28(3): 284-289.
ZUO Wei, Lombardo U, SHEN Cai-Wan, LIU Jian-Ye and LI Jun-Qing. Equation of State of Spin-Polarized Nuclear Matter[J]. Chinese Physics C, 2004, 28(3): 284-289. shu
Milestone
Received: 2003-05-26
Revised: 1900-01-01
Article Metric

Article Views(864)
PDF Downloads(604)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Equation of State of Spin-Polarized Nuclear Matter

    Corresponding author: ZUO Wei,
  • Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China2 INFN-LNS,44 Via S.Sofia,I-95123 Catania,Italy

Abstract: Within the spin-dependent Brueckner-Hartree-Fock framework, the equation of state of the spin-polarized nuclear matter has been investigated by adopting the realistic nucleon-nucleon interaction AV18 supplemented with a microscopic three-body force. The related physical quantities such as the Landau parameters G0 in spin channel and G′0 in spin-isospin channel, have been calculated. The three-body force effects have been studied and stressed with a special attention. It is shown that in the Brueckner-Hartree-Fock framework the predicted energy per particle of spin-polarized nuclear matter versus the neutron and proton spin-polarization parameters fulfills a quadratic law in the whole range of spin-polarization. At the empirical saturation density, the calculated Landau parameter G′0 is 1.22 and 1.28 respectively for the two-cases with and without including the three-body force, both are in agreement with its experimental value. Both the Landau parameters G0 and G′0 are positive in the density region up to ρ=0.5fm-3 and increase monotonically as increasing density so that no any evidence is found for a spontaneous transition to a ferromagnetic state in nuclear matter. The three-body force effect is to strongly increase the Landau parameters G0 and G′0 at high densities, making the nuclear matter at high densities more stable against spin and spin-isospin fluctuations. The obtained Landau parameters G0 and G′0 together with their density dependences may serve as constraints on the spin-spin parts and spin-isospin dependent parts of the phenomenological Skyrme and Skyrme-like interactions.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return