×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Observation of ${ {\boldsymbol e^+\boldsymbol e^- \to\boldsymbol p\boldsymbol p \bar{\boldsymbol p} \bar{\boldsymbol n} \boldsymbol\pi^{-} + \boldsymbol c.\boldsymbol c. }}$

Figures(4) / Tables(2)

Get Citation
M. Ablikim, M. N. Achasov, P. Adlarson, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, V. Batozskaya, D. Becker, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, C. Chen, Chao Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Z. J. Chen, W. S. Cheng, X. Chu, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, P. Egorov, Y. L. Fan, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, K Fischer, M. Fritsch, C. Fritzsch, C. D. Fu, H. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, M. Himmelreich, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Imoehl, M. Irshad, J. Jackson, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, Z. K. Jia, H. B. Jiang, S. S. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. Li, H. B. Li, H. J. Li, H. N. Li, J. Q. Li, J. S. Li, J. W. Li, Ke Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, S. X. Li, S. Y. Li, T. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, H. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, A. Limphirat, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. Y. Ma, Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, N. Yu. Muchnoi, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, M. Pelizaeus, H. P. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, S. Pogodin, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, J. J. Qin, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, C. F. Redmer, K. J. Ren, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, S. N. Ruan, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, X. Y. Shen, B. A. Shi, H. C. Shi, J. Y. Shi, Q. Q. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, K. X. Su, P. P. Su, Y. J. Su, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, F. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. Q. Wang, Yaqian Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Z. Wu, L. Xia, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, Q. J. Xu, X. P. Xu, Y. C. Xu, Z. P. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, H. J. Yang, H. L. Yang, H. X. Yang, L. Yang, S. L. Yang, Tao Yang, Y. F. Yang, Y. X. Yang, Yifan Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, T. Yu, C. Z. Yuan, L. Yuan, S. C. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, X. Zeng, Y. Zeng, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. H. Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, Shuihan Zhang, Shulei Zhang, X. D. Zhang, X. M. Zhang, X. Y. Zhang, X. Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Yan Zhang, Yao Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, X. Zhong, H. Zhou, L. P. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, J. Zhu, K. Zhu, K. J. Zhu, L. X. Zhu, S. H. Zhu, S. Q. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou and (BESIII Collaboration). Observation of $ e^+e^- \to p p \bar{p} \bar{n} \pi^{-} + c.c. $[J]. Chinese Physics C. doi: 10.1088/1674-1137/acb6eb
M. Ablikim, M. N. Achasov, P. Adlarson, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, V. Batozskaya, D. Becker, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, C. Chen, Chao Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Z. J. Chen, W. S. Cheng, X. Chu, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, P. Egorov, Y. L. Fan, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, K Fischer, M. Fritsch, C. Fritzsch, C. D. Fu, H. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, M. Himmelreich, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Imoehl, M. Irshad, J. Jackson, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, Z. K. Jia, H. B. Jiang, S. S. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. Li, H. B. Li, H. J. Li, H. N. Li, J. Q. Li, J. S. Li, J. W. Li, Ke Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, S. X. Li, S. Y. Li, T. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, H. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, A. Limphirat, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. Y. Ma, Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, N. Yu. Muchnoi, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, M. Pelizaeus, H. P. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, S. Pogodin, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, J. J. Qin, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, C. F. Redmer, K. J. Ren, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, S. N. Ruan, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, X. Y. Shen, B. A. Shi, H. C. Shi, J. Y. Shi, Q. Q. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, K. X. Su, P. P. Su, Y. J. Su, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, F. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. Q. Wang, Yaqian Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Z. Wu, L. Xia, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, Q. J. Xu, X. P. Xu, Y. C. Xu, Z. P. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, H. J. Yang, H. L. Yang, H. X. Yang, L. Yang, S. L. Yang, Tao Yang, Y. F. Yang, Y. X. Yang, Yifan Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, T. Yu, C. Z. Yuan, L. Yuan, S. C. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, X. Zeng, Y. Zeng, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. H. Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, Shuihan Zhang, Shulei Zhang, X. D. Zhang, X. M. Zhang, X. Y. Zhang, X. Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Yan Zhang, Yao Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, X. Zhong, H. Zhou, L. P. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, J. Zhu, K. Zhu, K. J. Zhu, L. X. Zhu, S. H. Zhu, S. Q. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou and (BESIII Collaboration). Observation of $ e^+e^- \to p p \bar{p} \bar{n} \pi^{-} + c.c. $[J]. Chinese Physics C.  doi: 10.1088/1674-1137/acb6eb shu
Milestone
Received: 2022-11-25
Article Metric

Article Views(7579)
PDF Downloads(42)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Observation of ${ {\boldsymbol e^+\boldsymbol e^- \to\boldsymbol p\boldsymbol p \bar{\boldsymbol p} \bar{\boldsymbol n} \boldsymbol\pi^{-} + \boldsymbol c.\boldsymbol c. }}$

  • 1. Institute of High Energy Physics, Beijing 100049, China
  • 2. Beihang University, Beijing 100191, China
  • 3. Beijing Institute of Petrochemical Technology, Beijing 102617, China
  • 4. Bochum Ruhr-University, D-44780 Bochum, Germany
  • 5. Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
  • 6. Central China Normal University, Wuhan 430079, China
  • 7. Central South University, Changsha 410083, China
  • 8. China Center of Advanced Science and Technology, Beijing 100190, China
  • 9. COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
  • 10. Fudan University, Shanghai 200433, China
  • 11. G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
  • 12. GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
  • 13. Guangxi Normal University, Guilin 541004, China
  • 14. Guangxi University, Nanning 530004, China
  • 15. Hangzhou Normal University, Hangzhou 310036, China
  • 16. Hebei University, Baoding 071002, China
  • 17. Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
  • 18. Henan Normal University, Xinxiang 453007, China
  • 19. Henan University of Science and Technology, Luoyang 471003, China
  • 20. Henan University of Technology, Zhengzhou 450001, China
  • 21. Huangshan College, Huangshan 245000, China
  • 22. Hunan Normal University, Changsha 410081, China
  • 23. Hunan University, Changsha 410082, China
  • 24. Indian Institute of Technology Madras, Chennai 600036, India
  • 25. Indiana University, Bloomington, Indiana 47405, USA
  • 26A. INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
  • 26B. INFN Sezione di Perugia, I-06100, Perugia, Italy
  • 26C. University of Perugia, I-06100, Perugia, Italy
  • 27A. INFN Sezione di Ferrara, I-44122, Ferrara, Italy
  • 27B. University of Ferrara, I-44122, Ferrara, Italy
  • 28. Institute of Modern Physics, Lanzhou 730000, China
  • 29. Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
  • 30. Jilin University, Changchun 130012, China
  • 31. Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
  • 32. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
  • 33. Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
  • 34. Lanzhou University, Lanzhou 730000, China
  • 35. Liaoning Normal University, Dalian 116029, China
  • 36. Liaoning University, Shenyang 110036, China
  • 37. Nanjing Normal University, Nanjing 210023, China
  • 38. Nanjing University, Nanjing 210093, China
  • 39. Nankai University, Tianjin 300071, China
  • 40. National Centre for Nuclear Research, Warsaw 02-093, Poland
  • 41. North China Electric Power University, Beijing 102206, China
  • 42. Peking University, Beijing 100871, China
  • 43. Qufu Normal University, Qufu 273165, China
  • 44. Shandong Normal University, Jinan 250014, China
  • 45. Shandong University, Jinan 250100, China
  • 46. Shanghai Jiao Tong University, Shanghai 200240, China
  • 47. Shanxi Normal University, Linfen 041004, China
  • 48. Shanxi University, Taiyuan 030006, China
  • 49. Sichuan University, Chengdu 610064, China
  • 50. Soochow University, Suzhou 215006, China
  • 51. South China Normal University, Guangzhou 510006, China
  • 52. Southeast University, Nanjing 211100, China
  • 53. State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China
  • 54. Sun Yat-Sen University, Guangzhou 510275, China
  • 55. Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
  • 56. Tsinghua University, Beijing 100084, China
  • 57A. Istinye University, 34010, Istanbul, Turkey
  • 57B. Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
  • 58. University of Chinese Academy of Sciences, Beijing 100049, China
  • 59. University of Groningen, NL-9747 AA Groningen, The Netherlands
  • 60. University of Hawaii, Honolulu, Hawaii 96822, USA
  • 61. University of Jinan, Jinan 250022, China
  • 62. University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
  • 63. University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
  • 64. University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
  • 65. University of Science and Technology Liaoning, Anshan 114051, China
  • 66. University of Science and Technology of China, Hefei 230026, China
  • 67. University of South China, Hengyang 421001, China
  • 68. University of the Punjab, Lahore-54590, Pakistan
  • 69A. University of Turin, I-10125, Turin, Italy
  • 69B. University of Eastern Piedmont, I-15121, Alessandria, Italy
  • 69C. INFN, I-10125, Turin, Italy
  • 70. Uppsala University, Box 516, SE-75120 Uppsala, Sweden
  • 71. Wuhan University, Wuhan 430072, China
  • 72. Xinyang Normal University, Xinyang 464000, China
  • 73. Yunnan University, Kunming 650500, China
  • 74. Zhejiang University, Hangzhou 310027, China
  • 75. Zhengzhou University, Zhengzhou 450001, China
  • a. Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
  • b. Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
  • c. Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
  • d. Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
  • e. Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, China
  • f. Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, China
  • g. Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • h. Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
  • i. Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
  • j. Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
  • k. Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China
  • l. Also at the Department of Mathematical Sciences, IBA, Karachi, Pakistan

Abstract: Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESIII detector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 $ \rm fb^{-1} $, the process $ e^+e^- \to p p \bar{p} \bar{n} \pi^{-} + c.c. $ is observed for the first time with a statistical significance of $ 11.5\sigma $. The average Born cross sections in the energy ranges of (4.160, 4.380) GeV, (4.400, 4.600) GeV and (4.610, 4.700) GeV are measured to be $ (21.5\pm5.7\pm1.2) $ fb, $ (46.3\pm10.6\pm2.5) $ fb and $ (59.0\pm9.4\pm3.2) $ fb, respectively, where the first uncertainties are statistical and the second are systematic. The line shapes of the $ \bar{p}\bar{n} $ and $ pp\pi^- $ invariant mass spectra are consistent with phase space distributions, indicating that no hexaquark or di-baryon state is observed.

    HTML

    I.   INTRODUCTION
    • One of the most fundamental questions in hadron physics is related to the mechanism of color confinement in Quantum Chromodynamics (QCD). Color-singlet hadronic configurations of quarks and gluons can form bound states or resonances. Besides the well-known combinations of $ q\bar{q} $ for mesons and $ qqq $ for baryons, other combinations, such as $ gq\bar{q} $ for hybrid states [1], multi-gluons for glueball states [2], $ q\bar{q}q\bar{q} $ for tetraquark states [3], $ qqqq\bar{q} $ for pentaquark states [4] and hexaquark states $ (qqqqqq) $ [5], are also allowed by QCD. Di-baryon [6] and hexaquark states have been searched for in a range of nucleon-nucleon scattering reactions. Recently, an isoscalar resonant structure was observed in the isoscalar two-pionic fusion process $ pn \to d\pi^0\pi^0 $ [7] by the WASA Collaboration and was later confirmed in the other two-pionic fusion processes $ pn\to d\pi^+\pi^- $ [8] and $ pp\to d\pi^+\pi^0 $ [9], and the two-pionic non-fusion process $ pn\to pp\pi^0\pi^- $ [10] and $ pn\to pn\pi^0\pi^0 $ [11]. This state was denoted by $ d^*(2380) $ following the convention used for nucleon excitations. These observations indicate the possibility of the existence of hexaquark and di-baryon configurations. In 2021, the BESIII Collaboration reported the search for hexaquark and di-baryon states in examining the invariant mass spectra of two baryons in the process $e^+e^- \to 2(p\bar{p})$ [12], and no significant signal was observed.

      Analyzing data sets corresponding to a total integrated luminosity of approximately $18.8 ~\rm fb^{-1}$ taken at center-of-mass energies $ \sqrt s $ between $ 4.16 $ and $ 4.70 $ GeV with the BESIII detector, we present in this paper the first measurement of the cross section of the process $e^+e^- \to pp\bar{p}\bar{n}\pi^{-} + c.c.$. We search for the $ d^*(2380) $ and other possible hexaquark or di-baryon states with the data samples with energies above $ 4.60 $ GeV, where the $ \bar{p}\bar{n} $ system with a mass around $ 2.4 $ GeV for $ d^*(2380) $ is kinematically accessible. The mass range of the $ \bar{p}\bar{n} $ system around 2.4 GeV/$ c^2 $, in which the $ d^*(2380) $ might contribute, is covered by the data samples with energies above $ 4.60 $ GeV. Throughout this paper, charge conjugation is always implied unless explicitly stated, and in discussing systematic uncertainties.

    II.   THE BESIII DETECTOR AND DATA SAMPLES
    • The BESIII detector [13] records symmetric $ e^+e^- $ collisions provided by the BEPCII storage ring [14], which operates in the center-of-mass energy range from $ 2.0 $ to $ 4.95 $ GeV. BESIII has collected large data samples in this energy region [15]. The cylindrical core of the BESIII detector covers $ 93\% $ of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a $ 1.0 $ T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged-particle momentum resolution at $ 1\; {\rm GeV}/c $ is $ 0.5 $%, and the specific energy loss (dE/dx) resolution is $ 6\% $ for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of $ 2.5\% $ ($ 5\% $) at $ 1 $ GeV in the barrel (end cap) region. The time resolution in the TOF barrel region is $ 68 $ ps, while that in the end cap region is $ 110 $ ps. The end cap TOF system was upgraded in $ 2015 $ using multi-gap resistive plate chamber technology, providing a time resolution of $ 60 $ ps [16, 17].

      The data sets were collected at $ 29 $ center-of-mass energies between $ 4.16 $ and $ 4.70 $ GeV. The nominal energies of the data sets from $ 4.16 $ to $ 4.60 $ GeV are measured by the di-muon process $ e^+e^- \to (\gamma_{\rm ISR/FSR})\mu^{+}\mu^{-} $ [18, 19], where the subscript ISR/FSR stands for the initial-state or final-state radiation process, respectively. Those for the data sets from $ 4.61 $ to $ 4.70 $ GeV are calibrated by the process $ e^+e^- \to \Lambda_{\rm c}^{+}\bar{\Lambda}_{\rm c}^{-} $ [20]. The integrated luminosity $ \mathcal{L}_{\rm int} $ is determined using large-angle Bhabha scattering events [20, 21]. The total integrated luminosity of all data sets is approximately $18.8 ~\rm fb^{-1}$.

      The response of the BESIII detector is modeled with Monte Carlo (MC) simulations using the software framework BOOST [22] based on geant4 [23], which includes the geometry and material description of the BESIII detector, the detector response and digitization models, as well as a database that keeps track of the running conditions and the detector performance. Large MC simulated event samples are used to optimize the selection criteria, evaluate the signal efficiency, and estimate background contributions.

      Inclusive MC simulation samples are generated at different center-of-mass energies to study potential background reactions. These samples consist of open charm processes, the ISR production of vector charmonium and charmonium-like states, and the known hadronic continuum processes incorporated in KKMC [24, 25]. The known decay modes are modeled with EVTGEN [26, 27] using branching fractions taken from the Particle Data Group (PDG) [28], and the remaining unknown decays of the charmonium states are simulated with LUNDCHARM [29, 30]. Final-state radiation from charged final-state particles is incorporated with PHOTOS [31]. The signal MC simulation sample of $ e^+e^- \to p p \bar{p} \bar{n} \pi^{-} $ at each energy point is generated with the events being uniformly distributed in phase space.

    III.   DATA ANALYSIS
    • Events with two positive and two negative charged tracks are selected. For each charged track, the polar angle in the MDC with respect to the z direction must satisfy $ | \cos\theta|<0.93 $. All charged tracks are required to originate from the interaction region, defined as $ R_{xy}<1 $ cm and $ |V_{z}|<10 $ cm, where $ R_{xy} $ and $ |V_{z}| $ are the distances from the point of closest approach of the tracks to the interaction point in the $ x-y $ plane and in the z direction, respectively. The combined dE/dx and TOF information are used to calculate particle identification (PID) confidence levels for the pion, kaon, and proton hypotheses. Each track is assigned as the particle hypothesis with the highest confidence level. The final state in the $e^+e^- \to p p \bar{p} \bar{n} \pi^{-}$ process is reconstructed with two protons, one antiproton and one $ \pi^{-} $. In this paper, charge conjugated process is implied.

      Since the neutron can not be well reconstructed with the BESIII detector, the signal process is determined via the recoiling mass of the reconstructed charged particles, defined as

      $ \begin{equation} M_{\rm rec}c^2= \sqrt{(E_{e^+e^-} - E_{pp\bar{p}\pi^-})^{2} - (\vec{P}_{e^+e^-} - \vec{P}_{pp\bar{p}\pi^-})^{2} \cdot c^2}, \end{equation} $

      (1)

      where $ E_{e^{+}e^{-}} $ and $ \vec{P}_{e^{+}e^{-}} $ are the center-of-mass energy and the momentum of the $ e^{+}e^{-} $ system, respectively; $ E_{pp\bar{p}\pi^{-}} $ and $ \vec{P}_{pp\bar{p}\pi^{-}} $ are the total reconstructed energy and total momentum of the $ pp\bar{p}\pi^{-} $ system, respectively. Events with $ M_{\rm rec} $ greater than $ 0.8 $ GeV/$ c^2 $ are kept for further analysis.

      Studies based on the inclusive MC simulation samples [32] show that no peaking background events survive the selection criteria. To further suppress background events, two additional selection criteria are imposed on the accepted candidate events. First, the invariant mass $ M_{p\pi^-} $ of the reconstructed $ p\pi^- $ system is required to be outside the Λ signal region, i.e. $ |M_{p\pi^-}- 1.115|>0.010 $ GeV/$ c^2 $, to remove the possible background associated with Λ decays. Here, 1.115 GeV/$ c^2 $ is the known Λ mass [33], and 0.010 GeV/$ c^2 $ corresponds to about three times the mass resolution. Second, the invariant mass of $ pp\bar{p} $ ($ M_{pp\bar{p}} $) must be less than $ 3.6 $ GeV/$ c^2 $ due to the remaining neutron and pion in the event.

      The $ M_{\rm rec} $ distribution of the accepted candidates after the above selection criteria from the combined data sets is displayed in Fig. 1, where a significant neutron signal is observed. The signal yield is determined by a maximum likelihood fit to this distribution. In the fit, the signal is represented by the luminosity weighted MC-simulated shape convolved with a Gaussian function and the remaining background is described by a linear function. From the fit, the signal yield is determined to be $ 123\pm14 $. The statistical significance of the signal is determined to be $ 11.5\sigma $, which is evaluated as $ \sqrt{-2\ln(\mathcal{L}_0/\mathcal{L}_{\rm max})} $, where $ \mathcal{L}_{\rm max} $ is the maximum likelihood of the nominal fit and $ \mathcal{L}_0 $ is the likelihood of the fit without involving the signal component. The change of the degree of freedom is $ 1 $. The neutron signal region is defined as $ M_{\rm rec}\in(0.925, 0.968) $ GeV/$ c^2 $ and the corresponding sideband regions are defined as $ M_{\rm rec}\in $ (0.857, 0.900) $ \cup $ (0.990, 1.033) GeV/$ c^2 $.

      Figure 1.  (color online) Distribution of the recoiling mass $ M_{\rm rec} $ of the candidate events for the reaction $ e^+e^-\to p p \bar{p} \bar{n} \pi^{-} $ with the fit results overlaid. The dots with error bars are from the combined data sets, the black curve shows the total fit result, and the dashed blue (red) curve represents the signal (background) shape. The pair of blue arrows marks the neutron signal region, whereas the neutron sideband regions are visualized by the two pairs of pink arrows.

      Figure 2 shows the comparisons of the momentum and polar angle distributions of the neutron of the accepted candidate events between data and signal MC simulation samples, where the data distribution is from the combined data sets and the MC simulation distribution has been weighted by the signal yields in data. The invariant mass of any two or three particles, the momentum and $ \cos\theta $ distributions of the other final state particles have also been examined. The agreement between data and MC simulation allows to determine the detection efficiency with the signal MC simulation events generated uniformly distributed in the five-body phase space.

      Figure 2.  (color online) Momentum (left) and polar angular distributions (right) of the neutrons of the candidate events for the reaction $ e^+e^-\to p p \bar{p} \bar{n} \pi^{-} $. The dots with error bars represent the combined data sets. The green histograms represent the sideband events. The red histograms represent the weighted signal MC simulation events plus the normalized neutron sideband regions in data.

      To search for hexaquark and di-baryon states, the $ \bar{p}\bar{n} $ invariant mass spectrum is examined. Figure 3 shows the $ pp\pi^{-} $ and $ \bar{p}\bar{n} $ invariant mass spectra of the candidate events for the reaction $ e^+e^-\to p p \bar{p} \bar{n} \pi^{-} $. In the fit to $ M_{\bar{p}\bar{n}} $, the signal is represented by the luminosity weighted phase space MC simulation shape and the remaining combinatorial background is described by a linear function. The goodness-of-fit is $ \chi^2/ndf= 38.21/37 $. Here, $ ndf $ is the number of degrees of freedom. Compared to the phase space hypothesis, no obvious structure is observed.

      Figure 3.  (color online) The $ pp\pi^{-} $ (left) and $ \bar{p}\bar{n} $ (right) invariant mass spectra of the candidate events for $ e^+e^-\to p p \bar{p} \bar{n} \pi^{-} $. The dots with error bars represent the combined data sets. The green histograms are the normalized neutron sideband events in data. The red histogram represents the weighted signal MC simulation events plus the normalized neutron sideband events in data. The black solid curve shows the total fit result, the blue dashed curve is the signal shape derived from the signal MC simulation sample, and the red dashed line is the linear background shape.

    IV.   AVERAGE CROSS SECTIONS
    • In a data set for each energy point, only a few events have been observed in the neutron signal region, with a statistical significance of less than $ 3\sigma $. To obtain significant neutron signals the data sets are combined into three sub-samples in the energy ranges of (4.160, 4.380), (4.400, 4.600) and (4.610, 4.700) GeV for further analysis.

      The average observed cross section for $ e^+e^- \to p p \bar{p} \bar{n} \pi^{-} $ is calculated by

      $ \begin{equation} \overline{\sigma}_j^{\rm obs} = \frac{N_j^{\rm sig}}{ {\Sigma_i {\epsilon_{ ji}}} \cdot {\mathcal{L}_{ ji}} } , \end{equation} $

      (2)

      where $ N_j^{\rm sig} $ is the number of signal events from the j-th combined data set, $ \mathcal{L}_{i} $ and $ \epsilon_{i} $ are the integrated luminosity and efficiency of data set i, respectively, i represents the i-th energy point in j-th combined data set. The detection efficiency is corrected by correction factors for the PID and tracking efficiencies, $ {f_{\rm PID}} $ and $ {f_{\rm trk}} $, which are determined to be $ 0.92 $ and $ 0.98 $ by weighting the differences between efficiency experimentally determined and that in the MC simulation in different momentum ranges, respectively. Inserting the numbers which are listed in Table 1 into Eq. (2) yields the average observed cross sections $ (19.4\pm5.1\pm1.0) $ fb, $ (42.8\pm9.8\pm2.3) $ fb and $(54.2\pm 8.6\pm 2.9)$ fb for the three combined data sets, respectively, where the first uncertainties are statistical and the second are systematic.

      $ \sqrt{s} $ /GeV$ \mathcal{L} $ /pb$ ^{-1} $$ \epsilon $ (%)$ (1+\delta^{\gamma}) $$ N_{\rm sig} $$ \overline{\sigma}^{\rm obs} $/fb$ \overline{\sigma}^{\rm Born} $/fb
      4.1574408.704.20.8408
      4.17803189.06.00.8388
      4.1889526.707.10.8430
      4.1990526.008.10.8456
      4.2092517.108.80.8485
      4.2188514.609.60.8509
      4.22631056.4010.10.8489
      4.2358530.3011.40.8530
      4.2439538.1012.00.8552$ 22.7\pm6.0 $$ 19.4\pm5.1 $$ 21.5\pm5.7 $
      4.2580828.4013.50.8559
      4.2668531.1014.00.8587
      4.2777175.7014.80.8593
      4.2878502.4014.20.8612
      4.3121501.2016.20.8628
      4.3374505.0018.60.8646
      4.3583543.9021.80.8693
      4.3774522.7021.00.8668
      4.3965507.8022.60.8674$ 30.9\pm7.1 $$ 42.8\pm9.8 $$ 46.3\pm10.6 $
      4.41561043.9024.80.8764
      4.4362569.9025.00.8683
      4.4671111.0927.40.8794
      4.5271112.1230.70.8838
      4.5995586.9034.00.8876
      4.6152103.8333.50.8712$ 69.4\pm11.0 $$ 54.2\pm8.6 $$ 59.0\pm9.4 $
      4.6304521.5234.10.8710
      4.6431552.4134.50.8708
      4.6639529.6335.70.8712
      4.68421669.3136.30.8711
      4.7008536.4536.60.8710

      Table 1.  The average observed cross sections for the reaction $ e^+e^- \to p p \bar{p} \bar{n} \pi^{-} + c.c. $. Summary of the number of signal events ($ N_{\rm sig} $), integrated luminosity ($ \mathcal{L} $), detection efficiency ($ \epsilon $), radiative correction factors $ (1+\delta^{\gamma}) $, the average observed cross section ($ \overline{\sigma}^{\rm obs} $) and average Born cross section ($ \overline{\sigma}^{\rm Born} $) at different c.m. energies ($ \sqrt{s} $). The uncertainties are statistical only.

      To measure the average Born cross section of $e^+e^- \to p p \bar{p} \bar{n} \pi^{-}$, a similar lineshape as that of $e^+e^- \to 2(p\bar{p})$ [12] is assumed to determine the ISR and vacuum polarization correction factors, $ (1+\delta^{\gamma}) $ and $ \frac{1}{\vert 1-\Pi\vert^2} $, as they are similar reactions where one of the $ \bar{p} $ has been exchanged by $ \bar{n}\pi^- $. The lineshape is constructed as

      $ \begin{equation} \sigma^{\rm Born}(s) = \frac{1}{s} \times {\rm e}^{p_{\rm0}(\sqrt{s}-M_\text{th})} \times p_{\rm 1}, \end{equation} $

      (3)

      where $ p_{0} $ and $ p_{1} $ are free parameters, $M_\text{th} = (3m_{p}+ m_{n}+ m_{\pi^-})$, $ m_p $, $ m_n $, and $ m_{\pi^-} $ are the known masses of p, n, and $ \pi^- $ taken from the PDG [33]. The average Born cross section is calculated by

      $ \begin{equation} \overline{\sigma}_j^{\rm Born} = \frac{\overline{\sigma}_j^{\rm obs}}{(1+\delta^{\gamma})_j \cdot \left(\dfrac{1}{\vert 1-\Pi\vert^2}\right)_j} . \end{equation} $

      (4)

      The obtained Born cross sections are then used as input in the generator and the cross section measurements are iterated with the updated detection efficiencies. This process is repeated until the $ (1+\delta^{\gamma}) \cdot \epsilon $ values become stable at all energies, $ i.e. $ the difference of $ (1+\delta^{\gamma}) \cdot \epsilon $ between the last two iterations is less than $ 4\% $. Figure 4 shows the obtained average Born cross sections in the defined sub-samples. The average Born observed cross sections are calculated with Eq. (4), and the results are $ (21.5\pm5.7\pm 1.2) $ fb, $ (46.3\pm10.6\pm2.5) $ fb and $(59.0\pm9.4\pm 3.2)$ fb for the three combined data sets, respectively, where the first uncertainties are statistical and the second are systematic. Two different functions are used to compare the trend of the average Born cross section to a reaction where a similar behaviour is expected. The first one is a simple five-body energy-dependent phase space lineshape [12, 34] and the second one is an exponential function [12, 35], which are shown in Fig. 4. However, it should be noted that the two functions in Fig. 4 are not fit results, but drawn with arbitrary scale factors for comparison since a qualitative fit is not possible due to the limited statistics.

      Figure 4.  (color online) Average Born cross sections for the process $ e^+e^-\to p p \bar{p} \bar{n} \pi^{-} + c.c. $. The dots with error bars are the measured values, the blue line shows the exponential function curve and the red-dashed line shows the five-body energy-dependent phase spase (PHSP) lineshape curve.

      The systematic uncertainties in the cross section measurements will be discussed in the next section.

    V.   SYSTEMATIC UNCERTAINTY
    • In the cross section measurements, the systematic uncertainties mainly comes from the integrated luminosity, tracking efficiency, PID efficiency, ISR correction, $ M_{\rm rec} $ fit, and veto of background events associated with Λ decays.

      The integrated luminosity of the data set is measured by large-angle Bhabha scattering events, and the uncertainty in the measurement is $ 1.0 $% [21], which is dominated by the precision of the MC generator used for efficiency correction. The tracking and PID efficiencies have been studied with high purity control samples of $ J/\psi\to p\bar{p}\pi^+\pi^- $ and $ \psi(3686)\to \pi^+\pi^-J/\psi\to \pi^+\pi^-p\bar{p} $ decays [36, 37]. The differences of the tracking and PID efficiencies between data and MC simulation in different transverse momentum and total momentum ranges are obtained separately. The averaged differences for the tracking (PID) efficiencies are corrected by the factors $ f_{\rm trk} $ ($ f_{\rm PID} $) as mentioned in Sec. IV. The uncertainties of the tracking and PID efficiencies are reweighted by the p/$ \bar{p} $ and $ \pi^{+} $/$ \pi^{-} $ momenta of the signal MC simulation events. The reweighted uncertainties for tracking (PID) efficiencies, $ 0.1 $% ($ 0.3 $%) per p, $ 0.1 $% ($ 0.4 $%) per $ \bar{p} $, $ 1.0 $% ($ 0.5 $%) per $ \pi^{+} $ and $ 0.8 $% ($ 0.4 $%) per $ \pi^{-} $, are assigned as the systematic uncertainties. Adding them linearly gives the total systematic uncertainties due to the tracking and PID efficiencies to be $ 1.1 $% and $ 1.6 $% for the process $e^+e^-\to p p \bar{p} \bar{n} \pi^{-}$, and $ 1.3 $% and $ 1.9 $% for the process $e^+e^-\to p \bar{p} \bar{p} n \pi^{+}$, respectively.

      The input Born cross sections in the generator are iterated until the $ (1+\delta^{\gamma}) \cdot \epsilon $ values converge. The largest difference of $ (1+\delta^{\gamma}) \cdot \epsilon $ between the last two iterations at all energy points, $ 3.2 $%, is taken as the corresponding systematic uncertainty.

      Three different tests were performed to estimate the uncertainty associated with the $ M_{\rm rec} $ fit. The fit range is increased or decreased by $ 5 $ MeV/$ c^2 $. The background shape is replaced with a second-order Chebychev polynomial function, and the signal shape is replaced with an MC simulation-derived shape. The quadrature sum of these changes, $ 3.6 $%, is taken as the relevant uncertainty.

      The systematic uncertainty due to the veto of Λ background events is estimated by changing the Λ veto mass window from $ \pm3\sigma $ to $ \pm5\sigma $, where σ is the invariant mass resolution and the value is 3 MeV/$ c^2 $. The change of the measured cross section, $ 0.03 $%, is assigned as the uncertainty.

      Adding the above systematic uncertainties summarized in Table 2 in quadrature yields the total systematic uncertainties of $ 5.3 $% and $ 5.4 $%, for the processes $e^+e^-\to p p \bar{p} \bar{n} \pi^{-}$ and $ e^+e^-\to p \bar{p} \bar{p} n \pi^{+} $, respectively. The average systematic uncertainty, $ 5.35 $%, is taken as the total systematic uncertainty in the cross section measurement for the process $ e^+e^-\to p p \bar{p} \bar{n} \pi^{-}+c.c. $.

      Mode$ \mathcal{L} $TrkPIDISRFitΛ veto$ \rm Total $
      $ p p \bar{p} \bar{n} \pi^{-} $$ 1.0 $$ 1.1 $$ 1.6 $$ 3.2 $$ 3.6 $$ 0.03 $$ 5.3 $
      $ p \bar{p} \bar{p} n \pi^{+} $$ 1.0 $$ 1.3 $$ 1.9 $$ 3.2 $$ 3.6 $$ 0.03 $$ 5.4 $

      Table 2.  The relative systematic uncertainties (in %) from the integrated luminosity of data set ($ \mathcal{L} $), the tracking efficiency ($ \rm Trk $), the PID efficiency (PID), the ISR correction (ISR), the $ M_{\rm rec} $ fit (Fit), and the Λ veto in the cross section measurements.

    VI.   SUMMARY
    • By using the data sets taken at the center-of-mass energies between $ 4.16 $ and $ 4.70 $ GeV, the process $e^+e^- \to p p \bar{p} \bar{n} \pi^{-} + c.c.$ has been observed for the first time with a statistical significance of $ 11.5\sigma $. The average Born cross sections in the three energy ranges of (4.160, 4.380), (4.400, 4.600) and (4.610, 4.700) GeV are measured to be $ (21.5\pm5.7\pm1.2) $ fb, $ (46.3\pm10.6\pm2.5) $ fb and $(59.0\pm 9.4\pm 3.2)$ fb, respectively, where the first uncertainties are statistical and the second systematic. The shape of the invariant-mass spectra of $ \bar{p}\bar{n} $ and $ pp\pi^- $ are in good agreement with the phase-space distributions, thereby indicating no hexaquark or di-baryon state observed with the current data sample size.

    ACKNOWLEDGMENTS
    • The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support.

Reference (37)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return