Processing math: 100%

Muon anomalous magnetic dipole moment in the μνSSM

  • Recently, the Muon g-2 experiment at Fermilab measured the muon anomalous magnetic dipole moment (MDM), aμ=(gμ2)/2, and reported that the new experimental average increases the difference between the experiment and the standard model (SM) prediction to 4.2σ. In this work, we reanalyze the muon anomalous MDM at the two-loop level in the μ from the ν Supersymmetric Standard Model ( μνSSM) combined with the updated experimental average. The μνSSM can explain the current difference between the experimental measurement and the SM theoretical prediction for the muon anomalous MDM, constrained by the 125 GeV Higgs boson mass and decays, the rare decay ˉBXsγ, and so on. We also investigate the anomalous MDM of the electron and tau lepton, ae=(ge2)/2 and aτ=(gτ2)/2, at the two-loop level in the μνSSM. In addition, the decaying of the 125 GeV Higgs boson into a pair of charged leptons in the μνSSM is analyzed.
  • [1] B. Abi et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 126, 141801 (2021) doi: 10.1103/PhysRevLett.126.141801
    [2] T. Albahri et al. (Muon g-2 Collaboration), Phys. Rev. D 103, 072002 (2021) doi: 10.1103/PhysRevD.103.072002
    [3] T. Albahri et al. (Muon g-2 Collaboration), Phys. Rev. A 103, 042208 (2021) doi: 10.1103/PhysRevA.103.042208
    [4] T. Albahri et al. (Muon g-2 Collaboration), Phys. Rev. Accel. Beams 24, 044002 (2021) doi: 10.1103/PhysRevAccelBeams.24.044002
    [5] G.W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006) doi: 10.1103/PhysRevD.73.072003
    [6] T. Aoyama et al., Phys. Rept. 887, 1-166 (2020), arXiv:2006.04822[hep-ph doi: 10.1016/j.physrep.2020.07.006
    [7] F. Jegerlehner and A. Nyffeler, Phys. Rept. 477, 1-110 (2009), arXiv:0902.3360[hep-ph doi: 10.1016/j.physrep.2009.04.003
    [8] M. Davier, A. Hoecker, B. Malaescu et al., Eur. Phys. J. C 71, 1515 (2011), arXiv:1010.4180[hep-ph doi: 10.1140/epjc/s10052-010-1515-z
    [9] S. Eidelman and F. Jegerlehner, Z. Phys. C 67, 585-602 (1995), arXiv:hep-ph/9502298[hep-ph doi: 10.1007/BF01553984
    [10] T. Moroi, Phys. Rev. D 53, 6565-6575 (1996)[erratum: Phys. Rev. D 56, 4424 (1997)], arXiv:hep-ph/9512396[hep-ph]
    [11] T. Aoyama, M. Hayakawa, T. Kinoshita et al., Phys. Rev. Lett. 109, 111808 (2012), arXiv:1205.5370[hep-ph doi: 10.1103/PhysRevLett.109.111808
    [12] K. Hagiwara, A. D. Martin, D. Nomura et al., Phys. Lett. B 649, 173-179 (2007), arXiv:hep-ph/0611102[hep-ph doi: 10.1016/j.physletb.2007.04.012
    [13] J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. B 474, 379-420 (1996), arXiv:hep-ph/9511388[hep-ph doi: 10.1016/0550-3213(96)00288-X
    [14] S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001), arXiv:hep-ph/0103067[hep-ph doi: 10.1103/PhysRevD.64.035003
    [15] M. Lindner, M. Platscher, and F. S. Queiroz, Phys. Rept. 731, 1-82 (2018), arXiv:1610.06587[hep-ph doi: 10.1016/j.physrep.2017.12.001
    [16] K. Hagiwara, A. D. Martin, D. Nomura et al., Phys. Rev. D 69, 093003 (2004), arXiv:hep-ph/0312250[hep-ph doi: 10.1103/PhysRevD.69.093003
    [17] J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. 626, 410-411 (2002), arXiv:hep-ph/0112255[hep-ph doi: 10.1016/S0550-3213(02)00074-3
    [18] U. Chattopadhyay and P. Nath, Phys. Rev. D 53, 1648-1657 (1996), arXiv:hep-ph/9507386[hep-ph doi: 10.1103/PhysRevD.53.1648
    [19] M. Davier, A. Hoecker, B. Malaescu et al., Eur. Phys. J. C 77, 827 (2017), arXiv:1706.09436[hep-ph doi: 10.1140/epjc/s10052-017-5161-6
    [20] J. Bijnens, E. Pallante, and J. Prades, Phys. Rev. Lett. 75 (1995), 1447-1450[erratum: Phys. Rev. Lett. 75 (1995), 3781], arXiv:hep-ph/9505251[hep-ph]
    [21] K. Hagiwara, A. D. Martin, D. Nomura et al., Phys. Lett. B 557, 69-75 (2003), arXiv:hep-ph/0209187[hep-ph doi: 10.1016/S0370-2693(03)00138-2
    [22] M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. Lett. 75, 790-793 (1995), arXiv:hep-ph/9503463[hep-ph doi: 10.1103/PhysRevLett.75.790
    [23] L. L. Everett, G. L. Kane, S. Rigolin et al., Phys. Rev. Lett. 86, 3484-3487 (2001), arXiv:hep-ph/0102145[hep-ph doi: 10.1103/PhysRevLett.86.3484
    [24] E. de Rafael, Phys. Lett. B 322, 239-246 (1994), arXiv:hep-ph/9311316[hep-ph doi: 10.1016/0370-2693(94)91114-2
    [25] U. Chattopadhyay and P. Nath, Phys. Rev. Lett. 86, 5854-5857 (2001), arXiv:hep-ph/0102157[hep-ph doi: 10.1103/PhysRevLett.86.5854
    [26] M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. D 54, 3137-3153 (1996), arXiv:hep-ph/9601310[hep-ph doi: 10.1103/PhysRevD.54.3137
    [27] J. Hisano and K. Tobe, Phys. Lett. B 510, 197-204 (2001), arXiv:hep-ph/0102315[hep-ph doi: 10.1016/S0370-2693(01)00494-4
    [28] J. F. de Troconiz and F. J. Yndurain, Phys. Rev. D 65, 093001 (2002), arXiv:hep-ph/0106025[hep-ph doi: 10.1103/PhysRevD.65.093001
    [29] S. Baek, N. G. Deshpande, X. G. He et al., Phys. Rev. D 64, 055006 (2001), arXiv:hep-ph/0104141[hep-ph doi: 10.1103/PhysRevD.64.055006
    [30] H. Davoudiasl, H. S. Lee, and W. J. Marciano, Phys. Rev. D 86, 095009 (2012), arXiv:1208.2973[hep-ph doi: 10.1103/PhysRevD.86.095009
    [31] M. J. Ramsey-Musolf and M. B. Wise, Phys. Rev. Lett. 89, 041601 (2002), arXiv:hep-ph/0201297[hep-ph doi: 10.1103/PhysRevLett.89.041601
    [32] M. Benayoun, P. David, L. DelBuono et al., Eur. Phys. J. C 73, 2453 (2013), arXiv:1210.7184[hep-ph doi: 10.1140/epjc/s10052-013-2453-3
    [33] G. Colangelo, M. Hoferichter, A. Nyffeler et al., Phys. Lett. B 735, 90-91 (2014), arXiv:1403.7512[hep-ph doi: 10.1016/j.physletb.2014.06.012
    [34] S. Komine, T. Moroi, and M. Yamaguchi, Phys. Lett. B 506, 93-98 (2001), arXiv:hep-ph/0102204[hep-ph doi: 10.1016/S0370-2693(01)00381-1
    [35] T. Kinoshita and M. Nio, Phys. Rev. D 73, 053007 (2006), arXiv:hep-ph/0512330[hep-ph doi: 10.1103/PhysRevD.73.053007
    [36] F. Wang, L. Wu, J. M. Yang et al., Phys. Lett. B 759, 191-199 (2016), arXiv:1512.06715[hep-ph doi: 10.1016/j.physletb.2016.05.071
    [37] B. Allanach, F. S. Queiroz, A. Strumia et al., Phys. Rev. D 93, 055045 (2016), arXiv:1511.07447[hep-ph doi: 10.1103/PhysRevD.93.055045
    [38] G. Belanger, F. Boudjema, A. Cottrant et al., Phys. Lett. B 519, 93-102 (2001), arXiv:hep-ph/0106275[hep-ph doi: 10.1016/S0370-2693(01)00976-5
    [39] D. Chang, W. F. Chang, C. H. Chou et al., Phys. Rev. D 63, 091301(R) (2001), arXiv:hep-ph/0009292[hep-ph doi: 10.1103/PhysRevD.63.091301
    [40] T. Aoyama, M. Hayakawa, T. Kinoshita et al., Phys. Rev. Lett. 99, 110406 (2007), arXiv:0706.3496[hep-ph doi: 10.1103/PhysRevLett.99.110406
    [41] M. Passera, Phys. Rev. D 75, 013002 (2007), arXiv:hep-ph/0606174[hep-ph doi: 10.1103/PhysRevD.75.013002
    [42] J. Cao, J. Lian, L. Meng et al., Phys. Rev. D 101, 095009 (2020), arXiv:1912.10225[hep-ph doi: 10.1103/PhysRevD.101.095009
    [43] M. Abdughani, K. I. Hikasa, L. Wu et al., JHEP 11, 095 (2019), arXiv:1909.07792[hep-ph
    [44] F. Wang, K. Wang, J. M. Yang et al., JHEP 12, 041 (2018), arXiv:1808.10851[hep-ph
    [45] F. Wang, W. Wang, and J. M. Yang, Phys. Rev. D 96, 075025 (2017), arXiv:1703.10894[hep-ph doi: 10.1103/PhysRevD.96.075025
    [46] E. Kiritsis and P. Anastasopoulos, JHEP 05, 054 (2002), arXiv:hep-ph/0201295[hep-ph
    [47] B. P. Padley, K. Sinha, and K. Wang, Phys. Rev. D 92, 055025 (2015), arXiv:1505.05877[hep-ph doi: 10.1103/PhysRevD.92.055025
    [48] S. P. Li, X. Q. Li, and Y. D. Yang, Phys. Rev. D 99, 035010 (2019), arXiv:1808.02424[hep-ph doi: 10.1103/PhysRevD.99.035010
    [49] S. P. Li, X. Q. Li, Y. Y. Li et al., JHEP 01, 034 (2021), arXiv:2010.02799[hep-ph
    [50] J. Cao, Y. He, J. Lian et al., arXiv: 2102.11355[hep-ph]
    [51] N. Chen, B. Wang, and C. Y. Yao, arXiv: 2102.05619[hep-ph]
    [52] W. Yin, arXiv: 2103.14234[hep-ph]
    [53] W. Yin and M. Yamaguchi, arXiv: 2012.03928[hep-ph]
    [54] D. Sabatta, A. S. Cornell, A. Goyal et al., Chin. Phys. C 44, 063103 (2020), arXiv:1909.03969[hep-ph doi: 10.1088/1674-1137/44/6/063103
    [55] S. Buddenbrock, A. S. Cornell, Y. Fang et al., JHEP 10, 157 (2019), arXiv:1901.05300[hep-ph
    [56] S. von Buddenbrock, N. Chakrabarty, A. S. Cornell et al., Eur. Phys. J. C 76, 580 (2016), arXiv:1606.01674[hep-ph doi: 10.1140/epjc/s10052-016-4435-8
    [57] N. Okada and H. M. Tran, Phys. Rev. D 94, 075016 (2016), arXiv:1606.05329[hep-ph doi: 10.1103/PhysRevD.94.075016
    [58] T. Fukuyama, N. Okada, and H. M. Tran, Phys. Lett. B 767, 295-302 (2017), arXiv:1611.08341[hep-ph doi: 10.1016/j.physletb.2017.02.021
    [59] G. Bélanger, J. Da Silva, and H. M. Tran, Phys. Rev. D 95, 115017 (2017), arXiv:1703.03275[hep-ph doi: 10.1103/PhysRevD.95.115017
    [60] H. M. Tran and H. T. Nguyen, Phys. Rev. D 99, 035040 (2019), arXiv:1812.11757[hep-ph doi: 10.1103/PhysRevD.99.035040
    [61] E. Chao, Renwick J. Hudspith, Antoine Gerardin et al., arXiv: 2104.02632
    [62] A. E. Carcamo Hernandez, Catalina Espinoza, Juan Carlos Gomez-Izquierdo et al., arXiv: 2104.02730
    [63] Andreas Crivellin and Martin Hoferichter, arXiv: 2104.03202
    [64] Motoi Endo, Koichi Hamaguchi, Sho Iwamoto et al., arXiv: 2104.03217
    [65] Sho Iwamoto, Tsutomu T. Yanagida, and Norimi Yokozaki, arXiv: 2104.03223
    [66] Xiao-Fang Han, Tianjun Li, Hong-Xin Wang et al., arXiv: 2104.03227
    [67] Giorgio Arcadi, Lorenzo Calibbi, Marco Fedele et al., arXiv: 2104.03228
    [68] Juan C. Criado, Abdelhak Djouadi, Niko Koivunen et al., arXiv: 2104.03231
    [69] Bin Zhu and Xuewen Liu, arXiv: 2104.03238
    [70] Yuchao Gu, Ning Liu, Liangliang Su et al., arXiv: 2104.03239
    [71] Hong-Xin Wang, Lei Wang, and Yang Zhang, arXiv: 2104.03242
    [72] Melissa van Beekveld, Wim Beenakker, Marrit Schutten et al., arXiv: 2104.03245
    [73] Wen Yin, arXiv: 2104.03259
    [74] Fei Wang, Lei Wu, Yang Xiao et al., arXiv: 2104.03262
    [75] Manuel A. Buen-Abad, JiJi Fan, Matthew Reece et al., arXiv: 2104.03267
    [76] Pritam Das, Mrinal Kumar Das, and Najimuddin Khan, arXiv: 2104.03271
    [77] Murat Abdughani, Yi-Zhong Fan, Lei Feng et al., arXiv: 2104.03274
    [78] Chuan-Hung Chen, Cheng-Wei Chiang, and Takaaki Nomura, arXiv: 2104.03275
    [79] Shao-Feng Ge, Xiao-Dong Ma, and Pedro Pasquini, arXiv: 2104.03276
    [80] M. Cadeddu, N. Cargioli, F. Dordei et al., arXiv: 2104.03280
    [81] Vedran Brdar, Sudip Jana, Jisuke Kubo et al., arXiv: 2104.03282
    [82] Junjie Cao, Jingwei Lian, Yusi Pan et al., arXiv: 2104.03284
    [83] Manimala Chakraborti, Sven Heinemeyer, and Ipsita Saha, arXiv: 2104.03287
    [84] Masahiro Ibe, Shin Kobayashi, Yuhei Nakayama et al., arXiv: 2104.03289
    [85] Peter Cox, Chengcheng Han, and Tsutomu T. Yanagida, arXiv: 2104.03290
    [86] K. S. Babu, Sudip Jana, Manfred Lindner et al., arXiv: 2104.03291
    [87] Chengcheng Han, arXiv: 2104.03292
    [88] Sven Heinemeyer, Essodjolo Kpatcha, Inaki Lara et al., arXiv: 2104.03294.
    [89] Lorenzo Calibbi, M. L. Lopez-Ibanez, Aurora Melis et al, arXiv: 2104.03296
    [90] D. W. P. Amaral, D. G. Cerdeno, A. Cheek et al., arXiv: 2104.03297
    [91] Yang Bai and Joshua Berger, arXiv: 2104.03301
    [92] Sebastian Baum, Marcela Carena, Nausheen R. Shah et al., arXiv: 2104.03302
    [93] S. Borsanyi, Z. Fodor, J. N. Guenther et al., Nature 593(7857), 51-55 (2021) doi: 10.1038/s41586-021-03418-1
    [94] D. E. López-Fogliani and C. Muñoz, Phys. Rev. Lett. 97, 041801 (2006) doi: 10.1103/PhysRevLett.97.041801
    [95] N. Escudero, D. E. López-Fogliani, C. Muñoz et al., JHEP 12, 099 (2008), arXiv:0810.1507
    [96] J. Fidalgo, D.E. López-Fogliani, C. Muñoz et al., JHEP 10, 020 (2011), arXiv:1107.4614
    [97] P. Bandyopadhyay, P. Ghosh, and S. Roy, Phys. Rev. D 84, 115022 (2011), arXiv:1012.5762 doi: 10.1103/PhysRevD.84.115022
    [98] P. Ghosh, D. E. López-Fogliani, V. A. Mitsou et al., Phys. Rev. D 88, 015009 (2013), arXiv:1211.3177 doi: 10.1103/PhysRevD.88.015009
    [99] H.-B. Zhang, T.-F. Feng, G.-F. Luo et al., JHEP 07 (2013) 069[Erratum ibid. 10 (2013) 173], arXiv:1305.4352
    [100] H.-B. Zhang, T.-F. Feng, S.-M. Zhao et al., Int. J. Mod. Phys. A 29, 1450123 (2014), arXiv:1407.7365 doi: 10.1142/S0217751X14501231
    [101] J.E. Kim and H.P. Nilles, Phys. Lett. B 138, 150 (1984) doi: 10.1016/0370-2693(84)91890-2
    [102] H. P. Nilles, Phys. Rep. 110, 1 (1984) doi: 10.1016/0370-1573(84)90008-5
    [103] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985) doi: 10.1016/0370-1573(85)90051-1
    [104] H. E. Haber, arXiv: hep-ph/9306207
    [105] S. P. Martin, arXiv: hep-ph/9709356
    [106] J. Rosiek, Phys. Rev. D 41, 3464 (1990), arXiv:hep-ph/9511250 doi: 10.1103/PhysRevD.41.3464
    [107] P. Ghosh and S. Roy, JHEP 04, 069 (2009), arXiv:0812.0084
    [108] A. Bartl, M. Hirsch, S. Liebler et al., JHEP 05, 120 (2009), arXiv:0903.3596
    [109] J. Fidalgo, D. E. López-Fogliani, C. Muñoz et al., JHEP 08, 105 (2009), arXiv:0904.3112
    [110] P. Ghosh, P. Dey, B. Mukhopadhyaya et al., JHEP 05, 087 (2010), arXiv:1002.2705
    [111] D. E. López-Fogliani, arXiv: 1004.0884
    [112] H.-B. Zhang, T.-F. Feng, Z.-F. Ge et al., JHEP 02, 012 (2014), arXiv:1401.2704
    [113] H.-B. Zhang, T.-F. Feng, L.-N. Kou et al., Int. J. Mod. Phys. A 28, 1350117 (2013), arXiv:1307.6284 doi: 10.1142/S0217751X13501170
    [114] K.-Y. Choi, D. E. López-Fogliani, C. Muñoz et al., JCAP 1003, 028 (2010)
    [115] G. A. Gómez-Vargas, M. Fornasa, F. Zandanel et al., JCAP 1202, 001 (2012)
    [116] A. Albert et al., JCAP 1410, 023 (2014)
    [117] G. A. Gómez-Vargas, D. E. López-Fogliani, C. Muñoz et al., JCAP 1703, 047 (2017)
    [118] G. A. Gómez-Vargas, D. E. López-Fogliani, C. Muñoz et al., JCAP 01, 058 (2020), arXiv:1911.03191
    [119] G. A. Gómez-Vargas, D. E. López-Fogliani, C. Muñoz et al., Astropart. Phys. 125, 102506 (2021), arXiv:1911.08550 doi: 10.1016/j.astropartphys.2020.102506
    [120] H.-B. Zhang, T.-F. Feng, X.-Y. Yang et al., Phys. Rev. D 95, 075013 (2017), arXiv:1704.03388 doi: 10.1103/PhysRevD.95.075013
    [121] H.-B. Zhang, T.-F. Feng, F. Sun et al., Phys. Rev. D 89, 115007 (2014), arXiv:1307.3607 doi: 10.1103/PhysRevD.89.115007
    [122] H.-B. Zhang, T.-F. Feng, S.-M. Zhao et al., Chin. Phys. C 4, 043106 (2017), arXiv:1511.08979
    [123] C.-X. Liu, H.-B. Zhang, J.-L. Yang et al., JHEP 04, 002 (2020), arXiv:2002.04370
    [124] C.-X. Liu, H.-B. Zhang et al., arXiv: 2012.14786
    [125] D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008) doi: 10.1103/PhysRevLett.100.120801
    [126] R. H. Parker, C. Yu, W. Zhong et al., Science 360, 191 (2018) doi: 10.1126/science.aap7706
    [127] L. Morel, Z. Yao, P. Clade et al., Nature 588, 61 (2020) doi: 10.1038/s41586-020-2964-7
    [128] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01, and 2021 update
    [129] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 812, 135980 (2021), arXiv:2007.07830 doi: 10.1016/j.physletb.2020.135980
    [130] A. M. Sirunyan et al. (CMS Collaboration), JHEP 01, 148 (2021), arXiv:2009.04363
    [131] L. Resnick, M. K. Sundaresan, and P. J. S. Watson, Phys. Rev. D 8, 172 (1973) doi: 10.1103/PhysRevD.8.172
    [132] J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B 106, 292 (1976) doi: 10.1016/0550-3213(76)90184-X
    [133] D. Y. Bardin, B. M. Vilensk,y and P. K. Khristova, Sov. J. Nucl. Phys. 53 (1991) 152, [Yad. Fiz. 53 (1991) 240]
    [134] A. Dabelstein and W. Hollik, Z. Phys. C 53, 507 (1992) doi: 10.1007/BF01625912
    [135] B. A. Kniehl, Nucl. Phys. B 376, 3 (1992) doi: 10.1016/0550-3213(92)90065-J
    [136] B. A. Kniehl, Phys. Rept. 240, 211 (1994) doi: 10.1016/0370-1573(94)90037-X
    [137] A. Djouadi, Phys. Rept. 457, 1 (2008) doi: 10.1016/j.physrep.2007.10.004
    [138] A. Djouadi, Phys. Rept. 459, 1 (2008) doi: 10.1016/j.physrep.2007.10.005
    [139] G. F. Giudice and O. Lebedev, Phys. Lett. B 665, 79 (2008), arXiv:0804.1753 doi: 10.1016/j.physletb.2008.05.062
    [140] N. Vignaroli, Phys. Rev. D 80, 095023 (2009), arXiv:0906.4078 doi: 10.1103/PhysRevD.80.095023
    [141] A. Dery, A. Efrati, Y. Hochberg et al., JHEP 05, 039 (2013), arXiv:1302.3229
    [142] D. de Florian et al. (LHC Higgs Cross Section Working Group), CYRM-2017-002, arXiv: 1610.07922
    [143] A. Crivellin, D. Mueller, and F. Saturnino, arXiv: 2008.02643
    [144] T. F. Feng and X. Y. Yang, Nucl. Phys. B 814, 101 (2009) doi: 10.1016/j.nuclphysb.2009.01.012
    [145] T. F. Feng, L. Sun, and X. Y. Yang, Nucl. Phys. B 800, 221 (2008) doi: 10.1016/j.nuclphysb.2008.03.019
    [146] T. F. Feng, L. Sun, and X. Y. Yang, Phys. Rev. D 77, 116008 (2008) doi: 10.1103/PhysRevD.77.116008
    [147] H. Arason, D. J. Castano, B. Keszthelyi et al., Phys. Rev. D 46, 3945 (1992)
    [148] S. Chen et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001) doi: 10.1103/PhysRevLett.87.251807
    [149] A. Limosani et al. (BELLE Collaboration), Phys. Rev. Lett. 103, 241801 (2009) doi: 10.1103/PhysRevLett.103.241801
    [150] T. Saito et al. (BELLE Collaboration), Phys. Rev. D 91, 052004 (2015) doi: 10.1103/PhysRevD.91.052004
    [151] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77, 051103 (2008) doi: 10.1103/PhysRevD.77.051103
    [152] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 109, 191801 (2012) doi: 10.1103/PhysRevLett.109.191801
    [153] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86, 052012 (2012) doi: 10.1103/PhysRevD.86.052012
    [154] H.-B. Zhang, G.-H. Luo, T.-F. Feng et al., Int. J. Mod. Phys. A 29, 1450196 (2014), arXiv:1409.6837 doi: 10.1142/S0217751X14501966
    [155] M. Abe et al., Prog. Theor. Exp. Phys. 2019(5), 053C02 (2019) doi: 10.1093/ptep/ptz030
    [156] R. Contino et al., CERN Yellow Rep. (2017) no.3, 255-440, CERN-TH-2016-113, arXiv: 1606.09408
    [157] G. Apollinari et al., CERN Yellow Rep. Monogr. 4 (2017) 1-516, CERN-2017-007-M
    [158] CEPC Study Group, IHEP-CEPC-DR-2018-02, arXiv: 1811.10545
    [159] S. Kawada, J. List, and M. Berggren, arXiv: 2009.04340
  • [1] B. Abi et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 126, 141801 (2021) doi: 10.1103/PhysRevLett.126.141801
    [2] T. Albahri et al. (Muon g-2 Collaboration), Phys. Rev. D 103, 072002 (2021) doi: 10.1103/PhysRevD.103.072002
    [3] T. Albahri et al. (Muon g-2 Collaboration), Phys. Rev. A 103, 042208 (2021) doi: 10.1103/PhysRevA.103.042208
    [4] T. Albahri et al. (Muon g-2 Collaboration), Phys. Rev. Accel. Beams 24, 044002 (2021) doi: 10.1103/PhysRevAccelBeams.24.044002
    [5] G.W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006) doi: 10.1103/PhysRevD.73.072003
    [6] T. Aoyama et al., Phys. Rept. 887, 1-166 (2020), arXiv:2006.04822[hep-ph doi: 10.1016/j.physrep.2020.07.006
    [7] F. Jegerlehner and A. Nyffeler, Phys. Rept. 477, 1-110 (2009), arXiv:0902.3360[hep-ph doi: 10.1016/j.physrep.2009.04.003
    [8] M. Davier, A. Hoecker, B. Malaescu et al., Eur. Phys. J. C 71, 1515 (2011), arXiv:1010.4180[hep-ph doi: 10.1140/epjc/s10052-010-1515-z
    [9] S. Eidelman and F. Jegerlehner, Z. Phys. C 67, 585-602 (1995), arXiv:hep-ph/9502298[hep-ph doi: 10.1007/BF01553984
    [10] T. Moroi, Phys. Rev. D 53, 6565-6575 (1996)[erratum: Phys. Rev. D 56, 4424 (1997)], arXiv:hep-ph/9512396[hep-ph]
    [11] T. Aoyama, M. Hayakawa, T. Kinoshita et al., Phys. Rev. Lett. 109, 111808 (2012), arXiv:1205.5370[hep-ph doi: 10.1103/PhysRevLett.109.111808
    [12] K. Hagiwara, A. D. Martin, D. Nomura et al., Phys. Lett. B 649, 173-179 (2007), arXiv:hep-ph/0611102[hep-ph doi: 10.1016/j.physletb.2007.04.012
    [13] J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. B 474, 379-420 (1996), arXiv:hep-ph/9511388[hep-ph doi: 10.1016/0550-3213(96)00288-X
    [14] S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001), arXiv:hep-ph/0103067[hep-ph doi: 10.1103/PhysRevD.64.035003
    [15] M. Lindner, M. Platscher, and F. S. Queiroz, Phys. Rept. 731, 1-82 (2018), arXiv:1610.06587[hep-ph doi: 10.1016/j.physrep.2017.12.001
    [16] K. Hagiwara, A. D. Martin, D. Nomura et al., Phys. Rev. D 69, 093003 (2004), arXiv:hep-ph/0312250[hep-ph doi: 10.1103/PhysRevD.69.093003
    [17] J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. 626, 410-411 (2002), arXiv:hep-ph/0112255[hep-ph doi: 10.1016/S0550-3213(02)00074-3
    [18] U. Chattopadhyay and P. Nath, Phys. Rev. D 53, 1648-1657 (1996), arXiv:hep-ph/9507386[hep-ph doi: 10.1103/PhysRevD.53.1648
    [19] M. Davier, A. Hoecker, B. Malaescu et al., Eur. Phys. J. C 77, 827 (2017), arXiv:1706.09436[hep-ph doi: 10.1140/epjc/s10052-017-5161-6
    [20] J. Bijnens, E. Pallante, and J. Prades, Phys. Rev. Lett. 75 (1995), 1447-1450[erratum: Phys. Rev. Lett. 75 (1995), 3781], arXiv:hep-ph/9505251[hep-ph]
    [21] K. Hagiwara, A. D. Martin, D. Nomura et al., Phys. Lett. B 557, 69-75 (2003), arXiv:hep-ph/0209187[hep-ph doi: 10.1016/S0370-2693(03)00138-2
    [22] M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. Lett. 75, 790-793 (1995), arXiv:hep-ph/9503463[hep-ph doi: 10.1103/PhysRevLett.75.790
    [23] L. L. Everett, G. L. Kane, S. Rigolin et al., Phys. Rev. Lett. 86, 3484-3487 (2001), arXiv:hep-ph/0102145[hep-ph doi: 10.1103/PhysRevLett.86.3484
    [24] E. de Rafael, Phys. Lett. B 322, 239-246 (1994), arXiv:hep-ph/9311316[hep-ph doi: 10.1016/0370-2693(94)91114-2
    [25] U. Chattopadhyay and P. Nath, Phys. Rev. Lett. 86, 5854-5857 (2001), arXiv:hep-ph/0102157[hep-ph doi: 10.1103/PhysRevLett.86.5854
    [26] M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. D 54, 3137-3153 (1996), arXiv:hep-ph/9601310[hep-ph doi: 10.1103/PhysRevD.54.3137
    [27] J. Hisano and K. Tobe, Phys. Lett. B 510, 197-204 (2001), arXiv:hep-ph/0102315[hep-ph doi: 10.1016/S0370-2693(01)00494-4
    [28] J. F. de Troconiz and F. J. Yndurain, Phys. Rev. D 65, 093001 (2002), arXiv:hep-ph/0106025[hep-ph doi: 10.1103/PhysRevD.65.093001
    [29] S. Baek, N. G. Deshpande, X. G. He et al., Phys. Rev. D 64, 055006 (2001), arXiv:hep-ph/0104141[hep-ph doi: 10.1103/PhysRevD.64.055006
    [30] H. Davoudiasl, H. S. Lee, and W. J. Marciano, Phys. Rev. D 86, 095009 (2012), arXiv:1208.2973[hep-ph doi: 10.1103/PhysRevD.86.095009
    [31] M. J. Ramsey-Musolf and M. B. Wise, Phys. Rev. Lett. 89, 041601 (2002), arXiv:hep-ph/0201297[hep-ph doi: 10.1103/PhysRevLett.89.041601
    [32] M. Benayoun, P. David, L. DelBuono et al., Eur. Phys. J. C 73, 2453 (2013), arXiv:1210.7184[hep-ph doi: 10.1140/epjc/s10052-013-2453-3
    [33] G. Colangelo, M. Hoferichter, A. Nyffeler et al., Phys. Lett. B 735, 90-91 (2014), arXiv:1403.7512[hep-ph doi: 10.1016/j.physletb.2014.06.012
    [34] S. Komine, T. Moroi, and M. Yamaguchi, Phys. Lett. B 506, 93-98 (2001), arXiv:hep-ph/0102204[hep-ph doi: 10.1016/S0370-2693(01)00381-1
    [35] T. Kinoshita and M. Nio, Phys. Rev. D 73, 053007 (2006), arXiv:hep-ph/0512330[hep-ph doi: 10.1103/PhysRevD.73.053007
    [36] F. Wang, L. Wu, J. M. Yang et al., Phys. Lett. B 759, 191-199 (2016), arXiv:1512.06715[hep-ph doi: 10.1016/j.physletb.2016.05.071
    [37] B. Allanach, F. S. Queiroz, A. Strumia et al., Phys. Rev. D 93, 055045 (2016), arXiv:1511.07447[hep-ph doi: 10.1103/PhysRevD.93.055045
    [38] G. Belanger, F. Boudjema, A. Cottrant et al., Phys. Lett. B 519, 93-102 (2001), arXiv:hep-ph/0106275[hep-ph doi: 10.1016/S0370-2693(01)00976-5
    [39] D. Chang, W. F. Chang, C. H. Chou et al., Phys. Rev. D 63, 091301(R) (2001), arXiv:hep-ph/0009292[hep-ph doi: 10.1103/PhysRevD.63.091301
    [40] T. Aoyama, M. Hayakawa, T. Kinoshita et al., Phys. Rev. Lett. 99, 110406 (2007), arXiv:0706.3496[hep-ph doi: 10.1103/PhysRevLett.99.110406
    [41] M. Passera, Phys. Rev. D 75, 013002 (2007), arXiv:hep-ph/0606174[hep-ph doi: 10.1103/PhysRevD.75.013002
    [42] J. Cao, J. Lian, L. Meng et al., Phys. Rev. D 101, 095009 (2020), arXiv:1912.10225[hep-ph doi: 10.1103/PhysRevD.101.095009
    [43] M. Abdughani, K. I. Hikasa, L. Wu et al., JHEP 11, 095 (2019), arXiv:1909.07792[hep-ph
    [44] F. Wang, K. Wang, J. M. Yang et al., JHEP 12, 041 (2018), arXiv:1808.10851[hep-ph
    [45] F. Wang, W. Wang, and J. M. Yang, Phys. Rev. D 96, 075025 (2017), arXiv:1703.10894[hep-ph doi: 10.1103/PhysRevD.96.075025
    [46] E. Kiritsis and P. Anastasopoulos, JHEP 05, 054 (2002), arXiv:hep-ph/0201295[hep-ph
    [47] B. P. Padley, K. Sinha, and K. Wang, Phys. Rev. D 92, 055025 (2015), arXiv:1505.05877[hep-ph doi: 10.1103/PhysRevD.92.055025
    [48] S. P. Li, X. Q. Li, and Y. D. Yang, Phys. Rev. D 99, 035010 (2019), arXiv:1808.02424[hep-ph doi: 10.1103/PhysRevD.99.035010
    [49] S. P. Li, X. Q. Li, Y. Y. Li et al., JHEP 01, 034 (2021), arXiv:2010.02799[hep-ph
    [50] J. Cao, Y. He, J. Lian et al., arXiv: 2102.11355[hep-ph]
    [51] N. Chen, B. Wang, and C. Y. Yao, arXiv: 2102.05619[hep-ph]
    [52] W. Yin, arXiv: 2103.14234[hep-ph]
    [53] W. Yin and M. Yamaguchi, arXiv: 2012.03928[hep-ph]
    [54] D. Sabatta, A. S. Cornell, A. Goyal et al., Chin. Phys. C 44, 063103 (2020), arXiv:1909.03969[hep-ph doi: 10.1088/1674-1137/44/6/063103
    [55] S. Buddenbrock, A. S. Cornell, Y. Fang et al., JHEP 10, 157 (2019), arXiv:1901.05300[hep-ph
    [56] S. von Buddenbrock, N. Chakrabarty, A. S. Cornell et al., Eur. Phys. J. C 76, 580 (2016), arXiv:1606.01674[hep-ph doi: 10.1140/epjc/s10052-016-4435-8
    [57] N. Okada and H. M. Tran, Phys. Rev. D 94, 075016 (2016), arXiv:1606.05329[hep-ph doi: 10.1103/PhysRevD.94.075016
    [58] T. Fukuyama, N. Okada, and H. M. Tran, Phys. Lett. B 767, 295-302 (2017), arXiv:1611.08341[hep-ph doi: 10.1016/j.physletb.2017.02.021
    [59] G. Bélanger, J. Da Silva, and H. M. Tran, Phys. Rev. D 95, 115017 (2017), arXiv:1703.03275[hep-ph doi: 10.1103/PhysRevD.95.115017
    [60] H. M. Tran and H. T. Nguyen, Phys. Rev. D 99, 035040 (2019), arXiv:1812.11757[hep-ph doi: 10.1103/PhysRevD.99.035040
    [61] E. Chao, Renwick J. Hudspith, Antoine Gerardin et al., arXiv: 2104.02632
    [62] A. E. Carcamo Hernandez, Catalina Espinoza, Juan Carlos Gomez-Izquierdo et al., arXiv: 2104.02730
    [63] Andreas Crivellin and Martin Hoferichter, arXiv: 2104.03202
    [64] Motoi Endo, Koichi Hamaguchi, Sho Iwamoto et al., arXiv: 2104.03217
    [65] Sho Iwamoto, Tsutomu T. Yanagida, and Norimi Yokozaki, arXiv: 2104.03223
    [66] Xiao-Fang Han, Tianjun Li, Hong-Xin Wang et al., arXiv: 2104.03227
    [67] Giorgio Arcadi, Lorenzo Calibbi, Marco Fedele et al., arXiv: 2104.03228
    [68] Juan C. Criado, Abdelhak Djouadi, Niko Koivunen et al., arXiv: 2104.03231
    [69] Bin Zhu and Xuewen Liu, arXiv: 2104.03238
    [70] Yuchao Gu, Ning Liu, Liangliang Su et al., arXiv: 2104.03239
    [71] Hong-Xin Wang, Lei Wang, and Yang Zhang, arXiv: 2104.03242
    [72] Melissa van Beekveld, Wim Beenakker, Marrit Schutten et al., arXiv: 2104.03245
    [73] Wen Yin, arXiv: 2104.03259
    [74] Fei Wang, Lei Wu, Yang Xiao et al., arXiv: 2104.03262
    [75] Manuel A. Buen-Abad, JiJi Fan, Matthew Reece et al., arXiv: 2104.03267
    [76] Pritam Das, Mrinal Kumar Das, and Najimuddin Khan, arXiv: 2104.03271
    [77] Murat Abdughani, Yi-Zhong Fan, Lei Feng et al., arXiv: 2104.03274
    [78] Chuan-Hung Chen, Cheng-Wei Chiang, and Takaaki Nomura, arXiv: 2104.03275
    [79] Shao-Feng Ge, Xiao-Dong Ma, and Pedro Pasquini, arXiv: 2104.03276
    [80] M. Cadeddu, N. Cargioli, F. Dordei et al., arXiv: 2104.03280
    [81] Vedran Brdar, Sudip Jana, Jisuke Kubo et al., arXiv: 2104.03282
    [82] Junjie Cao, Jingwei Lian, Yusi Pan et al., arXiv: 2104.03284
    [83] Manimala Chakraborti, Sven Heinemeyer, and Ipsita Saha, arXiv: 2104.03287
    [84] Masahiro Ibe, Shin Kobayashi, Yuhei Nakayama et al., arXiv: 2104.03289
    [85] Peter Cox, Chengcheng Han, and Tsutomu T. Yanagida, arXiv: 2104.03290
    [86] K. S. Babu, Sudip Jana, Manfred Lindner et al., arXiv: 2104.03291
    [87] Chengcheng Han, arXiv: 2104.03292
    [88] Sven Heinemeyer, Essodjolo Kpatcha, Inaki Lara et al., arXiv: 2104.03294.
    [89] Lorenzo Calibbi, M. L. Lopez-Ibanez, Aurora Melis et al, arXiv: 2104.03296
    [90] D. W. P. Amaral, D. G. Cerdeno, A. Cheek et al., arXiv: 2104.03297
    [91] Yang Bai and Joshua Berger, arXiv: 2104.03301
    [92] Sebastian Baum, Marcela Carena, Nausheen R. Shah et al., arXiv: 2104.03302
    [93] S. Borsanyi, Z. Fodor, J. N. Guenther et al., Nature 593(7857), 51-55 (2021) doi: 10.1038/s41586-021-03418-1
    [94] D. E. López-Fogliani and C. Muñoz, Phys. Rev. Lett. 97, 041801 (2006) doi: 10.1103/PhysRevLett.97.041801
    [95] N. Escudero, D. E. López-Fogliani, C. Muñoz et al., JHEP 12, 099 (2008), arXiv:0810.1507
    [96] J. Fidalgo, D.E. López-Fogliani, C. Muñoz et al., JHEP 10, 020 (2011), arXiv:1107.4614
    [97] P. Bandyopadhyay, P. Ghosh, and S. Roy, Phys. Rev. D 84, 115022 (2011), arXiv:1012.5762 doi: 10.1103/PhysRevD.84.115022
    [98] P. Ghosh, D. E. López-Fogliani, V. A. Mitsou et al., Phys. Rev. D 88, 015009 (2013), arXiv:1211.3177 doi: 10.1103/PhysRevD.88.015009
    [99] H.-B. Zhang, T.-F. Feng, G.-F. Luo et al., JHEP 07 (2013) 069[Erratum ibid. 10 (2013) 173], arXiv:1305.4352
    [100] H.-B. Zhang, T.-F. Feng, S.-M. Zhao et al., Int. J. Mod. Phys. A 29, 1450123 (2014), arXiv:1407.7365 doi: 10.1142/S0217751X14501231
    [101] J.E. Kim and H.P. Nilles, Phys. Lett. B 138, 150 (1984) doi: 10.1016/0370-2693(84)91890-2
    [102] H. P. Nilles, Phys. Rep. 110, 1 (1984) doi: 10.1016/0370-1573(84)90008-5
    [103] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985) doi: 10.1016/0370-1573(85)90051-1
    [104] H. E. Haber, arXiv: hep-ph/9306207
    [105] S. P. Martin, arXiv: hep-ph/9709356
    [106] J. Rosiek, Phys. Rev. D 41, 3464 (1990), arXiv:hep-ph/9511250 doi: 10.1103/PhysRevD.41.3464
    [107] P. Ghosh and S. Roy, JHEP 04, 069 (2009), arXiv:0812.0084
    [108] A. Bartl, M. Hirsch, S. Liebler et al., JHEP 05, 120 (2009), arXiv:0903.3596
    [109] J. Fidalgo, D. E. López-Fogliani, C. Muñoz et al., JHEP 08, 105 (2009), arXiv:0904.3112
    [110] P. Ghosh, P. Dey, B. Mukhopadhyaya et al., JHEP 05, 087 (2010), arXiv:1002.2705
    [111] D. E. López-Fogliani, arXiv: 1004.0884
    [112] H.-B. Zhang, T.-F. Feng, Z.-F. Ge et al., JHEP 02, 012 (2014), arXiv:1401.2704
    [113] H.-B. Zhang, T.-F. Feng, L.-N. Kou et al., Int. J. Mod. Phys. A 28, 1350117 (2013), arXiv:1307.6284 doi: 10.1142/S0217751X13501170
    [114] K.-Y. Choi, D. E. López-Fogliani, C. Muñoz et al., JCAP 1003, 028 (2010)
    [115] G. A. Gómez-Vargas, M. Fornasa, F. Zandanel et al., JCAP 1202, 001 (2012)
    [116] A. Albert et al., JCAP 1410, 023 (2014)
    [117] G. A. Gómez-Vargas, D. E. López-Fogliani, C. Muñoz et al., JCAP 1703, 047 (2017)
    [118] G. A. Gómez-Vargas, D. E. López-Fogliani, C. Muñoz et al., JCAP 01, 058 (2020), arXiv:1911.03191
    [119] G. A. Gómez-Vargas, D. E. López-Fogliani, C. Muñoz et al., Astropart. Phys. 125, 102506 (2021), arXiv:1911.08550 doi: 10.1016/j.astropartphys.2020.102506
    [120] H.-B. Zhang, T.-F. Feng, X.-Y. Yang et al., Phys. Rev. D 95, 075013 (2017), arXiv:1704.03388 doi: 10.1103/PhysRevD.95.075013
    [121] H.-B. Zhang, T.-F. Feng, F. Sun et al., Phys. Rev. D 89, 115007 (2014), arXiv:1307.3607 doi: 10.1103/PhysRevD.89.115007
    [122] H.-B. Zhang, T.-F. Feng, S.-M. Zhao et al., Chin. Phys. C 4, 043106 (2017), arXiv:1511.08979
    [123] C.-X. Liu, H.-B. Zhang, J.-L. Yang et al., JHEP 04, 002 (2020), arXiv:2002.04370
    [124] C.-X. Liu, H.-B. Zhang et al., arXiv: 2012.14786
    [125] D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008) doi: 10.1103/PhysRevLett.100.120801
    [126] R. H. Parker, C. Yu, W. Zhong et al., Science 360, 191 (2018) doi: 10.1126/science.aap7706
    [127] L. Morel, Z. Yao, P. Clade et al., Nature 588, 61 (2020) doi: 10.1038/s41586-020-2964-7
    [128] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01, and 2021 update
    [129] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 812, 135980 (2021), arXiv:2007.07830 doi: 10.1016/j.physletb.2020.135980
    [130] A. M. Sirunyan et al. (CMS Collaboration), JHEP 01, 148 (2021), arXiv:2009.04363
    [131] L. Resnick, M. K. Sundaresan, and P. J. S. Watson, Phys. Rev. D 8, 172 (1973) doi: 10.1103/PhysRevD.8.172
    [132] J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B 106, 292 (1976) doi: 10.1016/0550-3213(76)90184-X
    [133] D. Y. Bardin, B. M. Vilensk,y and P. K. Khristova, Sov. J. Nucl. Phys. 53 (1991) 152, [Yad. Fiz. 53 (1991) 240]
    [134] A. Dabelstein and W. Hollik, Z. Phys. C 53, 507 (1992) doi: 10.1007/BF01625912
    [135] B. A. Kniehl, Nucl. Phys. B 376, 3 (1992) doi: 10.1016/0550-3213(92)90065-J
    [136] B. A. Kniehl, Phys. Rept. 240, 211 (1994) doi: 10.1016/0370-1573(94)90037-X
    [137] A. Djouadi, Phys. Rept. 457, 1 (2008) doi: 10.1016/j.physrep.2007.10.004
    [138] A. Djouadi, Phys. Rept. 459, 1 (2008) doi: 10.1016/j.physrep.2007.10.005
    [139] G. F. Giudice and O. Lebedev, Phys. Lett. B 665, 79 (2008), arXiv:0804.1753 doi: 10.1016/j.physletb.2008.05.062
    [140] N. Vignaroli, Phys. Rev. D 80, 095023 (2009), arXiv:0906.4078 doi: 10.1103/PhysRevD.80.095023
    [141] A. Dery, A. Efrati, Y. Hochberg et al., JHEP 05, 039 (2013), arXiv:1302.3229
    [142] D. de Florian et al. (LHC Higgs Cross Section Working Group), CYRM-2017-002, arXiv: 1610.07922
    [143] A. Crivellin, D. Mueller, and F. Saturnino, arXiv: 2008.02643
    [144] T. F. Feng and X. Y. Yang, Nucl. Phys. B 814, 101 (2009) doi: 10.1016/j.nuclphysb.2009.01.012
    [145] T. F. Feng, L. Sun, and X. Y. Yang, Nucl. Phys. B 800, 221 (2008) doi: 10.1016/j.nuclphysb.2008.03.019
    [146] T. F. Feng, L. Sun, and X. Y. Yang, Phys. Rev. D 77, 116008 (2008) doi: 10.1103/PhysRevD.77.116008
    [147] H. Arason, D. J. Castano, B. Keszthelyi et al., Phys. Rev. D 46, 3945 (1992)
    [148] S. Chen et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001) doi: 10.1103/PhysRevLett.87.251807
    [149] A. Limosani et al. (BELLE Collaboration), Phys. Rev. Lett. 103, 241801 (2009) doi: 10.1103/PhysRevLett.103.241801
    [150] T. Saito et al. (BELLE Collaboration), Phys. Rev. D 91, 052004 (2015) doi: 10.1103/PhysRevD.91.052004
    [151] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77, 051103 (2008) doi: 10.1103/PhysRevD.77.051103
    [152] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 109, 191801 (2012) doi: 10.1103/PhysRevLett.109.191801
    [153] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86, 052012 (2012) doi: 10.1103/PhysRevD.86.052012
    [154] H.-B. Zhang, G.-H. Luo, T.-F. Feng et al., Int. J. Mod. Phys. A 29, 1450196 (2014), arXiv:1409.6837 doi: 10.1142/S0217751X14501966
    [155] M. Abe et al., Prog. Theor. Exp. Phys. 2019(5), 053C02 (2019) doi: 10.1093/ptep/ptz030
    [156] R. Contino et al., CERN Yellow Rep. (2017) no.3, 255-440, CERN-TH-2016-113, arXiv: 1606.09408
    [157] G. Apollinari et al., CERN Yellow Rep. Monogr. 4 (2017) 1-516, CERN-2017-007-M
    [158] CEPC Study Group, IHEP-CEPC-DR-2018-02, arXiv: 1811.10545
    [159] S. Kawada, J. List, and M. Berggren, arXiv: 2009.04340
  • 加载中

Figures(10) / Tables(1)

Get Citation
Hai-Bin Zhang, Chang-Xin Liu, Jin-Lei Yang and Tai-Fu Feng. Muon anomalous magnetic dipole moment in the μνSSM[J]. Chinese Physics C. doi: 10.1088/1674-1137/ac71a6
Hai-Bin Zhang, Chang-Xin Liu, Jin-Lei Yang and Tai-Fu Feng. Muon anomalous magnetic dipole moment in the μνSSM[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ac71a6 shu
Milestone
Received: 2022-02-16
Article Metric

Article Views(1567)
PDF Downloads(31)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Muon anomalous magnetic dipole moment in the μνSSM

    Corresponding author: Hai-Bin Zhang, hbzhang@hbu.edu.cn, Corresponding author
  • 1. Department of Physics, Hebei University, Baoding 071002, China
  • 2. Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding 071002, China
  • 3. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5. College of Physics, Chongqing University, Chongqing 400044, China
  • 6. Department of Physics, Guangxi University, Nanning, 530004, China

Abstract: Recently, the Muon g-2 experiment at Fermilab measured the muon anomalous magnetic dipole moment (MDM), aμ=(gμ2)/2, and reported that the new experimental average increases the difference between the experiment and the standard model (SM) prediction to 4.2σ. In this work, we reanalyze the muon anomalous MDM at the two-loop level in the μ from the ν Supersymmetric Standard Model ( μνSSM) combined with the updated experimental average. The μνSSM can explain the current difference between the experimental measurement and the SM theoretical prediction for the muon anomalous MDM, constrained by the 125 GeV Higgs boson mass and decays, the rare decay ˉBXsγ, and so on. We also investigate the anomalous MDM of the electron and tau lepton, ae=(ge2)/2 and aτ=(gτ2)/2, at the two-loop level in the μνSSM. In addition, the decaying of the 125 GeV Higgs boson into a pair of charged leptons in the μνSSM is analyzed.

    HTML

    I.   INTRODUCTION
    • The anomalous magnetic dipole moment (MDM) of a muon, aμ=(gμ2)/2, has recently been measured by the Muon g-2 experiment at Fermilab [14], which reported that the result is 3.3 standard deviations (σ) greater than the standard model (SM) prediction based on its Run-1 data and is in agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement [5]. Combined with previous E821 measurements, the new experimental average for the difference between the experimental measurements and the SM prediction [6] of aμ is given by

      Δaμ=aexpμaSMμ=(25.1±5.9)×1010,

      (1)

      which increases the difference between the experimental measurements and the SM theoretical prediction to 4.2σ. This result will further motivate the development of SM extensions. There are many research papers on the muon anomalous MDM, such as Refs. [792] and the references therein. However, it is worth mentioning that the latest result obtained by a lattice QCD calculation [93] of the leading order hadronic vacuum polarization contribution to aμ is larger than the previous result, which can accommodate the discrepancy between the experiment and the SM prediction, hence the discrepancy needs further scrutiny.

      In this work, we will analyze the muon anomalous MDM at the two-loop level in the μ from the ν Supersymmetric Standard Model ( μνSSM) [94100], combined with the new experimental average. Through introducing three singlet right-handed neutrino superfields ˆνci (i=1,2,3), the μνSSM can be used to solve the μ problem [101] of the minimal supersymmetric standard model (MSSM) [102106], and can generate three tiny neutrino masses through a TeV scale seesaw mechanism [95, 107113].

      The corresponding superpotential of the μνSSM is given as [94, 95]

      W=ϵab(YuijˆHbuˆQaiˆucj+YdijˆHadˆQbiˆdcj+YeijˆHadˆLbiˆecj)+ϵabYνijˆHbuˆLaiˆνcjϵabλiˆνciˆHadˆHbu+13κijkˆνciˆνcjˆνck.

      (2)

      where a,b=1,2 are SU(2) indices with the antisymmetric tensor ϵ12=1, and i,j,k=1,2,3 are generation indices. The repeating indices imply the following summation convention. Yu,d,e,ν, λ, and κ are dimensionless matrices, a vector, and a symmetric tensor, respectively. In the superpotential, the effective bilinear terms ϵabεiˆHbuˆLai and ϵabμˆHadˆHbu can be generated with εi=Yνij˜νcj and μ=λi˜νci once the electroweak symmetry is broken. The general soft SUSY-breaking terms, the usual D- and F-term contributions of the tree-level scalar potential, and the mass matrices of the particles in the μν SSM can be seen in Refs. [95, 96, 99]. In the μνSSM, the gravitino or the axino can be dark matter candidates [95, 96, 110, 114119].

      In our previous work, the Higgs boson mass and decay modes hγγ, hVV (V=Z,W), hfˉf (f=b,τ), and hZγ in the μνSSM were researched [120124]. Constrained by the 125 GeV Higgs boson mass and decays, herein we will investigate the anomalous MDM of the charged leptons at the two-loop level in the μνSSM, combined with the updated experimental average of the muon MDM. For the electron anomalous MDM, ae=(ge2)/2, the experimental result showed a negative 2.4σ discrepancy between the measured value [125] and the SM prediction [126]. However, a new determination of the fine structure constant with a higher accuracy [127], obtained from a measurement of the recoil velocity on rubidium atoms, resulted in a re-evaluation of ae in the SM, revising it to a positive 1.6σ discrepancy

      aeaexpeaSMe=(4.8±3.0)×1013.

      (3)

      Interestingly, now ae and aμ are all positive.

      Now, the measured averages of the signal strengths for the 125 GeV Higgs boson decays into two taus and bottom quarks relative to the standard model (SM) prediction are respectively 1.15+0.160.15 and 1.04±0.13 with high experimental precision [128]. Although Higgs boson decays into a pair of fermions of the third generation can now be measured accurately by the Large Hadron Collider (LHC), the Higgs boson decays into a pair of fermions of the first or second generation are challenging to measure, as the Yukawa couplings of the 125 GeV Higgs boson to fermions of the first and second generation are smaller than that of the third generation. However, the ATLAS and CMS Collaborations recently measured the 125 GeV Higgs boson decay into a pair of muons hμˉμ, and reported that the signal strength relative to the SM prediction is 1.2±0.6 with 2.0σ [129] and 1.19+0.40+0.150.390.14 with 3.0σ [130], respectively. The dimuon decay of the 125 GeV Higgs boson hμˉμ offers the best opportunity for measuring Higgs interactions with second-generation fermions at the LHC. The 125 GeV Higgs boson decay hμˉμhas been discussed within various theoretical frameworks [131143]. Herein, we investigate the 125 GeV Higgs boson decay hμˉμ at the one-loop level in the μνSSM.

      In the following, we briefly introduce the MDM of the charged leptons in Sec. II. In Sec. III, we give the decay width of the 125 GeV Higgs boson decays into a pair of charged leptons hliˉli at the one-loop level. Sec. IV and Sec. V respectively show the numerical analysis and summary.

    II.   MDM of the charged leptons
    • The MDM of the charged leptons in the μνSSM can be written by the effective Lagrangian

      LMDM=e4mliali¯liσαβliFαβ,

      (4)

      where li represents the charged leptons, which are on-shell, mli is the mass of the charged leptons, σαβ=(i/2)[γα,γβ], Fαβ denotes the electromagnetic field strength and the MDM of the charged leptons is ali=(1/2)(gli2). Including the main two-loop electroweak corrections, the MDM of the charged leptons in the μνSSM can be given by

      aSUSYli=aoneloopli+atwoloopli,

      (5)

      where the one-loop corrections aoneloopli are pictured in Fig. 1 and the main two-loop corrections atwoloopli are shown in Fig. 2.

      Figure 1.  Dominant one-loop diagrams representing the contributions from neutral fermions χ0η and charged scalar Sα loops (a), and the contributions from charged fermions χβ and neutral scalar Sα (or Pα) loops (b).

      Figure 2.  Main two-loop rainbow diagram (a) and Barr-Zee type diagrams (b, c).

      In Fig. 1, the contributions of the charged leptons to the MDM at the one-loop level in the μνSSM come from neutral fermions and charged scalar loops (neutral fermions χ0η and charged scalars Sα are loop particles) and the charged fermions and neutral scalar loop (charged fermions χβ and neutral scalars Nα=Sα,Pα are loop particles). The concrete expressions of the one-loop corrections aoneloopli can be found in our previous related work [122] by replacing the charged leptons li with the muon lμ.

      Here, the dominant contribution of the muon MDM aμ comes from the charged fermions and neutral scalar loops in Fig. 1(b). We check that the one-loop correction in the μνSSM is approximately in agreement with the MSSM and the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [10, 64, 82]. Although the MDM of the muon in the μνSSM has roughly the same properties in the MSSM and NMSSM, it is subject to significantly relaxed limitations in parameter space in the μνSSM if other physical quantities are researched. Of course, through introducing three singlet right-handed neutrino superfields ˆνci (i=1,2,3) for solving the μ problem of the MSSM and generating three tiny neutrino masses, the μνSSM still can give some additional contributions to the muon MDM aμ beyond the MSSM.

      In Fig. 2, the main two-loop rainbow diagram (a) and the Barr-Zee type diagrams (b, c) of ali in the μνSSM are shown, in which a closed fermion loop is attached to virtual gauge bosons or scalars, and the corresponding corrections for ali are obtained by attaching a photon in all possible ways to the internal particles. In our previous work [123], we show the main two-loop contributions of the muon MDM in the approximation mχ0ηmχβ. In this paper, we give the main two-loop contributions atwoloopli for the general case.

      In the μνSSM, the main SUSY two-loop corrections of the MDM of the charged leptons can be given as

      atwoloopli=aWWli+aWSli+aγhli,

      (6)

      where the terms aWWli,aWSli,aγhli are the contributions corresponding to Figs. 2 (a−c). The contribution from the main two-loop rainbow diagram in Fig. 2(a) can be written as

      aWWli=GFm2li82π4{(|CW¯χ0ηχβL|2+|CW¯χ0ηχβR|2)T1(1,xχ0η,xχβ)+(|CW¯χ0ηχβL|2|CW¯χ0ηχβR|2)T2(1,xχ0η,xχβ)

      +2(xχ0ηxχβ)1/2(CW¯χ0ηχβRCW¯χ0ηχβL)T3(1,xχ0η,xχβ)},

      (7)

      with xi=m2i/m2W. The expressions of the form factors Ti can be found in Refs. [144146]. The concrete expressions for couplings C in the μνSSM can be seen in Ref. [99].

      The contribution from the main two-loop Barr-Zee type diagram in Fig. 2 (b) can be given by

      aWSli=GFmlimW128π4g2(CSα¯liχ07+iL)×{(xχβ)1/2F1(1,xSα,xχ0η,xχβ)×(CSα¯χβχ0ηLCW¯χ0ηχβL+CSα¯χβχ0ηRCW¯χ0ηχβR)+(xχ0η)1/2F2(1,xSα,xχ0η,xχβ)×(CSα¯χβχ0ηLCW¯χ0ηχβR+CSα¯χβχ0ηRCW¯χ0ηχβL)+(xχβ)1/2F3(1,xSα,xχ0η,xχβ)×(CSα¯χβχ0ηLCW¯χ0ηχβLCSα¯χβχ0ηRCW¯χ0ηχβR)+(xχ0η)1/2F4(1,xSα,xχ0η,xχβ)×(CSα¯χβχ0ηLCW¯χ0ηχβRCSα¯χβχ0ηRCW¯χ0ηχβL)},

      (8)

      where the expressions of the form factors Fi can be seen in Ref. [144]. Here, in the μνSSM, h denotes S1, li is denoted by χ2+i. Considering that the masses of the charged scalars Sα are larger than the mass of a W gauge boson constrained by the present experiments, the contribution from the main two-loop Barr-Zee type diagram aWSli is smaller than the contribution from the main two-loop rainbow diagram aWWli.

      The contribution from the main two-loop Barr-Zee type diagram in Fig. 2(c) can be written as

      aγhli=GFmlimWs2W16π4(xχβ)1/2T11(xh,xχβ,xχβ)(Ch¯liliLCh¯χβχβL).

      (9)

      Through the numerical calculation, normalized to the one-loop corrections aoneloopli, the two-loop corrections of the MDM atwoloopli in the μνSSM may reach about 10%, when tanβ is large, and the masses of the superpartners are small and constrained by the experiments. Therefore, one-loop correction alone is sufficient for explaining the g-2 of a muon and satisfying all other experimental constraints. In the following numerical analysis, the two-loop corrections of the muon MDM are still considered to be more precise.

    III.   hliˉli IN THE μνSSM
    • The corresponding effective amplitude for the 125 GeV Higgs decay hliˉli can be written as

      M=hˉli(FiLPL+FiRPR)li.

      (10)

      The decay width of hliˉli can be obtained as

      Γ(hliˉli)mh16π(|FiL|2+|FiR|2).

      (11)

      The contribution from the tree level in the μνSSM can be written as

      F(tree)iL=F(tree)iR=mli2υcosβRS11,

      (12)

      where mli denotes the mass of the lepton li, υ174 GeV, and RS is the unitary matrix which diagonalizes the mass matrix of CP-even neutral scalars [120]. In the SM, the contribution from the tree level can be written by

      F(tree)iL(SM)=F(tree)iR(SM)=mli2υ.

      (13)

      The running lepton masses mli(Λ) are related to the pole masses mli through [147]

      mli(Λ)=mli{1α(Λ)π[1+34lnΛ2m2li]}.

      (14)

      Similarly to the decays hliˉli, the decay width of the 125 GeV Higgs decay into down-type quarks hdiˉdi can be given as

      Γ(hdiˉdi)Ncmh16π(|FidL|2+|FidR|2),

      (15)

      with Nc=3, and the tree level contribution in the μνSSM is

      F(tree)idL=F(tree)idR=mdi2υcosβRS11,

      (16)

      where mdi denotes the mass of the down-type quarks di. In the SM, the contribution from the tree level can be written by

      F(tree)idL(SM)=F(tree)idR(SM)=mdi2υ.

      (17)

      The difference between the decay width of hfiˉfi of the μνSSM (ΓNP(hfiˉfi)) and that of the SM (ΓSM(hfiˉfi)) in the tree level can be given as

      δtreeΓNP(hfiˉfi)ΓSM(hfiˉfi)ΓSM(hfiˉfi)=R2S11cos2β1.

      (18)

      Here,fi=li,di, due to the fact that the tree-level contribution of the Higgs boson decay into leptons is identical to that for the Higgs boson decay into down-tpye quarks. The numerical results can show that the ratio δtree is about 1% when the parameter tanβ in the μνSSM is small.

      The one-loop electroweak correction for hliˉli in the SM is approximated by [133137]

      Γ(one)SM(hliˉli)Γ(tree)SM(hliˉli)δlweek,

      (19)

      with

      δlweek=GF8π22[7m2t+m2W(5+3logc2Ws2W)m2Z6(18s2W+16s4W)12],

      (20)

      where the contributions come from the t quark, W boson and Z boson. The numerical result shows that the one-loop electroweak contribution relative to the tree contribution δlweek is about 1.7%.

      The one-loop diagrams for hliˉli in the μνSSM beyond the SM are depicted in Fig. 3. Then, the contributions from the one-loop diagrams in the μνSSM can be written by

      Figure 3.  One-loop diagrams for hliˉli in the μνSSM. (a, b) represent the contributions from the charged scalar Sα,ρ and neutral fermion χ0η,ς loops, while (c, d) represent the contributions from the neutral scalar Nα,ρ (N=S,P) and charged fermion χβ,ζ loops.

      F(one)iL,R=F(a)iL,R+F(b)iL,R+F(c)iL,R+F(d)iL,R,

      (21)

      where F(a,b)iL,R denotes the contributions from the charged scalar Sα,ρ and neutral fermion χ0η,ς (upper index 0 shows neutral) loops, and F(c,d)iL,R stands for the contributions from the neutral scalar Nα,ρ (N=S,P) and charged fermion χβ,ζ loops.

      After integrating the heavy freedoms out, we formulate the neutral fermion loop contributions F(a,b)iL,R as follows:

      F(a)iL=mχ0ηCS±1αρm2WCSρˉliχ0ηLCSαˉχ0ηliLG1(xχ0η,xSα,xSρ),F(b)iL=mχ0ςmχ0ηm2WCSαˉliχ0ςLChˉχ0ςχ0ηLCSαˉχ0ηliLG1(xSα,xχ0ς,xχ0η)+CSαˉliχ0ςLChˉχ0ςχ0ηRCSαˉχ0ηliLG2(xSα,xχ0ς,xχ0η),F(a,b)iR=F(a,b)iL|LR.

      (22)

      Here, the concrete expressions for the couplings C can be found in Refs. [121, 122], and the loop functions Gi are given as

      G1(x1,x2,x3)=116π2[x1lnx1(x1x2)(x1x3)+x2lnx2(x2x1)(x2x3)+x3lnx3(x3x1)(x3x2)],

      (23)

      G2(x1,x2,x3)=116π2[x21lnx1(x1x2)(x1x3)+x22lnx2(x2x1)(x2x3)+x23lnx3(x3x1)(x3x2)].

      (24)

      In a similar way, the charged fermion loop contributions F(c,d)iL,R are

      F(c)iL=N=S,PmχβCN1αρm2WCNρˉliχβLCNαˉχβliLG1(xχβ,xNα,xNρ),F(d)iL=N=S,P[CNαˉliχζLChˉχζχβRCNαˉχβliLG2(xNα,xχζ,xχβ)+mχζmχβm2WCNαˉliχζLChˉχζχβLCNαˉχβliLG1(xNα,xχζ,xχβ)],F(c,d)iR=F(c,d)iL|LR.

      (25)
    IV.   NUMERICAL ANALYSIS
    • Firstly, we take some appropriate parameter space in the μνSSM. For soft SUSY-breaking mass squared parameters, we make the minimal flavor violation (MFV) assumptions

      m2˜Qij=m2˜Qiδij,m2˜ucij=m2˜uicδij,m2˜dcij=m2˜dicδij,m2˜Lij=m2˜Lδij,m2˜ecij=m2˜ecδij,m2˜νcij=m2˜νciδij,

      (26)

      where i,j,k=1,2,3. m2˜νci can be constrained by the minimization conditions of the neutral scalar potential seen in Ref. [120]. For some coupling parameters, we also choose the MFV assumptions

      κijk=κδijδjk,(Aκκ)ijk=Aκκδijδjk,υνci=υνc,λi=λ,(Aλλ)i=Aλλ,Yeij=Yeiδij,(AeYe)ij=AeYeiδij,Yνij=Yνiδij,(AνYν)ij=aνiδij,

      (27)

      In our previous work [113], we have discussed in detail how the neutrino oscillation data constrain left-handed sneutrino VEVs υνiO(104GeV) and neutrino Yukawa couplings YνiO(107) in the μνSSM via the TeV scale seesaw mechanism. In the following, we choose mν1=102 eV as the lightest neutrino and assume the neutrino mass spectrum with normal ordering, using neutrino oscillation experimental data [128] to constrain the parameters υνi and Yνi. Considering experimental data on quark mixing, one can have

      Yuij=YuiVuLij,(AuYu)ij=AuiYuij,Ydij=YdiVdLij,(AdYd)ij=AdYdij,

      (28)

      and V=VuLVdL denotes the CKM matrix.

      Yui=muiυu,Ydi=mdiυd,Yei=mliυd,

      (29)

      where the mui,mdi, and mli stand for the up-quark, down-quark, and charged lepton masses, respectively.

      Through analysis of the parameter space of the μνSSM [95], we can choose the reasonable parameter values of κ=0.4, Aκ=300GeV, λ=0.1, Aλ=500GeV, and Au1,2=Ad=Ae=1TeV for simplicity. Considering the direct search for supersymmetric particles [128], we take m˜Q1,2,3=m˜u1,2c=m˜d1,2,3c=2TeV, M3=2.5TeV. For simplicity, we will choose the gauginos' Majorana masses M1=M2. As key parameters, Au3At, m˜uc3 and tanβυu/υd greatly affect the lightest Higgs boson mass. Therefore, the free parameters that affect our next analysis are

      tanβ,υνc,M2,m˜L,m˜ec,m˜uc3,At.

      (30)

      To present a numerical analysis, we random scan the parameter space shown in Table 1. Considering that the light stop mass is easily ruled out by the experiment, we scan the parameter m˜uc3 from 1 TeV. Now, the average measured mass of the Higgs boson is [128]

      Parameters Min Max
      tanβ 4 40
      vνc/TeV 1 6
      M2/TeV 0.3 2
      m˜L=m˜ec/TeV 0.5 2
      m˜uc3/TeV 1 4
      At/TeV 1 4

      Table 1.  Random scan parameters.

      mh=125.25±0.17GeV,

      (31)

      where the accurate Higgs boson mass can give stringent constraints for the parameter space of the model. In our previous work [120], the Higgs boson masses in the μνSSM, including the main two-loop radiative corrections are discussed. Through the work, herein, the scanning results are constrained by the lightest Higgs boson mass with 124.68mh125.52GeV, where a 3σ experimental error is considered. For the signal strengths of the light Higgs boson decay modes hγγ,WW,ZZ,bˉb,τˉτ,μˉμ, we adopt the averages of the results from PDG, which reads [128]

      μexpγγ=1.11+0.100.09,μexpWW=1.19±0.12,μexpZZ=1.06±0.09,μexpbˉb=1.04±0.13,μexpτˉτ=1.15+0.160.15,μexpμˉμ=1.19±0.34.

      (32)

      Here, a 2σ experimental error will be considered in the scanning results, using our previous work [121] on the signal strengths of the Higgs boson decay channels hγγ, hVV (V=Z,W), and hfˉf (f=b,τ) in the μνSSM.

      There is a close similarity between the anomalous MDM of a muon and the branching ratio of ˉBXsγ in the supersymmetric model [14]. They both obtain large tanβ enhancements from the down-fermion Yukawa couplings, Ydi=mdi/υd=mditan2β+1/υ and Yei=mli/υd=mli×tan2β+1/υ with υ=υ2d+υ2u174 GeV. Combined with the experimental data from CLEO [148], BELLE [149, 150], and BABAR [151153], the current experimental value for the branching ratio of ˉBXsγ is [128]

      Br(ˉBXsγ)=(3.49±0.19)×104.

      (33)

      Using our previous work about the rare decay ˉBXsγ in the μνSSM [154], the following results of scanning are also constrained by 2.92×104Br(ˉBXsγ)4.06×104, where a 3σ experimental error is considered.

    • A.   MDM of charged leptons

    • Firstly, to illustrate clearly the cross-correlation of the model parameters, we plot aSUSYμ varying with υνc with different M2 and tanβ in Fig. 4, choosing m˜L=m˜ec=0.7 TeV and m˜uc3=At=1 TeV for simplicity. In Fig 4(a), the solid line denotes M2=0.3 TeV, the dashed line denotes M2=1 TeV, and the dotted line denotes M2=2 TeV with tanβ=40. The numerical results show that the muon anomalous MDM aSUSYμ is decoupling with increasing υνc or M2, which can affect the masses of the charginos and neutralinos. In Fig 4(b), the solid line represents tanβ=40, the dashed line represents tanβ=25, and the dotted line represents tanβ=15, with M2=0.3 TeV. Through Fig. 4 (b), we can see that the muon anomalous MDM aSUSYμobtains large tanβ enhancements, which is similar to that in MSSM.

      Figure 4.  (color online) aSUSYμ versus υνc with different M2 (a) and tanβ (b), where the gray area denotes Δaμ at 3.0σ given in Eq. (1).

      Through random scanning the parameter space shown in Table 1, we plot the anomalous magnetic dipole moment of muon aSUSYμ varying with the key parameters tanβ (a) and υνc (b) in Fig. 5, where the gray area denotes Δaμ at 3.0σ given in Eq. (1). Here, the red triangles are excluded by Δaμ at 3.0σ. The green points of the μνSSM agree with Δaμ at 3.0σ, which can explain the current difference between the experimental measurements and the SM theoretical prediction for the muon anomalous MDM.

      Figure 5.  (color online) aSUSYμ versus tanβ (a) and υνc (b), where the gray area denotes Δaμ at 3.0σ given in Eq. (1) and the red triangles are eliminated.

      Figure 5(a) shows that the muon anomalous MDM aSUSYμ increases with an increase in the parameter tanβ. One can find that a significant region of the parameter space is excluded by Δaμ at 3.0σ in the small tanβ region. Here, the very small tanβ region is also easily eliminated by the constraint of the 125 GeV Higgs boson mass. The numerical results in Fig. 5(b) depict that the muon anomalous MDM aSUSYμ is decoupling with increasing υνc. Therefore, υνc can affect the masses of charginos and neutralinos. We can see that the value of the muon anomalous MDM aSUSYμ in the μνSSM could explain the experimental muon anomalous MDM Δaμ at 3.0σ shown in Eq. (1), when υνc is small and tanβ is large. Constrained by Δaμ at 3.0σ shown in Eq. (1), tanβ<10 or υνc>5 TeV will be easily eliminated.

      To see more clearly, we plot the anomalous magnetic dipole moment of muon aSUSYμ varying with the lightest chargino mass mχ1 in Fig. 6(a), through scanning the parameter space shown in Table 1. The results show that the contribution of the lightest chargino mass mχ1 is roughly similar with the contribution of the parameter υνc. Because here μ3λυνc, where μ directly affect the masses of the charginos. In Fig. 6(b), aSUSYμ versus m˜ec is also pictured. When m˜ec is small, aSUSYμ in the μνSSM could explain the Δaμ at 3.0σ. The variation trend of aSUSYμ versus m˜ec coincides with the decoupling theorem; therefore, m˜ec directly affects the masses of the slepton. One can see that the anomalous magnetic dipole moment of muon aSUSYμ can reach Δaμ at 3.0σ as shown in Eq. (1), when mχ1<1.1 TeV and m˜ec<1.5 TeV.

      Figure 6.  (color online) aSUSYμ versus mχ1 (a) and m˜ec (b), where the gray area denotes Δaμ at 3.0σ given in Eq. (1) and the red triangles are eliminated.

      For the anomalous MDM of the electron and tau lepton, we also picture aSUSYμ versus aSUSYe (a) and aSUSYτ (b) in Fig. 7, where the green points are in agreement with Δaμ at 3.0σ given in Eq. (1) and the red triangles are eliminated by that. Constrained by the updated discrepancy for Δaμ at 3.0σ, the anomalous MDM aSUSYe and aSUSYτ in the μνSSM are about 0.7×1013 and 0.8×106, respectively. The numerical results show that the ratio between the anomalous MDMs of the tau lepton and muon is about 2.8×102, which is in agreement with aτ/aμm2τ/m2μ2.8×102. The ratio between the anomalous MDMs of the muon and electron also is consistent with aμ/aem2μ/m2e4.3×104.

      Figure 7.  (color online) aSUSYμ versus aSUSYe (a) and aSUSYτ (b), where the gray area denotes Δaμ at 3.0σ given in Eq. (1), and the red triangles are eliminated by Δaμ at 3.0σ.

    • B.   hliˉli

    • We define the physical quantity

      δliΓNP(hli¯li)ΓSM(hli¯li)ΓSM(hli¯li),

      (34)

      to show the difference in the decay width of hli¯li of the μνSSM (ΓNP(hli¯li)) and that of the SM (ΓSM(hli¯li)), where li=e,μ,τ. Firstly, to illustrate clearly the cross-correlation of the model parameters, we plot the ratio δμ (a) and δτ (b) versus the parameter tanβ with different υνc in Fig. 8, taking m˜L=m˜ec=0.6 TeV, M2=2 TeV, m˜uc3=2 TeV and At=3 TeV for simplicity. In Fig. 8, the solid line denotes υνc=6 TeV, the dashed line denotes υνc=3 TeV, and the dotted line denotes υνc=1 TeV. The numerical results in Fig. 8 show that the ratios δμ and δτ increase with increasing tanβ or υνc. The charged lepton Yukawa couplings obtain large tanβ enhancements, with Yei=mlitan2β+1/υ.

      Figure 8.  (color online) Ratio δμ (a) and δτ (b) versus the parameter tanβ with different υνc.

      Through scanning in Table 1, we plot Figs. 9, 10, where the green dots are the corresponding physical quantity values of the remaining parameters after being constrained by the muon anomalous MDM aSUSYμ in the μνSSM, with 7.4×1010aSUSYμ42.8×1010considered a 3σ experimental error. The red triangles are ruled out by the muon anomalous MDM with aSUSYμ>42.8×1010 and aSUSYμ<7.4×1010.

      Figure 9.  (color online) Ratio δμ versus the parameter tanβ (a) and υνc (b).

      Figure 10.  (color online) Ratio δτ versus the parameter tanβ (a) and υνc (b).

      In Fig. 9, we plot the ratio δμ varying with the parameter tanβ (a) and υνc (b). We can see that the ratio δμ increases with increasing tanβ in Fig. 9(a). The ratio δμ can be close to 30% when the parameter tanβ is large, constrained by Δaμ at 3.0σ. Fig. 9 (b) shows that the ratio δμ is non-decoupling with increasing υνc. The maximum of the ratio δμ is around 15 % as υνc is about 1 TeV and close to 30% as υνc is about 3 TeV. In the μνSSM, the parameter υνc leads to a mixing of the neutral components of the Higgs doublets with the sneutrinos. This mixing affects the lightest Higgs boson mass and the Higgs couplings, which is different in the SM.

      In addition, we plot the ratio δτ varying with the parameter tanβ and υνc in Fig. 10, which has a variation trend similar to that of the ratio δμ. The numerical results show that, constrained by the experimental value of the muon anomalous MDM, the ratio δτ can be about 20% when tanβ is about 40 and υνc is around 3 TeV.

    V.   SUMMARY
    • Considering that the new experimental average for the muon anomalous MDM increases the difference between the experiments and SM prediction to 4.2σ, we analyze the muon anomalous MDM at the two-loop level in the μνSSM. The numerical results show that the μνSSM can explain the current difference between the experimental measurements and the SM theoretical prediction for the muon anomalous MDM, constrained by the 125 GeV Higgs boson mass and decays, the rare decay ˉBXsγ and so on. The new experimental average of the muon anomalous MDM considered that a 3σ also gives a strict constraint for the parameter space of the μνSSM, which constrains that tanβ>10, m˜ec<1.5 TeV and υνc<5 TeV with λ=0.1. Moreover, the anomalous MDM of the tau lepton and the electron in the μνSSM can reach about 0.7×1013 and 0.8×106, respectively, constrained by the new experimental average of the muon anomalous MDM at 3.0σ.

      An upgrade to the Muon g-2 experiment at Fermilab and another experiment at the J-PARC [155] will lead to measurements of the muon anomalous magnetic dipole moment with higher precision, which may reach a 5σ deviation from the SM, constituting an augury for new physics beyond the SM. In addition, the anomalous MDM of the tau lepton and electron, whether deviating from the SM prediction, will be determined more accurately, with the development of experiments in the future.

      Considering that the ATLAS and CMS collaborations measured the 125 GeV Higgs boson decay into a pair of muons hμˉμ recently, we also investigate the 125 GeV Higgs boson decay hμˉμ at the one-loop level in the μνSSM. Compared with the SM prediction, the decay width of hμˉμ and hτˉτ in the μνSSM can boost up about 30% and 20%, considering the constraint from the muon anomalous magnetic dipole moment. In the μνSSM, the mixing of the neutral components of the Higgs doublets with the sneutrinos affects the lightest Higgs boson mass and the Higgs couplings, which can contribute to Higgs boson decay. In the future, high luminosity or high energy large colliders [156159] will detect the Higgs boson decay hμˉμ and hτˉτ with high precision, which may be an indication for new physics.

Reference (159)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return