-
The Schrödinger equation for a pair of particles in vacuum can be expressed as
$ \left [\frac{{\boldsymbol{p}}_{a}^{2}}{2m_{q}}+\frac{{\boldsymbol{p}}_{b}^{2}}{2m_{q}} +{\boldsymbol{V}} \right ]\Phi \left ( {\boldsymbol{R}},{\boldsymbol{r}} \right )=\left [ E-2m_{q} \right ]\Phi \left ( {\boldsymbol{R}},{\boldsymbol{r}} \right ), $
(1) where the eigenvalue
E means the total energy of the system, including static mass $ m_{m} $ and the kinetic energy E$ _{k} $ . Using minimal coupling to introduce an electromagnetic field, the Schrödinger equation becomes$ \begin{aligned}[b] &\left[ \frac{\left( {\boldsymbol{p}}_{a}-q_{a}{\boldsymbol{A}}_{a}\right) ^{2}}{2m_{q}}+ \frac{\left( {\boldsymbol{p}}_{b}-q_{b}{\boldsymbol{A}}_{b}\right) ^{2}}{2m_{q}}+{\boldsymbol{V}} -{\boldsymbol{\mu}}\cdot {\boldsymbol{B}}\right] \Phi \left( {\boldsymbol{R}}, {\boldsymbol{r}}\right) \\ =&\left[ E-2m_{q}\right] \Phi \left( {\boldsymbol{R}},{\boldsymbol{r}}\right), \end{aligned} $
(2) where
$ {\boldsymbol{\mu}}=\dfrac{q}{m_{q}}\left({\boldsymbol{S}}_{a}-{\boldsymbol{S}}_{b}\right) $ is the spin magnetic moment. As the kinetic momentum${\boldsymbol{P}}_{\rm kin}={\boldsymbol{p}}_a+{\boldsymbol{p}}_b-q_a {\boldsymbol{A}}_a-q_b{\boldsymbol{A}}_b$ is no longer conserved in such a system, we should define the kinetic energy using its expectation value, so the meson mass here should be defined as$ m_{m}=E-E_{k} $ $ =E-\dfrac{ \langle {\boldsymbol{p}}_{a}+{\boldsymbol{p}}_{b}-q_{a}{\boldsymbol{A}}_{a}-q_{b}{\boldsymbol{A}} _{b}\rangle }{4m_{q}}^{2} $ .Then we use center-of-mass coordinates and make the transformation
$ {\boldsymbol{R}}=\frac{1}{2}{\boldsymbol{r}}_{a}+\frac{1}{2}{\boldsymbol{r}}_{b}, $
(3) $ {\boldsymbol{r}}={\boldsymbol{r}}_{a}-{\boldsymbol{r}}_{b}, $
(4) and the corresponding momentum
$ {\boldsymbol{P}}={\boldsymbol{p}}_{a}+{\boldsymbol{p}}_{b}=-{\rm i}{\boldsymbol{\partial}}_{R}, $
(5) $ {\boldsymbol{p}}=\frac{1}{2}{\boldsymbol{p}}_{a}-\frac{1}{2}{\boldsymbol{p}}_{b}= -{\rm i}{\boldsymbol{\partial}}_{r}. $
(6) For a homogenous and constant magnetic field, we fix the vector potential as
$ {\boldsymbol{A}}=\dfrac{1}{2}B\times {\boldsymbol{r}} $ , and the electric charges of the quark and antiquark are opposite. In this case, we can derive that$ \frac{\left ( {\boldsymbol{p}}_{a}-q_{a}{\boldsymbol{A}}_{a} \right )^{2}}{2m_{q}}+\frac{\left ({\boldsymbol{p}}_{b}-q_{b}{\boldsymbol{A}}_{b} \right )^{2}}{2m_{q}}=\frac{{\boldsymbol{P}}_{\rm kin}^{2}}{4m_{q}}+\frac{{\boldsymbol{{p}'}}^{2}}{m_{q}}, $
(7) where
${\boldsymbol{P}}_{\rm kin}={\boldsymbol{P}}-\dfrac{1}{2}q{\boldsymbol{B}}\times {\boldsymbol{r}}$ and$ {\boldsymbol{{p}'}}={\boldsymbol{p}}-\dfrac{1}{2}q{\boldsymbol{B}}\times {\boldsymbol{R}} $ .It is easy to prove that
$ \left[ {\boldsymbol{P}}+\frac{1}{2}q{\boldsymbol{B}}\times {\boldsymbol{r}},{\boldsymbol{{p}'}}\right] =0\Rightarrow \left[ {\boldsymbol{P}}+\frac{1}{2}q{\boldsymbol{B}}\times {\boldsymbol{r}},{\boldsymbol{H}}\right] =0 . $
This shows that the quantity called pseudo-momentum
${\boldsymbol{P_{ps}}}={\boldsymbol{P}}+ \dfrac{1}{2}q{\boldsymbol{B}}\times {\boldsymbol{r}}={\boldsymbol{P_{\rm kin}}}+q{\boldsymbol{B}}\times {\boldsymbol{r}}$ [14] is a conserved quantity. Using this, we can separate the$ {\boldsymbol{R}} $ dependence from the wave function, and find that [15]$ \Psi ({\boldsymbol{R}},{\boldsymbol{r}}) ={\rm e}^{{\rm i}({\boldsymbol{P}}_{ps}-\frac{1}{2}q{\boldsymbol{B}}\times {\boldsymbol{r}} )\cdot R}\psi ({\boldsymbol{r}}), $
(8) $ {\boldsymbol{{p}'}}\Psi ({\boldsymbol{R}},{\boldsymbol{r}}) ={\rm e}^{{\rm i}({\boldsymbol{P}}_{ps}-\frac{1}{2}q{\boldsymbol{B}} \times {\boldsymbol{r}})\cdot R}{\boldsymbol{p}}\psi ({\boldsymbol{r}}), $
(9) $ {\boldsymbol{{p}'}}^{2}\Psi ({\boldsymbol{R}},{\boldsymbol{r}}) = {\rm e}^{{\rm i}({\boldsymbol{P}}_{ps}-\frac{1}{2}q{\boldsymbol{B}} \times {\boldsymbol{r}})\cdot R}{\boldsymbol{p}}^{2}\psi ({\boldsymbol{r}}). $
(10) Separating out the
$ {\boldsymbol{R}} $ -dependent part, the Schrödinger equation becomes$ \begin{aligned}[b]&\left[ \begin{array}{c} {{\boldsymbol{p}}^{2}}+m_{q}V-q({\boldsymbol{S}}_{a}-{\boldsymbol{S}}_{b})\cdot {\boldsymbol{B}}+ \\ \dfrac{-2q{\boldsymbol{P}}_{ps}\times {\boldsymbol{B}}\cdot {\boldsymbol{r}}+q^{2}({{\boldsymbol{B}}\times {\boldsymbol{r}} })^{2}}{4} \end{array} \right] \psi ({\boldsymbol{r}})\\ =&\left[ m_{q}E-2m_{q}^{2}-\frac{{\boldsymbol{P}}_{ps}^{2}}{4}\right] \psi ({\boldsymbol{r}}), \end{aligned} $
(11) and the kinetic energy can be expressed in a simpler form
$E_{k}=\dfrac{ \langle {\boldsymbol{P}}_{\rm kin}\rangle ^{2}}{4m_{q}}=\dfrac{ \langle \boldsymbol{P}_{ps}-q\boldsymbol{B}\times \boldsymbol{r} \rangle ^{2}}{4m_{q}}$ . One can see that the Hamiltonian still depends on$ {\boldsymbol{P}}_{ps} $ , or equivalently$ {\boldsymbol{P}} $ . This is because the translational symmetry is broken by the magnetic field. From the equation one can see that the effects of magnetic field include three terms. The term$ -\dfrac{q}{m_{q}}({\boldsymbol{S}}_{a}-{\boldsymbol{S}}_{b})\cdot {\boldsymbol{B}} $ is the interaction between the magnetic moment and the magnetic field. The term$ -q{\boldsymbol{P}}_{ps}\times {\boldsymbol{B}}\cdot {\boldsymbol{r}} $ reflects the Lorentz force on the two quarks. It's easy to imagine that due to the opposite charge, the effect of this term is pulling apart the quark–antiquark pair. The last term$ \dfrac{{q}^{2}}{4m_{q}}({\boldsymbol{B}}\times {\boldsymbol{r}})^{2} $ effectively adds an extra constraining potential on the plane perpendicular to the magnetic field and keeps the pair from running far away. We define$ P_{ps,\perp } $ as the projection of$ {\boldsymbol{P}}_{ps} $ perpendicular to$ {\boldsymbol{B}} $ . We set the z axis as the direction of the magnetic field, and x axis the direction of$ P_{ps,\perp } $ . It turns out that$ \langle \boldsymbol{r}\rangle =\langle y\rangle \boldsymbol{e}_{y} $ , and$\langle \boldsymbol{P}_{\rm kin}\rangle =\boldsymbol{P} _{ps}+qB\langle y\rangle \boldsymbol{e}_{x}$ .There are two competing effects from B and
$ P_{ps} $ . The first term,$ -q{\boldsymbol{P}}_{ps}\times {\boldsymbol{B}}\cdot {\boldsymbol{r}} $ can be viewed as an effective repulsive potential, tending to break the$ c\bar{c} $ pair. The other term,$ \dfrac{1}{4}q^{2}({{\boldsymbol{B}}\times {\boldsymbol{r}}})^{2} $ is an attractive potential. Also, the repulsive term depends on both the magnetic field and the total momentum, while the attractive term only depends on the magnetic field. Therefore, we expect that the magnetic field can both strengthen or weaken the bound state, depending on its magnitude, but the momentum will only weaken it. The interplay of these two effects could cause interesting results, forming a new effective$ 3-D $ "phase structure".With the external magnetic field, the angular momentum is no longer conserved. As a consequence, we cannot directly simplify the 3-dimensional equation into a 1-dimensional radial equation as usual. Nevertheless, the orbital and spin angular momentum eigenstates still form an orthogonal basis set, so we choose to expand our wave functions on them.
$ \phi ^{t\pm }({\boldsymbol{r}}) \equiv \frac{1}{r}\psi ^{t\pm }({\boldsymbol{r}} )=\sum\limits_{l,m}a_{l,m}^{t\pm }\phi _{l,m}^{t\pm }(r)Y_{l}^{m}(\theta ,\varphi ), $
(12) $ \begin{aligned}[b] \phi ^{s0,t0}({\boldsymbol{r}}) \equiv &\frac{1}{r}\psi ^{s0,t0}({\boldsymbol{r}} )=\sum\limits_{l,m}a_{l,m}^{t0}\phi _{l,m}^{t0}(r)Y_{l}^{m}(\theta ,\varphi )\\ &+\sum\limits_{l,m}a_{l,m}^{s0}\phi _{l,m}^{s0}(r)Y_{l}^{m}(\theta ,\varphi ). \end{aligned} $
(13) This procedure will simplify the later numerical calculation by converting a 3-dimensional array problem to an N-coupled one-dimensional array problem. Also, the physical meaning of the wave function is clearer when we study the behavior of different orbital angular momentum components. The spin–magnetic interaction makes the singlet and spin-zero triplet no longer eigenstates of the Hamiltonian, which yields the mixing of different spin components, e.g.,
$ \eta _{c} $ and$J/\psi $ [16, 17]. It is worth noting that the triplet states whose$ S_z =\pm 1 $ are still eigenstates, while the$ S_z = 0 $ triplet will couple with the singlet and they are no longer eigenstates. In a practical case, we cannot solve eigenfunctions with infinite dimensions, we should always make a cut-off that we just consider terms with$l \leq l_{\max } $ .We can write the Schrödinger equation as
$ \left[-\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}}+m_{q}V_{c}+\frac{1}{4} m_{q}V_{s}+\frac{1}{r^{2}}U+\frac{q^{2}B^{2}}{4}r^{2}V+\frac{qBP_{ps,\perp } }{2}rW-\lambda \right] \phi ^{\pm }(r) =0, $ (14) $ \left[ -\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}}+m_{q}V_{c}+\frac{1}{4} m_{q}V_{s}+\frac{1}{r^{2}}U+\frac{q^{2}B^{2}}{4}r^{2}V+\frac{qBP_{ps,\perp } }{2}rW-\lambda \right] \phi ^{t0}(r)-qB\phi ^{s0}(r) =0, $
(15) $ \left[ -\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}}+m_{q}V_{c}-\frac{3}{4} m_{q}V_{s}+\frac{1}{r^{2}}U+\frac{q^{2}B^{2}}{4}r^{2}V+\frac{qBP_{ps,\perp } }{2}rW-\lambda \right] \phi ^{s0}(r)-qB\phi ^{t0}(r) =0. $
(16) The interaction matrices U, V, W are defined as
$ U= l(l+1)\delta_{l,l'}\delta_{m,m'}, $
(17) $ \begin{aligned}[b] V=& u_{l,m} \delta_{l,l'}\delta_{m,m'} - v_{l,m} \delta_{l+2,l'}\delta_{m,m'} \\ &- v_{l-2,m} \delta_{l-2,l'}\delta_{m,m'}, \end{aligned} $
(18) $ \begin{aligned}[b] W=& w_{l-1,-m-1}\delta_{l-1,l'}\delta_{m+1,m'}-w_{l,m}\delta_{l+1,l'}\delta_{m+1,m'}\\& +w_{l-1,m-1}\delta_{l-1,l'}\delta_{m-1,m'}-w_{l,-m}\delta_{l+1,l'}\delta_{m-1,m'}, \end{aligned} $
(19) where
$ u_{l,m}=\frac{2(l^2+l-1+m^2)}{(2l-1)(2l+3)}, $
(20) $ v_{l,m}=\frac{1}{2l+3}\frac{\sqrt{[(l+1)^2-m^2][(l+2)^2-m^2]}}{\sqrt{(2l+1)(2l+5)}}, $
(21) $ w_{l,m}=\frac{\sqrt{(l+m+1)(l+m+2)}}{2{\rm i}\sqrt{(2l+1)(2l+3)}}. $
(22) For convenience, we denote
$ m_{q}E-2m_{q}^{2}-P_{ps}^{2}/4 = \lambda $ .The static potential between a
$ c\bar{c} $ pair in a QGP is calculated by lattice simulation and can be described by the color screening model [13]$ \begin{aligned}[b] &\mathrm{V}_{s}(r, T)=\frac{\sigma}{\mu}\left[\frac{\Gamma(1 / 4)}{2^{3 / 2} \Gamma(3 / 4)}-\frac{\sqrt{\mu r}}{2^{3 / 4} \Gamma(3 / 4)} K_{1 / 4}\left[(\mu r)^{2}\right]\right] ,\\ &\mathrm{V}_{c}(r, T)=-\frac{\alpha}{r}\left[{\rm e}^{-\mu r}+\mu r\right], \end{aligned} $
(23) where μ is the temperature-dependent screening mass. By fitting the lattice data [18], an analytical formula is acquired. The other parameters are
$ m_{c} = $ 1.25 GeV,$ \sqrt{\sigma }= $ 0.445 GeV and$ \alpha = \pi /12 $ for charmonium.We make a final simplification to our simulation process. At each temperature, we first solve the eigenstates at
$ {\boldsymbol{B}}=0 $ . The resulting eigenfunctions$ \phi _{nl}^{s} $ serve as another orthogonal basis set for the radial wavefunction. At any finite magnetic field, the Hamiltonian can be quantified into the following matrix form,$ H_{nn^{\prime }ll^{\prime }mm^{\prime }}^{ss^{\prime }}=\langle \phi _{n^{\prime },l^{\prime }}^{s^{\prime }}Y_{l^{\prime }}^{m^{\prime }}|H|\phi _{n,l}^{s}Y_{l}^{m}\rangle. $
(24) In the actual computation, it is found that at moderate temperatures,
$ n\leq 2 $ ,$ l\leq 7 $ can achieve quite a good accuracy. So the matrix size is of the order of 10$ ^{2} $ and can be solved by conventional methods. However, at higher temperatures, most states become scattering states, forming a very dense spectrum. Many of them will have a considerable transition amplitude with the ground state, so they should all be taken into consideration. For example, at around$ 1.15\; T_c $ , the cutoff should be extended to$ n\le 10 $ or higher. In principle, with a large enough cutoff, our method can work at even higher temperatures, although the efficiency will keep decreasing. One may instead choose to use more fundamental numerical approaches, such as in a recent related work [19], in which the authors use the same framework to study the gluon-dissociation of charmonium. Their results show that for$ P_{ps}=0 $ and a moderate B, charmonium can survive at a higher temperature.
Dissociation of J/ψ in hot medium and magnetic field
- Received Date: 2022-03-13
- Available Online: 2022-09-15
Abstract: Charmonium dissociation is an important probe of the quark–gluon plasma medium in heavy-ion collisions. The magnetic field produced in non-central collisions can affect the charmonia and their dissociation. We study the