-
The
$ U(1)_X $ SSM is expanded on the basis of the MSSM.$ U(1)_X $ SSM superfields include three Higgs singlets$ \hat{\eta},\; \hat{\bar{\eta}},\; \hat{S} $ and right-handed neutrinos$ \hat{\nu}_i $ . Via the see-saw mechanism, light neutrinos can obtain tiny masses at the tree level. For details on the mass matrices of particles, see Ref. [31].The superpotential of the
$ U(1)_X $ SSM is$ \begin{aligned}[b] W=&l_W\hat{S}+\mu\hat{H}_u\hat{H}_d+M_S\hat{S}\hat{S}-Y_d\hat{d}\hat{q}\hat{H}_d-Y_e\hat{e}\hat{l}\hat{H}_d+\lambda_H\hat{S}\hat{H}_u\hat{H}_d \\&+\lambda_C\hat{S}\hat{\eta}\hat{\bar{\eta}}+\frac{\kappa}{3}\hat{S}\hat{S}\hat{S}+Y_u\hat{u}\hat{q}\hat{H}_u+Y_X\hat{\nu}\hat{\bar{\eta}}\hat{\nu} +Y_\nu\hat{\nu}\hat{l}\hat{H}_u\;. \end{aligned} $
(1) The two Higgs doublets and three Higgs singlets are shown below in concrete form.
$ \begin{aligned}[b] H_{u}=&\left(\begin{array}{c}H_{u}^+\\{\dfrac{1}{\sqrt{2}}}\Big(v_{u}+H_{u}^0+{\rm i}P_{u}^0\Big)\end{array}\right)\;, \\ H_{d}=&\left(\begin{array}{c}{\dfrac{1}{\sqrt{2}}}\Big(v_{d}+H_{d}^0+{\rm i}P_{d}^0\Big)\\H_{d}^-\end{array}\right)\;, \\ \eta=&{1\over\sqrt{2}}\Big(v_{\eta}+\phi_{\eta}^0+{\rm i}P_{\eta}^0\Big)\;,\\ \bar{\eta}=&{1\over\sqrt{2}}\Big(v_{\bar{\eta}}+\phi_{\bar{\eta}}^0+{\rm i}P_{\bar{\eta}}^0\Big)\;,\\ S=&{1\over\sqrt{2}}\Big(v_{S}+\phi_{S}^0+{\rm i}P_{S}^0\Big)\;. \end{aligned} $
(2) $ v_u,\; v_d,\; v_\eta $ ,$ v_{\bar\eta} $ , and$ v_S $ are the VEVs of the Higgs superfields$ H_u $ ,$ H_d $ ,$ \eta $ ,$ \bar{\eta} $ , and$ S $ , respectively.Here, we set
$ \tan\beta=v_u/v_d $ and$ \tan\beta_\eta=v_{\bar{\eta}}/v_{\eta} $ . The specific forms of$ \tilde{\nu}_L $ and$ \tilde{\nu}_R $ are$ \begin{aligned}[b] \tilde{\nu}_L=\frac{1}{\sqrt{2}}\phi_l+\frac{\rm i}{\sqrt{2}}\sigma_l\;,\quad \tilde{\nu}_R=\frac{1}{\sqrt{2}}\phi_R+\frac{\rm i}{\sqrt{2}}\sigma_R\;. \end{aligned} $
(3) The specific form of soft SUSY breaking terms are shown below.
$ \begin{aligned}[b] {\cal{L}}_{\rm soft}=&{\cal{L}}_{\rm soft}^{\rm MSSM}-B_SS^2-L_SS-\frac{T_\kappa}{3}S^3-T_{\lambda_C}S\eta\bar{\eta} \\&+\epsilon_{ij}T_{\lambda_H}SH_d^iH_u^j -T_X^{IJ}\bar{\eta}\tilde{\nu}_R^{*I}\tilde{\nu}_R^{*J} +\epsilon_{ij}T^{IJ}_{\nu}H_u^i\tilde{\nu}_R^{I*}\tilde{l}_j^J \\&-m_{\eta}^2|\eta|^2-m_{\bar{\eta}}^2|\bar{\eta}|^2 -m_S^2S^2-(m_{\tilde{\nu}_R}^2)^{IJ}\tilde{\nu}_R^{I*}\tilde{\nu}_R^{J}\\& -\frac{1}{2}\Big(M_S\lambda^2_{\tilde{X}}+2M_{BB^\prime}\lambda_{\tilde{B}}\lambda_{\tilde{X}}\Big)+{\rm h.c.}\;. \end{aligned} $
(4) The particle content and charge assignments of the
$ U(1)_X $ SSM are shown in Table 1. Compared to the SM, the anomalies of the$ U(1)_X $ SSM are more complex [32]. This model was eventually proven to be anomaly free [31]. The two Abelian groups$ U(1)_Y $ and$ U(1)_X $ in the$ U(1)_X $ SSM can create a new effect known as gauge kinetic mixing. This effect can also be induced by RGEs, even with a zero value at$M_{\rm GUT}$ .Superfields $S U(3)_C$ $S U(2)_L$ $ U(1)_Y $ $ U(1)_X $ $ \hat{Q}_i $ 3 2 1/6 0 $ \hat{u}^c_i $ $ \bar{3} $ 1 −2/3 − $ 1/2 $ $ \hat{d}^c_i $ $ \bar{3} $ 1 1/3 $ 1/2 $ $ \hat{L}_i $ 1 2 −1/2 0 $ \hat{e}^c_i $ 1 1 1 $ 1/2 $ $ \hat{\nu}_i $ 1 1 0 − $ 1/2 $ $ \hat{H}_u $ 1 2 1/2 1/2 $ \hat{H}_d $ 1 2 −1/2 −1/2 $ \hat{\eta} $ 1 1 0 −1 $ \hat{\bar{\eta}} $ 1 1 0 1 $ \hat{S} $ 1 1 0 0 Table 1. Superfields in the
$ U(1)_X $ SSM.The general form of the covariant derivative of this model is [33–35]
$ D_\mu=\partial_\mu-{\rm i}\left(\begin{array}{cc}Y,&X\end{array}\right) \left(\begin{array}{cc}g_{Y},&g{'}_{{YX}}\\g{'}_{{XY}},&g{'}_{{X}}\end{array}\right) \left(\begin{array}{c}A_{\mu}^{\prime Y} \\ A_{\mu}^{\prime X}\end{array}\right)\;. $
(5) $ A_{\mu}^{\prime Y} $ and$ A^{\prime X}_\mu $ represent the gauge fields of$ U(1)_Y $ and$ U(1)_X $ . Because these two Abelian gauge groups are unbroken, we perform a basis exchange. Using the orthogonal matrix$ R $ [33, 35], the resulting formula is$ \begin{array}{*{20}{l}} &&\left(\begin{array}{cc}g_{Y},&g{'}_{{YX}}\\g{'}_{{XY}},&g{'}_{{X}}\end{array}\right) R^T=\left(\begin{array}{cc}g_{1},&g_{{YX}}\\0,&g_{{X}}\end{array}\right)\;. \end{array} $
(6) We deduce
$ \sin^2\theta_{W}^\prime = $ $ \begin{array}{*{20}{l}} \frac{1}{2}-\tfrac{((g_{YX}+g_X)^2-g_{1}^2-g_{2}^2)v^2+ 4g_{X}^2\xi^2}{2\sqrt{((g_{YX}+g_X)^2+g_{1}^2+g_{2}^2)^2v^4+8g_{X}^2((g_{YX}+g_X)^2-g_{1}^2-g_{2}^2)v^2\xi^2+16g_{X}^4\xi^4}}\;. \end{array} $
(7) with
$ \xi=\sqrt{v_\eta^2+v_{\bar{\eta}}^2} $ . The new mixing angle$ \theta_{W}^\prime $ can be found in the couplings of$ Z $ and$ Z^{\prime} $ .Next, we describe several of the required couplings.
The couplings of
$ \tilde{\nu}^R_k-\bar{e}_i-\chi_j^- $ and$ \tilde{\nu}^I_k-\bar{e}_i-\chi_j^- $ are$ {\cal{L}}_{\tilde{\nu}^R\bar{e}\chi^-}=\bar{e}_i\left\{\frac{\rm i}{\sqrt{2}}U^*_{j2}Z^{R*}_{ki}Y_e^iP_L-\frac{\rm i}{\sqrt{2}}g_2V_{j1}Z^{R*}_{ki}P_R\right\}\chi_j^-\tilde{\nu}^R_k\;, $
(8) $ {\cal{L}}_{\tilde{\nu}^I\bar{e}\chi^-}=\bar{e}_i\left\{\frac{-1}{\sqrt{2}}U^*_{j2}Z^{I*}_{ki}Y_e^iP_L+\frac{1}{\sqrt{2}}g_2V_{j1}Z^{I*}_{ki}P_R\right\}\chi_j^-\tilde{\nu}^I_k\;. $
(9) With
$ P_L=\dfrac{1-\gamma_5}{2} $ and$ P_R=\dfrac{1+\gamma_5}{2} $ .$ Z^{R} $ and$ Z^{I} $ are rotation matrices, which can diagonalize the mass squared matrices of CP-even and CP-odd sneutrinos. The mass matrix of a chargino is diagonalized by the rotation matrices$ U $ and$ V $ .We also deduce the vertex couplings of a neutrino-slepton-chargino and neutralino-lepton-slepton as
$ \begin{aligned}[b] {\cal{L}}_{\bar{\nu}\chi^-\tilde{L}}=&\bar{\nu}_i\bigg((-g_2U^*_{j1}\sum\limits_{a=1}^3U^{V*}_{ia}Z^E_{ka}+U^*_{j2}\sum\limits_{a=1}^3U^{V*}_{ia}Y^a_lZ^E_{k(3+a)})P_L \\& +\sum\limits_{a,b=1}^3Y_{\nu}^{ab}U^V_{i(3+a)}Z^E_{kb}V_{j2}P_R\bigg)\chi^-_j\tilde{L}_k\;, \end{aligned} $
(10) $ \begin{aligned}[b] {\cal{L}}_{\bar{\chi}^0l\tilde{L}}=&\bar{\chi}^0_i\Bigg\{\Bigg(\frac{1}{\sqrt{2}}(g_1N^*_{i1}+g_2N^*_{i2}+g_{YX}N^*_{i5})Z^E_{kj}\\& -N^*_{i3}Y^j_lZ^E_{k(3+j)}\Bigg)P_L -\Bigg[\frac{1}{\sqrt{2}}\Big(2g_1N_{i1}+(2g_{YX}+g_X)N_{i5}\Big)\\&\times Z^E_{k(3+a)}+Y_{l}^jZ^E_{kj}N_{i3}\Bigg]P_R\Bigg\}l_j\tilde{L}_k\;. \end{aligned} $
(11) Here,
$ Z^E $ and$ N $ are rotation matrices, which can diagonalize the mass squared matrix of the slepton and the mass matrix of the neutralino. The mass matrix of a neutrino is diagonalized using$ U^V $ .Other required couplings can be found in our previous papers [31, 36].
-
The Feynman amplitude can be expressed by dimension 6 operators [37] using the effective Lagrangian method. Dimension 8 operators can be suppressed by the factor
$\dfrac{m_{\mu}^2}{M_{\rm SUSY}^2} \sim$ ($ 10^{-7} $ ,$ 10^{-8} $ ) and then ignored.These dimension 6 operators are
$ \begin{aligned}[b] {\cal{O}}_1^{\mp}=&\frac{1}{(4\pi)^2}\bar{l}({\rm i} {\not \cal{D}})^3\omega_{\mp}l\;, \\ {\cal{O}}_2^{\mp}=&\frac{eQ_f}{(4\pi)^2}\overline{({\rm i}{\cal{D}}_{\mu}l)}\gamma^{\mu} F\cdot\sigma\omega_{\mp}l\;, \\ {\cal{O}}_3^{\mp}=&\frac{eQ_f}{(4\pi)^2}\bar{l}F\cdot\sigma\gamma^{\mu} \omega_{\mp}({\rm i}{\cal{D}}_{\mu}l)\;,\\ {\cal{O}}_4^{\mp}=&\frac{eQ_f}{(4\pi)^2}\bar{l}(\partial^{\mu}F_{\mu\nu})\gamma^{\nu} \omega_{\mp}l,\\ {\cal{O}}_5^{\mp}=&\frac{m_l}{(4\pi)^2}\bar{l}({\rm i} {\not \cal{D}})^2\omega_{\mp}l\;, \\{\cal{O}}_6^{\mp}=&\frac{eQ_fm_l}{(4\pi)^2}\bar{l}F\cdot\sigma \omega_{\mp}l\;. \end{aligned} $
(12) Here,
${\cal{D}}_{\mu}=\partial_{\mu}+{\rm i}eA_{\mu}$ , and$ \omega_{\mp}=\dfrac{1\mp\gamma_5}{2} $ .$ F_{{\mu\nu}} $ denotes the electromagnetic field strength, and$ m_{_l} $ represents the lepton mass.The effective Lagrangian of a lepton EDM is
$ {\cal L}_{\rm EDM}=\frac{\rm -i}{2}d_l\bar{l}\sigma^{\mu\nu}\gamma_5lF_{\mu\nu}\;. $
(13) For Fermions, the EDM cannot be obtained at tree level in the fundamental interaction because it is a CP violation amplitude. Therefore, the one-loop diagrams should have a non-zero contribution to the Fermion EDM in the CP violating electroweak theory. With the relationship between the Wilson coefficients
$ C_{2,3,6}^{\mp} $ of the operators$ {\cal{O}}_{2,3,6}^{\mp} $ [26–28, 37], the lepton EDM is obtained as$ d_l=\frac{-2eQ_fm_l}{(4\pi)^2}\Im(C_2^+ + C_2^{-*} +C_6^+)\;. $
(14) -
The one-loop new physics contributions to lepton EDMs are taken from the diagrams in Fig. 1. The one-loop contributions to lepton EDMs are obtained via calculation with the on-shell condition of the external lepton. Then, we simplify the analytical results.
The analytical results of the one-loop diagrams are shown below.
1. The corrections to lepton EDMs from neutralinos and scalar leptons are
$ d_{l}^{\tilde{L}\chi^{0}}=\left(\frac{-e}{2\Lambda}\right)\Im\left[-\sum\limits_{i=1}^8\sum\limits_{j=1}^6\Bigg\{(A_L^*A_R) \sqrt{x_{\chi_i^{0}}}x_{\tilde{L}_j}\frac{\partial^2 {\cal{B}}(x_{\chi_i^{0}},x_{\tilde{L}_j})}{\partial x_{\tilde{L}_j}^2}\Bigg\}\right]\;. $
(15) Here,
$ x_i=\dfrac{m_i^2}{\Lambda^2} $ , where$ m_i $ represents the particle mass, and$ \Lambda $ denotes the new physics energy scale. The couplings$ A_R,A_L $ can be expressed as$ \begin{aligned}[b] A_R=&\frac{1}{\sqrt{2}}g_1N_{i1}^{*}Z_{j2}^{E}+\frac{1}{\sqrt{2}}g_2N_{i2}^{*}Z_{j2}^{E}\\&+\frac{1}{\sqrt{2}}g_{YX}N_{i5}^{*}Z_{j2}^{E} -N_{i3}^{*}Y_\mu Z_{j5}^{E}\;,\\ A_L=&-\frac{1}{\sqrt{2}}Z_{j5}^{E}(2g_1N_{i1}+(2g_{YX}\\&+g_X)N_{i5})-Y_\mu^{*}Z_{j2}^EN_{i3}\;. \end{aligned} $
(16) The mass matrices of scalar leptons and neutrinos can be diagonalized using the matrices
$ Z^{E} $ and$ N $ .The specific forms of the functions
$ {\cal{B}}(x,y) $ (using Eq. (11)) and$ {\cal{B}}_1(x,y) $ (using Eqs. (14) and (16)) are$ \begin{aligned}[b] {\cal{B}}(x,y)=&\frac{1}{16 \pi ^2}\Bigg(\frac{x \ln x}{y-x}+\frac{y \ln y}{x-y}\Bigg)\;,\\ {\cal{B}}_1(x,y)=&\left( \frac{\partial}{\partial y}+\frac{y}{2}\frac{\partial^2 }{\partial y^2}\right){\cal{B}}(x,y)\;. \end{aligned} $
(17) 2. The corrections from the chargino and CP-odd scalar neutrino are
$d_{lI}^{\tilde{\nu}\chi^{\pm}}=\left(\frac{-e}{2\Lambda}\right)\Im\left[\sum\limits_{i=1}^2\sum\limits_{j=1}^6 \Big\{-2(B_L^{*}B_R)\sqrt{x_{\chi_i^-}}{\cal{B}}_1(x_{\tilde{\nu}_j^{I}},x_{\chi_i^-})\Big\}\right]\;. $
(18) The couplings
$ B_L $ and$ B_R $ can be expressed as$ \begin{array}{*{20}{l}} B_L=-\dfrac{1}{\sqrt{2}}U_{i2}^{*}Z_{j2}^{I*}Y_\mu\;,\; \; \; B_R=\dfrac{1}{\sqrt{2}}g_2Z_{j2}^{I*}V_{i1}\;. \end{array} $
(19) 3. The corrections from the chargino and CP-even scalar neutrino are
$d_{lR}^{\tilde{\nu}\chi^{\pm}}=\left(\frac{-e}{2\Lambda}\right)\Im\left[\sum\limits_{i=1}^2\sum\limits_{j=1}^6 \Big\{-2(C_L^{*}C_R)\sqrt{x_{\chi_i^-}}{\cal{B}}_1(x_{\tilde{\nu}_j^{R}},x_{\chi_i^-})\Big\}\right]\;. $
(20) The couplings
$ C_L $ and$ C_R $ can be expressed as$ C_L=\dfrac{1}{\sqrt{2}}U_{i2}^{*}Z_{j2}^{R*}Y_\mu\;,\; \; \; C_R=-\dfrac{1}{\sqrt{2}}g_2Z_{j2}^{R*}V_{i1}\;. $
(21) The
$ U $ ,$ V $ ,$ Z^{R} $ , and$ Z^{I} $ matrices diagonalize the corresponding particle mass matrices, which are detailed in the appendix.Therefore, the contributions of the one-loop diagrams to lepton EDMs are
$ \begin{array}{*{20}{l}} &&d_l^{\rm one-loop}=d_{l}^{\tilde{L}\chi^{0}}+d_{lI}^{\tilde{\nu}\chi^{\pm}}+d_{lR}^{\tilde{\nu}\chi^{\pm}}\;. \end{array} $
(22) -
In this paper, the two-loop diagrams that we research include the Barr-Zee two-loop diagrams (Fig. 2 (a), (b), (c)) and rainbow two-loop diagrams (Fig. 2 (d), (e)), as shown below.
The analytical results of the contributions from the two-loop diagrams to lepton EDMs are shown below.
The contributions are taken from Fig. 2 (a). Under the assumption that
$ m_F=m_{F_1}=m_{F_2}\gg m_W $ , the result of simplification [38] is$ \begin{aligned}[b] d_l^{WH}=&\frac{-G_F m_W^2 s_W}{256\pi^4}\sum\limits_{F_1=\chi^{\pm}}\sum\limits_{F_2=\chi^0}\frac{H_{\bar{l}H\nu}^L}{ m_F}\Bigg\{\Im\Bigg[\Bigg[\frac{21}{4}-\frac{5}{18}Q_{F_1}\\&+\left(3+\frac{Q_{F_1}}{3}\right) (\ln{m_{F_1}^2}-\varrho_{1,1}(m_W^2,m_{H^\pm}^2))\Bigg](H_{HF_1F_2}^LH_{WF_1F_2}^L\\&+H_{HF_1F_2}^RH_{WF_1F_2}^R) +\Bigg[\frac{19-20Q_{F_1}}{9}+\frac{2-4Q_{F_1}}{3} (\ln{m_{F_1}^2}\\ &-\varrho_{1,1}(m_W^2,m_{H^\pm}^2))\Bigg](H_{HF_1F_2}^LH_{WF_1F_2}^R+H_{HF_1F_2}^RH_{WF_1F_2}^L) \\ &+\Bigg[-\frac{16}{9}-\frac{2+6Q_{F_1}}{3} (\ln{m_{F_1}^2}-\varrho_{1,1}(m_W^2,m_{H^\pm}^2))\Bigg]\\ &\times(H_{HF_1F_2}^LH_{WF_1F_2}^L-H_{HF_1F_2}^RH_{WF_1F_2}^R) \\ &+\Bigg[-\frac{2Q_{F_1}}{9}-\frac{6-2Q_{F_1}}{3} (\ln{m_{F_1}^2}-\varrho_{1,1}(m_W^2,m_{H^\pm}^2))\Bigg]\\ &\times(H_{HF_1F_2}^LH_{WF_1F_2}^R-H_{HF_1F_2}^RH_{WF_1F_2}^L)\Bigg]\Bigg\}\;. \end{aligned} $
(23) Here,
$ \varrho_{1,1}(x,y)=\dfrac{x\ln x-y\ln y}{x-y} $ .$ H_{HF_1F_2}^{L,R} $ and$ H_{WF_1F_2}^{L,R} $ denote the corresponding couplings coefficients. See Ref. [36] for their concrete forms.Under the assumption that
$ m_F=m_{F_1}=m_{F_2}\gg m_{h_0} $ , the reduced form of the contribution to the lepton EDM from Fig. 2(b) is$\begin{aligned}[b] d_l^{\gamma h_0}= &\dfrac{-eG_FQ_fQ_{F_1}m_W^2s_W^2}{32\pi^4}\sum\limits_{F_1=F_2=\chi^\pm}\\&\times\Bigg\{\Im\Bigg[\frac{1}{m_{F_1}} (H_{h_0F_1F_2}^L)\Bigg[1+\ln\frac{m_{F_1}^2}{m_{h_0}^2}\Bigg]\Bigg]\Bigg\}\;.\end{aligned} $
(24) Moreover, the simplified form from Fig. 2(c) is
$ \begin{aligned}[b] d_l^{Zh_0}=&\frac{-\sqrt{2}e}{1024\pi^4}\sum\limits_{F_1=F_2=\chi^{\pm},\chi^0} \Bigg\{\frac{H_{h_0l\bar{l}}}{m_{F_1}}\Bigg[\varrho_{1,1}(m_Z^2,m_{h_0}^2)-\ln{m_{F_1}^2}-1\Bigg] \\&\times\Im\Big[\Big(H^L_{Zll}-H^R_{Zll}\Big)\Big(H_{h_0F_1F_2}^LH_{ZF_1F_2}^L+H_{h_0F_1F_2}^RH_{ZF_1F_2}^R\Big)\Big]\Bigg\}\;. \end{aligned} $
(25) Here,
$ Q_f $ represents the electric charge of the external lepton$ m_\mu $ .$ Q_{F_1} $ and$ Q_{F_2} $ denote the electric charges of the internal charginos.With the assumption that
$ m_F=m_{F_1}=m_{F_2}\gg m_W\sim m_Z $ , the reduced form of the contribution to the lepton EDM from Fig. 2(d) is$ d_l^{WW}=\frac{-eG_F m_l}{384\sqrt{2}\pi^4}\sum\limits_{F_1=\chi^{\pm}}\sum\limits_{F_2=\chi^0}\left\{\Im[11(H_{WF_1F_2}^{R*}H_{WF_1F_2}^L)]\right\}\;. $
(26) We simplify the tedious two-loop results to the order of
$ \dfrac{m_\mu^2}{M_Z^2} \sim 10^{-6} $ or$ \dfrac{m_\mu^2}{m_{\rm SUSY}^2} $ under the assumption that$ m_F = m_{F1} = m_{F2} \gg m_W \sim m_Z $ and obtain the following simplified form of Fig. 2(e):$ \begin{aligned}[b]d_{l}^{ZZ}=& \frac{eQ_{F_1}m_l}{2048\Lambda^2\pi^4}\sum\limits_{F_1=F_2=\chi^\pm}\Bigg\{ \Im\Bigg[(H^L_{ZF_1F_2}H^R_{ZF_1F_2})\\&\times\Big(|H^L_{Zll}|^2 +|H^R_{Zll}|^2\Big)\left[\frac{-6 \log x_Z+6 \log x_F+4}{9 x_F}\right]\\& +\Big(|H^L_{ZF_1F_2}|^2+|H^R_{ZF_1F_2}|^2\Big)H^L_{Zll}H^R_{Zll}\\&\times \left[16\frac{(\log x_F-\log x_Z) (\log x_F+2)+2}{x_Z}\right]\Bigg]\Bigg\}\;. \end{aligned} $
(27) The contributions to lepton EDMs from the researched two-loop diagrams are
$ \begin{array}{*{20}{l}} &&d_l^{\rm two-loop}=d_l^{WH}+d_l^{\gamma h_0}+d_l^{Z h_0}+d_l^{WW}+d_{l}^{ZZ}\;. \end{array} $
(28) At the two-loop level, the contributions to lepton EDMs can be summarized as
$ \begin{array}{*{20}{l}} &&d_l^{\rm total}=d_l^{\rm one-loop}+d_l^{\rm two-loop}\;. \end{array} $
(29) -
For the numerical discussion, we consider the following experimental limitations. The lightest CP-even higgs mass is considered as an input parameter, which is
$ m_{h^0} \approx $ 125.1 GeV [39, 40], and the$ h^0 $ decays are$ h^0 \rightarrow \gamma + \gamma $ ,$ h^0 \rightarrow Z + Z $ , and$ h^0 \rightarrow \gamma + \gamma $ [41]. Experimental constraints on the masses of the new particles are also considered. LHC experiments have more stringent mass constraints on the$ Z^{\prime} $ boson. To satisfy this experimental constraint, we take the parameter$ M_{Z^{\prime}} $ to be greater than 5.1 TeV [42], which is heavier than the previous mass limit. The ratio of$ M_{Z^{\prime}} $ to its gauge coupling$ g_X $ $ (\frac{M_{Z^{\prime}}}{g_X}) $ should not be less than 6 TeV at the$ 99\% $ C.L. [43, 44]. Considering the constraints from the LHC, we set$ \tan{\beta_\eta} < 1.5 $ [45]. Because$ M_{Z^{\prime}} $ has a large mass, the contribution of$ Z^{\prime} $ at the amplitude level is small; therefore, the contribution of$ Z^{\prime} $ is ignored. We adjust the parameters based on the experimental limitation of lepton EDMs. In this section, we research and discuss lepton ($ e, \mu, \tau $ ) EDMs.The parameters used in the
$ U(1)_X $ SSM are$ \begin{aligned}[b]& g_X=0.33,\;\; g_{YX}=0.2,\;\; \lambda_C=-0.1,\;\; \kappa=0.1,\\ &T_{\lambda_H}=1.0\; {\rm TeV},\;\; T_{\kappa}=1.0\; {\rm TeV}, \;\;\tan{\beta_\eta}=1.05,\;\;\\& v_{\eta}=15\times\cos{\beta_\eta}\; {\rm TeV},\;\; v_{\bar{\eta}}=15\times\sin{\beta_\eta}\; {\rm TeV}, \; B_\mu=8\; {\rm TeV^2}, \\&m_S^2=8\; {\rm TeV^2},\, T_{\lambda_C}=150\; {\rm GeV}, \, T_{E11}=T_{E22}=T_{E33}=0.1\; {\rm TeV}, \\&M_{\nu11}=M_{\nu22}=M_{\nu33}=6\; {\rm TeV^2}, \; Y_{X11}=Y_{X22}=Y_{X33}=0.04, \\&B_S=8\; {\rm TeV^2}, \; \lambda_H=0.1, \; l_W=8\; {\rm TeV^2}, \\& T_{X11}=T_{X22}=T_{X33}=10\; {\rm GeV}. \end{aligned} $
(30) $ \theta_1 $ ,$ \theta_2 $ , and$ \theta_\mu $ are the CP violating phases of the parameters$ m_1 $ ,$ m_2 $ , and$ \mu $ . We consider three new CP violating parameters with the phases$ \theta_{BL} $ ,$ \theta_{BB^{\prime}} $ , and$ \theta_S $ .$ \begin{aligned}[b] &m_1=M_1*{\rm e}^{{\rm i}*\theta_{1}}, \;\; m_2=M_2*{\rm e}^{{\rm i}*\theta_{2}}, \;\; \mu=mu*{\rm e}^{{\rm i}*\theta_{\mu}}, \\&m_{BL}=M_{BL}*{\rm e}^{{\rm i}*\theta_{BL}}, \;\; m_{{BB}^\prime}=M_{{BB}^\prime}*{\rm e}^{{\rm i}*\theta_{BB^{\prime}}}, \\& m_S=M_S*{\rm e}^{{\rm i}*\theta_S}. \end{aligned} $
(31) To facilitate the discussion, we make the following simplifications:
$ \begin{aligned}[b] &M_L=M_{L11}=M_{L22}=M_{L33}, \\& M_E=M_{E11}=M_{E22}=M_{E33}, \\&T_E=T_{E11}=T_{E22}=T_{E33}. \end{aligned} $
(32) -
Previously, we discussed the EDM of electrons because of its strict experimental upper limit. The CP violating phases
$ \theta_1 $ ,$ \theta_2 $ ,$ \theta_\mu $ ,$ \theta_{BL} $ ,$ \theta_{BB^{\prime}} $ , and$ \theta_S $ as well as other parameters have a certain impact on the electron EDM. Now, supposing$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_S $ = 0, and setting$ \tan{\beta}=5 $ ,$ M_2= $ 500 GeV,$ mu= $ 500 GeV,$ M_{BL}= $ 1800 GeV,$ M_{BB^{\prime}}= $ 700 GeV,$ M_S= $ 2400 GeV,$ M_L=$ 1.1 TeV,$ M_E= $ 1.0 TeV. We study the influence of$ \theta_{BL} $ on the electron EDM.$ M_{BL} $ is related to the neutralino mass matrix. In Fig. 3, we plot a solid line and dashed line versus$ M_L $ ($ 0.9\sim1.1 \; {\rm TeV^2} $ ) corresponding to$ M_1 $ =$ 700 $ and 800 GeV. We can see that these two lines are subtractive functions and$ \theta_{BL} $ has an influence on$ |d_e| $ . The relationship between$ d_e $ and$ M_L $ is not a simple linear relation; its change curve follows$ M_L^{-2} $ . The shaded part of the figure indicates that all these parameters are reasonable and conform to experimental limits.Figure 3. Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_S $ = 0 and$ \theta_{BL} $ =$ \frac{\pi}{4} $ , the contributions to the electron EDM varying with$ M_L $ are plotted. The solid and dashed lines correspond to$ M_1 $ = ($ 700,800)\; {\rm GeV} $ , respectively.Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0,$ \tan{\beta}=5 $ ,$ M_1= $ 700 GeV,$ M_2= $ 2000 GeV,$ mu=$ 500 GeV,$ M_{BL}= $ 1600 GeV,$ M_{BB^{\prime}}= $ 800 GeV,$ M_S= -800$ GeV,$ M_{L22}=1.0 $ ${\rm TeV^2} $ , and$ M_E=1.0 \; {\rm TeV^2} $ , we consider the impact of$ \theta_S $ on the electron EDM.$ M_S $ is related to the mass matrices of the neutralino and scalar lepton. In Fig. 4,$ M_{L11} $ varies from$ 0.5 $ to$ 5.0 \; {\rm TeV^2} $ , and when$ M_{L11} > 2.0 \; {\rm TeV^2} $ , the numerical results of$ |d_e| $ conform to the experimental limits.Figure 4. Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0 and$ \theta_S $ =$ \frac{\pi}{4} $ , the contributions to the electron EDM varying with$ M_{L11} $ are plotted. The solid and dashed lines correspond to$ M_{L33} $ =$ (1, 0.9)\; {\rm TeV^2} $ , respectively.$ \theta_{BB^{\prime}} $ is the new CP violating phase of the lepton neutrino mass matrix. Therefore, it offers a new physical contribution to the lepton EDM. Setting$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_S $ =$ \theta_{BL} $ = 0, the contributions to the muon EDM varying with$ T_E $ are plotted, with the solid and dashed lines corresponding to$ M_{E11} $ = 0.5 and 1.0$ \; {\rm TeV^2} $ , respectively. Here, we set$ \tan{\beta}=5 $ ,$ M_1= 700\; {\rm GeV} $ ,$ M_2=2000\; {\rm GeV} $ ,$ mu=500\; {\rm GeV} $ ,$ M_{BL}= $ 1800 GeV,$ M_{BB^{\prime}}= $ 700 GeV,$ M_S= $ 2400 GeV,$ M_L= $ $1.0~{\rm TeV^2} $ , and$ M_E=0.5 \; {\rm TeV^2} $ . In Fig. 5, the two lines are shaped like parabolas, and most of the numerical results are within the experimental limits.Figure 5. Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_S $ =$ \theta_{BL} $ = 0 and$ \theta_{BB^{\prime}} $ =$ \frac{\pi}{3} $ , the contributions to the electron EDM varying with$ T_E $ are plotted. The solid and dashed lines correspond to$ M_{E11} $ =$ (0.5,1.0)\; {\rm TeV^2} $ , respectively.We select the parameters
$ M_{L11}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$ M_{L22}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$ M_{L33}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$T_E(-3000\thicksim 3000 \; {\rm GeV})$ , and$ M_E(0.5\thicksim5.0 \; {\rm TeV^2}) $ and randomly scatter the points. With$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0 and$ \theta_S $ =$ \frac{\pi}{4} $ , we plot$ |d_e| $ in the plane of$ M_{L11} $ versus$ M_{L22} $ in Fig. 6. "$ \blacksquare $ " represents$ |d_e| < 1.1 \times 10^{-29} $ e.cm, and "$ \circ $ " represents$ |d_e| \geqslant 1.1 \times 10^{-29} $ e.cm. In Fig. 6, we can see that there is clear stratification. When$ M_{L11} > $ 1.0$ \; {\rm TeV^2} $ ,$ M_{L22} $ is in the vicinity of 1.4$ \; {\rm TeV^2} $ ,$ |d_e| $ is within the experimental limit. This reveals that$ M_{L11} $ is a sensitive parameter and$ M_{L22} $ is a less sensitive parameter.Figure 6. With
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0 and$ \theta_S $ =$ \frac{\pi}{4} $ ,$ |d_e| $ is in the plane of$ M_{L11} $ versus$ M_{L22} $ . "$ \blacksquare $ " represents$ |d_e| < 1.1 \times 10^{-29} $ e.cm, "$ \circ $ " represents$ |d_e| \geqslant 1.1 \times 10^{-29} $ e.cm. -
In this section, the muon EDM is numerically studied. In Fig. 7, setting
$ \theta_1 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_2 $ =$ \theta_{BL} $ = 0 and$ \tan{\beta}=6 $ ,$ M_1= $ 1450 GeV,$ M_2=$ 2000 GeV,$ mu=$ 500 GeV,$ M_{BB^{\prime}}= $ 800 GeV,$ M_S= -800$ GeV,$ M_L=1.0 $ $ {\rm TeV^2} $ , and$ M_E=0.5 \; {\rm TeV^2} $ . We study the influence of$ \theta_S $ on the muon EDM. The solid and dashed lines correspond to$ M_{BL} $ ($ 1200 $ , 1500 GeV), respectively. From the numerical results, we can see that the muon EDM increases as$ M_E $ increases.$ \theta_S $ has a significant influence on the numerical results because$ M_S $ is related to the mass matrices of the neutralino and charged Higgs.Figure 7. Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0 and$ \theta_S $ =$ \frac{\pi}{3} $ , the contributions to the muon EDM varying with$ M_E $ are plotted. The solid and dashed lines correspond to$ M_{BL} $ =$ (1200,1500)\; {\rm GeV} $ .$ \theta_{BB^{\prime}} $ is the new CP violating phase of the neutralino mass matrix. Therefore, it offers a new physical contribution to the lepton EDMs. With$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_S $ =$ \theta_{BL} $ = 0, the contributions to the muon EDM varying with$ M_{E22} $ are plotted, where the solid and dashed lines correspond to$ \tan\beta $ = (5, 6), respectively. In this part, we set$ M_1= $ 1450 GeV,$ M_2= $ 800 GeV,$ mu= $ 500 GeV,$ M_{BL}= $ 1600 GeV,$ M_{BB^{\prime}}= $ 800 GeV,$ M_S= -800$ GeV,$ M_L=1.0 \; {\rm TeV^2} $ , and$ M_E=0.5 \; {\rm TeV^2} $ . In Fig. 8, as$ M_{E22} $ increases, the numerical results gradually decrease, and the shapes of the two lines are similar.Figure 8. Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_S $ =$ \theta_{BL} $ = 0 and$ \theta_{BB^{\prime}} $ =$ \frac{\pi}{6} $ , the contributions to the muon EDM varying with$ M_{E22} $ are plotted. The solid and dashed lines correspond to$ \tan\beta $ = ($ 5,6 $ ).We choose the parameters
$ M_{L11}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$ M_{L22}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$ M_{L33}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$T_E(-3000\thicksim 3000 \; {\rm GeV})$ , and$ M_E(0.5\thicksim5.0 \; {\rm TeV^2}) $ and randomly scatter the points. With$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0, and$ \theta_S $ =$ \frac{\pi}{4} $ , we study$ |d_\mu| $ in the plane of$ M_{L33} $ versus$ M_E $ . In Fig. 9, "$ \blacksquare $ " represents$ |d_\mu| < 1\times10^{-24} $ e.cm, and "$ \circ $ " represents$ |d_\mu| \geqslant 1\times10^{-24} $ e.cm. Delamination occurs when$ M_E $ =$ 1.1 \; {\rm TeV^2} $ , and stratification is clear. This reveals that$ M_{E} $ is a sensitive parameter and$ M_{L33} $ is an insensitive parameter. These parameters are in a reasonable parameter space.Figure 9. With
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0 and$ \theta_S $ =$ \frac{\pi}{4} $ ,$ |d_{\mu}| $ is in the plane of$ M_{L33} $ versus$ M_{E} $ , where "$ \blacksquare $ " represents$ |d_\mu| < 1\times10^{-24} $ e.cm, and "$ \circ $ " represents$ |d_\mu| \geqslant 1\times10^{-24} $ e.cm. -
At present, the experimental upper bound of the tau EDM is
$ |d^{\rm exp}_{\tau}| < 1.1 \times 10^{-17} $ e.cm, which is largest among the bounds of lepton EDMs. Therefore, we now study the tau EDM. With$ \tan{\beta}=6 $ ,$ M_1= $ 750 GeV,$ mu= $ 650 GeV,$ M_{BL}= $ 1800 GeV,$ M_{BB^{\prime}}= $ 700 GeV,$ M_S= $ 1400 GeV,$ M_L=1.0 \; {\rm TeV^2} $ , and$ M_E=1.0 \; {\rm TeV^2} $ and setting$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0 and$ \theta_S $ =$ \frac{\pi}{5} $ , we study the influence of$ M_{L33} $ on$ |d_\tau| $ . In Fig. 10, the solid and dashed lines correspond to$ M_2 $ =$ (400 $ , 500 GeV), respectively, and their numerical results are all in the negative. The two lines are increasing functions of$ M_{L33} $ , and$ \theta_S $ has clearer influence on the numerical result of$ |d_{\tau}| $ . The maximum value of the two lines reaches$ 5.0 \times 10^{-23} $ e.cm, and this value is six orders of magnitude smaller than the upper limit of the experiment.Figure 10. Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_{BL} $ = 0 and$ \theta_S $ =$ \frac{\pi}{5} $ , the contributions to the tau EDM varying with$ M_{L33} $ are plotted. The solid and dashed lines correspond to$ M_2 $ =$ (400,500)\; {\rm GeV} $ , respectively.$ \theta_{BL} $ is the new CP violating phase of$ M_{BL} $ in the neutralino mass matrix. Setting$ \tan{\beta}=6 $ ,$ M_1= $ 750 GeV,$ M_2= $ 400 GeV,$ M_{BL}= $ 1800 GeV,$ M_{BB^{\prime}}= $ 700 GeV,$ M_S= $ 1400 GeV,$ M_E=1.0 \; {\rm TeV^2} $ ,$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_S $ = 0, and$ \theta_{BL} $ =$ \frac{\pi}{6} $ , the contributions to the tau EDM varying with$ M_L $ are plotted, where the solid and dashed lines correspond to$ mu $ =$ (650,750 \; {\rm GeV} $ ), respectively. In Fig. 11, we can see that$ |d_\tau| $ decreases with increasing$ M_L $ . The maximum value of these two lines reaches$ |d_\tau| $ =$ 4.5 \times 10^{-23} $ e.cm.Figure 11. Setting
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_S $ =$ \theta_{BB^{\prime}} $ = 0 and$ \theta_{BL} $ =$ \frac{\pi}{6} $ , the contributions to the tau EDM varying with$ M_L $ are plotted. The solid and dashed lines correspond to$ mu $ =$ (650,750)\; {\rm GeV} $ .We select the parameters
$ M_{L11}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$ M_{L22}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$ M_{L33}(0.5\thicksim5.0 \; {\rm TeV^2}) $ ,$ T_E(-3000\thicksim 3000 \; {\rm GeV}) $ , and$ \tan{\beta}(2\thicksim20) $ and randomly scatter the points. In Fig. 12, we study$ |d_\tau| $ in the plane of$ M_{L33} $ and$ \tan{\beta} $ to observe their influence. The varying regions of$ M_{L33} $ and$ \tan{\beta} $ are in the range$ (0.5\thicksim5 \; \rm TeV^2) $ and$ (2\thicksim20) $ , respectively."$ \blacksquare $ " represents$ |d_\tau| < 1 \times 10^{-23} $ e.cm, and "$ \circ $ " represents$|d_\tau| \geqslant 1 \times 10^{-23}$ e.cm. When$ \tan{\beta} $ = 6, stratification occurs, and the stratification is more clear. This indicates that$ \tan{\beta} $ is a sensitive parameter.Figure 12. With
$ \theta_1 $ =$ \theta_2 $ =$ \theta_\mu $ =$ \theta_{BB^{\prime}} $ =$ \theta_S $ = 0 and$ \theta_{BL} $ =$ \frac{\pi}{6} $ ,$ |d_{\tau}| $ is in the plane of$ M_{L33} $ versus$ \tan{\beta} $ . "$ \blacksquare $ " represents$ |d_\tau| < 1 \times 10^{-23} $ e.cm, and "$ \circ $ " represents$ |d_\tau| \geqslant 1 \times 10^{-23} $ e.cm. -
The mass matrix for a slepton with the basis
$ (\tilde{e}_L,\tilde{e}_R) $ $ m_{\tilde{e}}^2= \left({\begin{array}{*{20}{c}} m_{\tilde{e}_{L}\tilde{e}_{L}^*} & \dfrac{1}{2}(\sqrt{2}v_dT_e^\dagger - v_u(\lambda_Hv_S + \sqrt{2}\mu)Y_e^\dagger) \\ \dfrac{1}{2}(\sqrt{2}v_dT_e - v_uY_e(\sqrt{2}\mu^* + v_S\lambda_H^*)) & m_{\tilde{e}_{R}\tilde{e}_{R}^*} \end{array}} \right)\;, \tag{A1}$ $ \begin{aligned}[b] m_{\tilde{e}_{L}\tilde{e}_{L}^*}=&m_{\tilde{l}}^{2}+\frac{1}{8}\Big((g_{1}^{2}+g_{YX}^{2}+g_{YX}g_{X}-g_{2}^{2})(v_d^2-v_u^2) +2g_{YX}g_{X}(v_\eta^2-v_{\bar{\eta}}^2)\Big)+\frac{1}{2}v_d^2Y_e^{\dagger} Y_e, \\ m_{\tilde{e}_{R}\tilde{e}_{R}^*}=&m_e^2-\frac{1}{8}\Big([2(g_1^2+g_{YX})+3g_{YX}g_X+g_X^2](v_d^2-v_u^2) +(4g_{YX}g_X+2g_X^2)(v_\eta^2-v_{\bar{\eta}}^2)\Big) +\frac{1}{2}v_d^2Y_eY_e^{\dagger}\;. \end{aligned}\tag{A2} $
This matrix is diagonalized by
$ Z^E $ $ Z^Em_{\tilde{e}}^2Z^{E,\dagger} = m_{2,\tilde{e}}^{\rm dia}\;. \tag{A3} $
The mass matrix for a CP-even sneutrino
$ ({\phi}_{l}, {\phi}_{r}) $ reads as$ m^2_{\tilde{\nu}^R} = \left( \begin{array}{cc} m_{{\phi}_{l}{\phi}_{l}} &m^T_{{\phi}_{r}{\phi}_{l}}\\ m_{{\phi}_{l}{\phi}_{r}} &m_{{\phi}_{r}{\phi}_{r}}\end{array} \right)\;, \tag{A4} $
$ m_{{\phi}_{l}{\phi}_{l}}= \frac{1}{8} \Big((g_{1}^{2} + g_{Y X}^{2} + g_{2}^{2}+ g_{Y X} g_{X})( v_{d}^{2}- v_{u}^{2}) + g_{Y X} g_{X}(2 v_{\eta}^{2}-2 v_{\bar{\eta}}^{2})\Big) +\frac{1}{2} v_{u}^{2}{Y_{\nu}^{T} Y_\nu} + m_{\tilde{L}}^2\;, \tag{A5} $
$ m_{{\phi}_{l}{\phi}_{r}} = \frac{1}{\sqrt{2} } v_uT_\nu + v_u v_{\bar{\eta}} {Y_X Y_\nu} - \frac{1}{2}v_d ({\lambda}_{H}v_S + \sqrt{2} \mu )Y_\nu\;, \tag{A6} $
$ m_{{\phi}_{r}{\phi}_{r}}= \frac{1}{8} \Big((g_{Y X} g_{X}+g_{X}^{2})(v_{d}^{2}- v_{u}^{2}) +2g_{X}^{2}(v_{\eta}^{2}- v_{\bar{\eta}}^{2})\Big) + v_{\eta} v_S Y_X {\lambda}_{C} +m_{\tilde{\nu}}^2 + \frac{1}{2} v_{u}^{2}|Y_\nu|^2+ v_{\bar{\eta}} (2 v_{\bar{\eta}}|Y_X|^2 + \sqrt{2} T_X)\;. \tag{A7}$
This matrix is diagonalized by
$ Z^R $ $ Z^Rm^2_{\tilde{\nu}^R}Z^{R,\dagger} = m_{2,\tilde{\nu}^R}^{\rm dia}\;. \tag{A8} $
The mass matrix for a CP-odd sneutrino
$ ({\sigma}_{l}, {\sigma}_{r}) $ is deduced as$ m^2_{\tilde{\nu}^I} = \left( \begin{array}{cc} m_{{\sigma}_{l}{\sigma}_{l}} &m^T_{{\sigma}_{r}{\sigma}_{l}}\\ m_{{\sigma}_{l}{\sigma}_{r}} &m_{{\sigma}_{r}{\sigma}_{r}}\end{array} \right)\;, \tag{A9} $
$ m_{{\sigma}_{l}{\sigma}_{l}}= \frac{1}{8} \Big((g_{1}^{2} + g_{Y X}^{2} + g_{2}^{2}+ g_{Y X} g_{X})( v_{d}^{2}- v_{u}^{2}) + 2g_{Y X} g_{X}(v_{\eta}^{2}-v_{\bar{\eta}}^{2})\Big) +\frac{1}{2} v_{u}^{2}{Y_{\nu}^{T} Y_\nu} + m_{\tilde{L}}^2\;, \tag{A10} $
$ m_{{\sigma}_{l}{\sigma}_{r}} = \frac{1}{\sqrt{2} } v_uT_\nu - v_u v_{\bar{\eta}} {Y_X Y_\nu} - \frac{1}{2}v_d ({\lambda}_{H}v_S + \sqrt{2} \mu )Y_\nu, \tag{A11} $
$ m_{{\sigma}_{r}{\sigma}_{r}}= \frac{1}{8} \Big((g_{Y X} g_{X}+g_{X}^{2})(v_{d}^{2}- v_{u}^{2}) +2g_{X}^{2}(v_{\eta}^{2}- v_{\bar{\eta}}^{2})\Big)- v_{\eta} v_S Y_X {\lambda}_{C} +m_{\tilde{\nu}}^2 + \frac{1}{2} v_{u}^{2}|Y_\nu|^2+ v_{\bar{\eta}} (2 v_{\bar{\eta}}Y_X Y_X - \sqrt{2} T_X)\;. \tag{A12} $
This matrix is diagonalized by
$ Z^I $ $ Z^Im^2_{\tilde{\nu}^I}Z^{I,\dagger} = m_{2,\tilde{\nu}^I}^{dia}\;. \tag{A13} $
The mass matrix for charginos in the basis (
$ \tilde{W}^- $ ,$ \tilde{H}_d^- $ ),($ \tilde{W}^+ $ ,$ \tilde{H}_u^+ $ )$ m_{{\tilde{\chi}}^-}= \left({\begin{array}{*{20}{c}} M_2 & \dfrac{1}{\sqrt{2}}g_2v_u \\ \dfrac{1}{\sqrt{2}}g_2v_d & \dfrac{1}{\sqrt{2}}\lambda_Hv_S+\mu \\ \end{array}} \right)\;, \tag{A14} $
The matrix is diagonalized by U and V
$ U^*m_{{\tilde{\chi}}^-}V^\dagger = m_{{\tilde{\chi}}^-}^{\rm dia}. \tag{A15} $
The mass matrix for charged Higgs in the basis (
$ H_d^{-} $ ,$ H_u^{+,*} $ ),($ H_d^{-,*} $ ,$ H_u^{+} $ )$ m_{H^-}^2= \left({\begin{array}{*{20}{c}} m_{{H_d^-}H_d^{-,*}} & m_{H_u^{+,*}H_d^{-,*}}^{*} \\ m_{H_d^-H_u^+} & m_{H_u^{+,*}H_u^+} \\ \end{array}} \right)\;, \tag{A16} $
$ \begin{aligned}[b] m_{{H_d^-}H_d^{-,*}}=&\frac{1}{8}((g_2^2+g_X^2)v_d^2+(-g_X^2+g_2^2)v_u^2+(g_1^2+g_{YX}^2)(-v_u^2+v_d^2)-2g_X^2v_{\bar{\eta}}^2 +2(g_{YX}g_X(-v_{\bar{\eta}}^2-v_u^2+v_d^2+v_\eta^2)+g_X^2v_\eta^2) \\& +\frac{1}{2}(2\mid\mu\mid^2+2\sqrt{2}v_S\Re(\mu\lambda_H^*)+v_S^2\mid\lambda_H\mid^2\;, \end{aligned}\tag{A17} $
$ m_{H_d^-H_u^+}=\frac{1}{2}(2(\lambda_Hl_W^*+B_\mu)+\lambda_H(2\sqrt{2}v_SM_S^*-v_dv_u\lambda_H^*+v_\eta v_{\bar{\eta}}\lambda_C^*+\sqrt{2}v_ST_{\lambda_H})) +\frac{1}{4}g_2^2v_dv_u\;, \tag{A18} $
$ \begin{aligned}[b] m_{H_u^{+,*}H_u^+}=&\frac{1}{8}((-g_X^2+g_2^2)v_d^2+(g_2^2+g_X^2)v_u^2+(g_1^2+g_{YX}^2)(-v_d^2+v_u^2)-2g_X^2v_\eta^2 +2(g_{YX}g_X(-v_d^2-v_\eta^2+v_u^2+v_{\bar{\eta}}^2)+g_X^2v_{\bar{\eta}}^2)) \\& +\frac{1}{2}(2\mid\mu\mid^2+2\sqrt{2}v_S\Re(\mu\lambda_H^*)+v_S^2\mid\lambda_H\mid^2)\;. \end{aligned} \tag{A19}$
This matrix is diagonalized by
$ Z^+ $ $ Z^+m_{H^-}^2Z^{+,\dagger} = m_{2,H^-}^{\rm dia}\;. \tag{A20} $
The mass matrix for a neutralino in the basis (
$ \lambda_{\tilde{B}} $ ,$ \tilde{W}^0 $ ,$ \tilde{H}_d^0 $ ,$ \tilde{H}_u^0 $ ,$ \lambda_{\tilde{X}} $ ,$ \tilde{\eta} $ ,$ \tilde{\bar{\eta}} $ ,$ \tilde{s} $ ) is$ m_{\tilde{\chi}^0}= \left({\begin{array}{*{20}{c}} M_1 & 0 & -\dfrac{g_1}{2}v_d & \dfrac{g_1}{2}v_u & M_{{BB}^{\prime}} & 0 & 0 & 0 \\ 0 & M_2 & \dfrac{g_2}{2}v_d & -\dfrac{g_2}{2}v_u & 0 & 0 & 0 & 0 \\ -\dfrac{g_1}{2}v_d & \dfrac{g_2}{2}v_d & 0 & m_{{\tilde{H}_u^0}{\tilde{H}_d^0}} & m_{\lambda_{\bar{X}}\tilde{H}_d^0} & 0 & 0 & -\dfrac{\lambda_Hv_u}{\sqrt{2}} \\ \dfrac{g_1}{2}v_u & -\dfrac{g_2}{2}v_u & m_{{\tilde{H}_d^0}{\tilde{H}_u^0}} & 0 & m_{\lambda_{\bar{X}}{\tilde{H}_u^0}} & 0 & 0 & -\dfrac{\lambda_Hv_d}{\sqrt{2}} \\ M_{{BB}^\prime} & 0 & m_{\tilde{H}_d^0\lambda_{\bar{X}}} & m_{\tilde{H}_u^0\lambda_{\bar{X}}} & M_{BL} & -g_X{v_\eta} & g_Xv_{\bar{\eta}} & 0 \\ 0 & 0 & 0 & 0 & -g_X{v_\eta} & 0 & \dfrac{1}{\sqrt{2}}\lambda_Cv_S & \dfrac{1}{\sqrt{2}}\lambda_Cv_{\bar{\eta}} \\ 0 & 0 & 0 & 0 & g_Xv_{\bar{\eta}} & \dfrac{1}{\sqrt{2}}\lambda_Cv_S & 0 & \dfrac{1}{\sqrt{2}}\lambda_Cv_\eta \\ 0 & 0 & -\dfrac{1}{\sqrt{2}}\lambda_Hv_u & -\dfrac{1}{\sqrt{2}}\lambda_Hv_d & 0 & \dfrac{1}{\sqrt{2}}\lambda_Cv_{\bar{\eta}} & \dfrac{1}{\sqrt{2}}\lambda_Cv_\eta & m_{\tilde{s}\tilde{s}} \end{array}} \right)\;, \tag{A21}$
$ \begin{aligned}[b] m_{{\tilde{H}_d^0}{\tilde{H}_u^0}}=&-\frac{1}{\sqrt{2}}\lambda_Hv_S - \mu, \; \; m_{{\tilde{H}_d^0}\lambda_{\bar{X}}}=-\frac{1}{2}(g_{YX}+g_X){v_d}, \\ m_{\tilde{H}_u^0\lambda_{\bar{X}}}=&\frac{1}{2}(g_{YX}+g_X)v_u, \; \; m_{\tilde{s}\tilde{s}}=2M_S+\sqrt{2}\kappa v_S\;. \end{aligned}\tag{A22} $
This matrix is diagonalized by
$ N $ ,$ N^*m_{{\tilde{\chi}}^0}N^\dagger=m_{{\tilde{\chi}}^0}^{\rm dia}\;. \tag{A23} $
Study of lepton EDMs in the U(1)X SSM
- Received Date: 2022-03-29
- Available Online: 2022-09-15
Abstract: The minimal supersymmetric extension of the standard model (MSSM) is extended to the