-
The static spherically symmetric metric of the BH is given by [28]
$ \begin{equation} {\rm{d}}s^{2}=-f(r){\rm{d}}t^{2}+\frac{1}{u(r)}{\rm{d}}r^{2}+r^{2}{\rm{d}}\theta^{2}+r^{2}\sin^{2}\theta {\rm{d}}\phi^{2}, \end{equation} $
(1) where
$ f(r) $ and$ u(r) $ are the function of the radius parameter r. The photon motion around a BH satisfies the Euler-Lagrangian equation$ \begin{equation} \frac{{\rm{d}}}{{\rm{d}}\lambda}\Bigg(\frac{\partial \mathcal{L}}{\partial \dot{x}^{\rm{\mu}}}\Bigg)=\frac{\partial \mathcal{L}}{\partial x^{\rm{\mu}}}, \end{equation} $
(2) in which λ is the affine parameter, and
$ \dot{x}^{\rm{\mu}} $ is the photon four-velocity.$ \mathcal{L} $ is the Lagrangian density, which is expressed as$ \begin{equation} \mathcal{L}=-\frac{1}{2}g_{\mu \nu}\frac{{\rm{d}} x^{\mu}}{{\rm{d}} \lambda}\frac{{\rm{d}} x^{\nu}}{{\rm{d}} \lambda}=\frac{1}{2}\Big(f(r)\dot{t}^{2}-\frac{\dot{r}^{2}}{u(r)}-r^{2}(\dot{\theta}^{2}+\sin^{2}\theta \dot{\phi}^{2})\Big). \end{equation} $
(3) In this paper, we consider the photons to move on the equatorial plane (
$ \theta=\pi/2 $ ); therefore, the metric does not explicitly depend on the time t and azimuthal angle ϕ. The corresponding conserved constants are written as$ \begin{equation} E=-g_{\rm{t \rm t}}\frac{{\rm{d}} t}{{\rm{d}} \lambda}=f(r)\frac{{\rm{d}} t}{{\rm{d}} \lambda},\; \; \; \;\; L=g_{\rm{\phi \rm \phi}}\frac{{\rm{d}} \phi}{{\rm{d}} \lambda}=r^{2} \frac{{\rm{d}} \phi}{{\rm{d}} \lambda}, \end{equation} $
(4) where E and L represent the energy and angular momentum of the photons. Based on the null geodesic
$ g_{\rm{\mu \nu}}\dot{x}^{\rm{\mu}}\dot{x}^{\rm{\nu}}=0 $ , the motion equation of photons is obtained.$ \begin{eqnarray} &&\frac{{\rm{d}} t}{{\rm{d}} \lambda}= \frac{E}{f(r)}, \end{eqnarray} $
(5) $ \begin{eqnarray} &&\frac{{\rm{d}}\phi}{{\rm{d}} \lambda}= \frac{L}{r^{2}}, \end{eqnarray} $
(6) $ \begin{eqnarray} &&\frac{{\rm{d}} r}{{\rm{d}} \lambda}= \pm \frac{\sqrt{u(r)E^{2}r^{4}-u(r)L^{2}r^{2}f(r)}}{r^{2}\sqrt{f(r)}}, \end{eqnarray} $
(7) where the symbol "
$ \pm $ " indicates the counterclockwise ($ - $ ) and clockwise ($ + $ ) directions of photon motion. These three equations offer a complete description of photon dynamics around the BH, at which the effective potential can be written as$ \begin{equation} \Bigg(\frac{{\rm{d}} r}{{\rm{d}} \lambda}\Bigg)^{2} + \mathcal{V}_{\rm{eff}}(r) = 0, \end{equation} $
(8) where
$ \begin{equation} \mathcal{V}_{\rm{eff}}(r) = u(r)\Bigg(\frac{L^2}{r^2}-\frac{E^{2}}{f(r)}\Bigg). \end{equation} $
(9) The critical photon ring orbit satisfies the effective potential critical conditions
$ \begin{equation} \mathcal{V}_{\rm{eff}}(r)=0,\; \; \; \; \mathcal{V}'_{\rm{eff}}(r)=0,\; \; \; \; \mathcal{V}''_{\rm{eff}}(r)>0. \end{equation} $
(10) Substituting Eq. (9) into Eq. (10), we can obtain
${L}/{E}= {r_{pp}}/{\sqrt{f(r_{pp})}} $ , where$ r_{pp} $ is the radius of the photon ring. Based on Eqs. (6) and (7), we have$ \begin{equation} \frac{{\rm{d}} r}{{\rm{d}} \phi} = \Bigg(\frac{{\rm{d}} r}{{\rm{d}} \lambda}\Bigg) {\Bigg /} \Bigg(\frac{{\rm{d}}\phi}{{\rm{d}} \lambda}\Bigg) = \pm r \sqrt{\frac{r^{2}E^{2}u(r)}{L^{2}f(r)}-u(r)}. \end{equation} $
(11) Considering the turning point of the photon orbits satisfies
$ \dfrac{{\rm{d}} r}{{\rm{d}} \phi}{\big |}_{r=\chi}=0 $ , Eq. (11) can be rewritten as$ \begin{equation} \frac{{\rm{d}} r}{{\rm{d}} \phi} = \pm r \sqrt{\frac{r^{2}f(\chi)^{2}u(r)}{\chi^{2}f(r)}-u(r)}. \end{equation} $
(12) Following Refs. [22–25], a light ray sent from a static observer at position
$ r_{\rm{O}} $ transmits into the past with an angle β relative to the radial direction, that is,$ \begin{equation} \cot \beta = \frac{\sqrt{g_{\rm{rr}}}}{\sqrt{g_{\rm{\phi \phi}}}}{\Bigg |}_{r=r_{\rm{O}}} = \pm \sqrt{\frac{r_{\rm{O}}^{2}f(\chi)}{\chi^{2}f(r_{\rm{O}})}-1}. \end{equation} $
(13) Using elementary trigonometry, we can obtain
$ \begin{equation} \sin^{2} \beta = \frac{\chi^{2}f(r_{\rm{O}})}{r_{\rm{O}}^{2}f(\chi)}, \end{equation} $
(14) and the shadow radius of the BH observed by a static observer at
$ r_{\rm{O}} $ can be written as$ \begin{equation} r_{\rm{ss}}= r_{\rm{O}} \sin \beta = \chi\sqrt{\frac{f(r_{\rm{O}})}{f(\chi)}}{\Bigg |}_{\chi \rightarrow r_{pp}}. \end{equation} $
(15) For a regular Bardeen-AdS BH, the metric potential can be expressed by [33]
$ \begin{equation} f(r)= 1 + \frac{8\pi P r^{2}}{3}-\frac{2 M r^{2}}{(r^{2}+g^{2})^{3/2}}, \end{equation} $
(16) where M is the BH mass, and g is the BH magnetic charge. The radius of the event horizon
$ r_{\rm{h}} $ is the largest root of$ f(r_{\rm{h}})=0 $ . The BH mass reads as$ \begin{equation} M=\frac{(3+8 P \pi r_{\rm{h}}^{2})(r_{\rm{h}}^{2}+g^{2})^{{3}/{2}}}{6 r_{\rm{h}}^{2}}. \end{equation} $
(17) Based on the first law of BH thermodynamics, the Bardeen-AdS BH temperature is
$ \begin{equation} T = \frac{r_{\rm{h}}^{2}+8 \pi P r_{\rm{h}}^{4}-2g^{2}}{4 \pi r_{\rm{h}} (r_{\rm{h}}^{2}+g^{2})}. \end{equation} $
(18) The state equation can be expressed as
$ \begin{equation} P = \frac{T}{2 r_{\rm{\rm h}}}-\frac{1}{8 \pi {r_{\rm{h}}}^{3}}+\frac{g^2 T}{2r_{\rm{h}}^{3}}+\frac{g^{2}}{4 \pi {r_{\rm{h}}}^{4}}. \end{equation} $
(19) According to Eq. (10), the photon circular orbit radius of the Bardeen-AdS BH is
$ \begin{equation} r_{p} = \frac{1}{2}\sqrt{3 M + \sqrt{9 M^{2} - 10 g^{2}}}. \end{equation} $
(20) Utilizing Eq. (15), the radius of the Bardeen-AdS BH shadow can be written as
$ \begin{equation} r_{\rm{s}} = r_{\rm{p}} \sqrt{\frac{f(r_{\rm{O}})}{f(r_{p})}}, \end{equation} $
(21) Considering Eqs. (16), (20), and (21), we have a specific expression for the Bardeen-AdS BH shadow radius related to the horizon radius, that is, Eq. (22).
$ \begin{equation} r_{\rm{s}}=\frac{1}{2}\sqrt{\frac{3 f(r_{\rm{O}}) A^{2}B}{15(r_{\rm{h}}^{2}+g^{2})^{{3}/{2}}(3+8 P \pi r_{\rm{h}}^{2})+3B+2 \pi P A^{2}B}}, \end{equation} $
(22) where
$\begin{aligned}[b]A \equiv & \frac{(r_{\rm{h}}^{2}+g^{2})^{{3}/{2}}(3+8 P \pi r_{\rm{h}}^{2})}{2r_{\rm{h}}^{2}}\\&+ \Bigg(\frac{(r_{\rm{h}}^{2}+g^{2})^{3} (3+8 \pi P r_{\rm{h}}^{2})^{2} }{4r_{\rm{h}}^{4}}-10g^{2}\Bigg)^{-1/2},\\ B \equiv & 6(r_{\rm{h}}^{2}+g^{2})^{3/2}(3+8 \pi P r_{\rm{h}}^{2})\\&+3r_{\rm{h}}^{2}\Bigg(\frac{(r_{\rm{h}}^{2}+g^{2})^{3} (3+8 \pi P r_{\rm{h}}^{2})^{2} }{4r_{\rm{h}}^{4}}-10g^{2}\Bigg)^{-1/2}.\end{aligned} $
Based on the constraint, a static observer at spatial infinity has
$ f(r_{\rm{O}})=1 $ for$ r_{\rm{O}}=100 $ [22], and when the magnetic charge$ g \rightarrow 0 $ , the Bardeen-AdS BH will degenerate into the Schwarzschild-AdS BH. Figure 1 shows the radius of the Bardeen-AdS BH shadow radius$ r_{\rm{s}} $ as a function of the event horizon radius$ r_{\rm{h}} $ under several representative values of magnetic charge.$ r_{\rm{s}} $ and$ r_{\rm{h}} $ display a positive correlation, indicating that the BH temperature can be rewritten as a function of shadow radius in regular spacetime. Furthermore, the trend of$ r_{\rm{s}} $ with an increase in$ r_{\rm{h}} $ gradually flattens. As the magnetic charge increases, the radius of the event horizon increases, and the corresponding shadow radius increases. For a magnetic charge equal to zero, the regular Bardeen-AdS BH is replaced by a singular Schwarzschild-AdS BH; hence, Eq. (22) can be used to describe the relationship between the shadow radius and event horizon radius of the Schwarzschild-AdS BH ($ g=0 $ ). The left panels of Fig. 1 report the shadow radius of the Schwarzschild-AdS BH as a function of the event horizon radius. It is observed that these two radii still exhibit positive correlation characteristics, whereas the slopes of the function curves are greater than those of the regular AdS BH. As a result, we believe that the relationship between the shadow and BH temperature can be constructed in regular spacetime.Figure 1. Variation in shadow radius
$ r_{\rm{s}} $ in terms of the event horizon radius$ r_{\rm{h}} $ for the Bardeen-AdS BH. Panel (a) magnetic charge$ g=0 $ and$ r_{\rm{O}}=100 $ (Schwarzschild-AdS BH). Panel (b) magnetic charge$ g=0.1 $ and$ r_{\rm{O}}=100 $ . Panel (c) magnetic charge$ g=0.3 $ and$ r_{\rm{O}}=100 $ . The solid, segment point, and dotted lines correspond to$ P=0.001,\; 0.002,\;0.003 $ , respectively. -
In this section, we investigate the phase transition of the Bardeen-AdS BH from the shadow perspective. Based on the state Eq. (19) and critical condition
$ ({\partial P}/{\partial r_{\rm{h}}})= 0=({{\partial}^{2}P}/{\partial r_{\rm{h}}^{2}}) $ , the critical thermodynamic quantities of the Bardeen-AdS BH are obtained.$ \begin{eqnarray} &&P_{\rm{c}}=\frac{219-13\sqrt{273}}{1152 \pi g^{2}} \simeq {0.00116}{g^{-2}}, \end{eqnarray} $
(23) $ \begin{eqnarray} &&r_{\rm{c}}=\frac{\sqrt{15g^{2}+\sqrt{273}g^{2}}}{\sqrt{2}} \simeq 3.97006g, \end{eqnarray} $
(24) $ \begin{eqnarray} &&T_{\rm{c}}=\frac{\sqrt{2(15+\sqrt{273})}}{(51 \pi + 3\sqrt{273}\pi)g} \simeq {0.02513}{g^{-1}}. \end{eqnarray} $
(25) Based on Eqs. (22)–(24), the critical shadow radius of the Bardeen-AdS BH is
$ r_{\rm{sc}} \simeq 7.91886g $ . It is shown that the critical shadow radius is approximately twice as large as the standard critical radius. Considering the temperature expression in Eq. (18), the BH temperature as a function of$ r_{\rm{h}} $ for a fixed value of magnetic charge is shown in the left panels of Fig. 2. We can see that the function curves exhibit different characteristics for different pressures. Above the critical isobar ($ P>P_{\rm{c}} $ ), the curve does not have an inflection point. The temperature is a monotonically increasing function of radius, indicating that the BH is in the supercritical phase. At the critical isobar ($ P=P_{\rm{c}} $ ), the curve has an inflection point, where the BH is thermodynamically unstable, corresponding to the critical temperature. Two-phase transition branches exist below the critical pressure ($ P<P_{\rm{c}} $ ), one is in the small radius region, corresponding to the fluid phase in the vdW system, and the other is in the large radius region, corresponding to the gas phase.Figure 2. (color online) Panel (a) temperature as a function of
$ r_{\rm{h}} $ with$ g=0.1 $ . Panel (b) temperature as a function of$ r_{\rm{s}} $ with$ g=0.1 $ . Panel (c) temperature as a function of$ r_{\rm{s}} $ with$ g=0.3 $ . A static observer at$ r_{\rm{O}}=100 $ .The middle and right panels of Fig. 2 present the BH temperature as a function of the shadow radius
$ r_{\rm{s}} $ with different pressures under several representative values of magnetic charge. We find that the shadow radius can replace the event horizon radius to present the Bardeen-AdS BH phase transition process. An$ r_{\rm{s}} $ less than$ r_{\rm{s1}} $ corresponds to a stable small BH, and an$ r_{\rm{s}} $ great than$ r_{\rm{s2}} $ corresponds to a stable large BH. The unstable intermediate branch appears in$ (r_{\rm{s1}} $ ,$ r_{\rm{s2}}) $ . A larger magnetic charge leads to a weaker phase transition temperature, and the corresponding shadow radius increases. Meanwhile, Maxwell's equal area is constructed on the$ T-r_{\rm{h}} $ plane and$ T-r_{\rm{s}} $ plane, that is,$ \begin{eqnarray} T_{\rm{h0}}(r_{\rm{h2}}-r_{\rm{h1}}) = {\int_{r_{\rm{h2}}}^{r_{\rm{h1}}} T {\rm{d}}r_{\rm{h}}}, \end{eqnarray} $
(26) $ \begin{eqnarray} T_{\rm{s0}}(r_{\rm{s2}}-r_{\rm{s1}}) = {\int_{r_{\rm{s2}}}^{r_{\rm{s1}}} T {\rm{d}}r_{\rm{s}}}. \end{eqnarray} $
(27) We find that the equal area law can also be established using the shadow radius in regular spacetime, which implies that the shadow radius may serve as a probe for phase structure in regular spacetime. Note that
$ T_{\rm{h0}} $ and$ T_{\rm{s0}} $ are not entirely equivalent because the position of the static observer is relatively remote. In transferring the phase transition results to the characterization of the shadow radius, the temperature increases slightly with the Hawking radiation.Furthermore, the phase transition grade can be determined by heat capacity. The heat capacity mutation and specific heat diverge represent the second-order phase transition at the critical point. The heat capacity of the Bardeen-AdS BH at constant pressure can be written as
$ \begin{equation} C_{P}=T\Bigg(\frac{{\rm d}S}{{\rm d}T}\Bigg)_{P,g}=\frac{2\pi r_{\rm{h}}^2 (g^{2}+r_{\rm{h}}^2)(8\pi P r_{\rm{h}}^4 -2g^{2}+r_{\rm{h}}^2)}{8\pi P r_{\rm{h}}^6+8g^{4}+4g^{2}r_{\rm{h}}^2-r_{\rm{h}}^4}. \end{equation} $
(28) Figure 3 shows the heat capacity as a function of the event horizon radius and shadow radius of the Bardeen-AdS BH. It is found that the specific heat exhibits infinite divergence at the critical point, which is a strong signal for the beginning of the higher-order phase transition. By exploring the relationship between
$ C_{P} $ and$ r_{\rm{s}} $ , the shadow radius can also reveal the BH phase transition grade. -
We establish a thermal profile in this section to more intuitively report the relationship between the BH phase structure and shadow in regular spacetime. According to Ref. [34], the shadow boundary curve at the celestial coordinate reads as
$ \begin{eqnarray} && x = \lim\limits_{r \rightarrow \infty}\left(-r^{2}\sin\theta_{0}\frac{{\rm{d}}\phi}{{\rm{d}}r}\right)_{\rm{\theta_{\rm 0}} \rightarrow \frac{\pi}{2}}, \end{eqnarray} $
(29) $ \begin{eqnarray} && y = \lim\limits_{r \rightarrow \infty}\left(r^{2}\frac{{\rm{d}}\theta}{{\rm{d}}r}\right)_{\rm{\theta_{\rm 0}} \rightarrow \frac{\pi}{2}}. \end{eqnarray} $
(30) Figure 4 illustrates the shadow contour for a static observer. It is found that the size of the BH shadow depends on the pressure. The point line represents
$ P>P_{\rm{c}} $ , the shadow corresponding to the BH at the supercritical phase. The segment point line corresponds to$ P=P_{\rm{c}} $ , and we find that the shadow radius is more significant than in the$ P>P_{\rm{c}} $ situation. The dotted line only supports$ P<P_{\rm{c}} $ in which the shadow radius is in the large radius region. Additionally, we also observe that the radius of the BH shadow expands the BH outward by increasing the magnetic charge.Figure 4. (color online) Shadow cast of the Bardeen-AdS BH. Panel (a) magnetic charge
$ g=0.1 $ . Panel (b) magnetic charge$ g=0.3 $ . Here, the BH mass is$ M=60 $ , and$ r_{\rm{O}}=100 $ .By overlaying Figs. 2 and 4, the BH thermal profile is built utilizing the temperature-shadow radius function. Under several representative values of magnetic charge, Fig. 5 presents three different scenarios:
$ P>P_{\rm{c}} $ ,$ P=P_{\rm{c}} $ , and$ P<P_{\rm{c}} $ . It is found that the change in temperature with$ r_{\rm{s}} $ in the celestial coordinate is consistent with the previous analysis results. As the pressure decreases, the radius of the thermal profile increases, and the corresponding BH temperature decreases. The left panels of Fig. 5 represent$ P>P_{\rm{c}} $ , showing that the temperature increases gradually from the center of the shadow to the boundary in this case. This corresponds to the dotted lines in Fig. 2. The middle panels of Fig. 5 correspond to the$ P=P_{\rm{c}} $ situation, where the BH is thermodynamically unstable, and the temperature remains constant in the critical region, corresponding to the segment point lines in Fig. 2. The right panels of Fig. 5 support the$ P<P_{\rm{c}} $ case. In this sense, the temperature exhibits an N-type change trend. We further refine the region from$ r_{\rm{s1}} $ to$ r_{\rm{s2}} $ . Fig. 6 show that the temperature variation law is: increasing$ \rightarrow $ decreasing$ \rightarrow $ increasing (N-type), which corresponds to the description of the solid lines in Fig. 2. Note that the increase in the BH magnetic charge g leads to a decrease in the phase transition temperature, and there is a large unstable phase transition region. Our results suggest that the phase transition process of the Bardeen-AdS BH can be presented entirely in the thermal profile.Figure 5. (color online) Thermal profile of the Bardeen-AdS BH for different thermodynamical cases. Panel (a)
$ P>P_{\rm{c}} $ with$ g=0.1 $ . Panel (b)$ P=P_{\rm{c}} $ with$ g=0.1 $ . Panel (c)$ P<P_{\rm{c}} $ with$ g=0.1 $ . Panel (d)$ P>P_{\rm{c}} $ with$ g=0.3 $ . Panel (e)$ P=P_{\rm{c}} $ with$ g=0.3 $ . Panel (f)$ P<P_{\rm{c}} $ with$ g=0.3 $ . The BH mass is taken as$ M=60 $ .
Shadow thermodynamics of an AdS black hole in regular spacetime
- Received Date: 2022-04-07
- Available Online: 2022-09-15
Abstract: The dependence of the black hole (BH) shadow and thermodynamics may be structured in regular spacetime. Taking a regular Bardeen-AdS BH as an example, the relationship between the shadow radius and event horizon radius is derived. It is found that these two radii display a positive correlation, implying that the BH temperature can be rewritten as a function of shadow radius in regular spacetime. By analyzing the phase transition curves under the shadow context, we find that the shadow radius can replace the event horizon radius to present the BH phase transition process, and the phase transition grade can also be revealed by the shadow radius, indicating that the shadow radius may serve as a probe for phase structure in regular spacetime. Utilizing the temperature-shadow radius function, the thermal profile of the Bardeen-AdS BH is established. Moreover, the temperature exhibits an N-type change trend in the