-
Details regarding the theoretical formula of
$ ^{12} {\rm{C}}$ and$ ^{9} {\rm{Be}}$ global OMPs can be found in Refs. [2, 3]. Thus, we present only a brief description here. The OMPs of Woods-Saxon type$ \begin{aligned}[b] V(r,E) =& V_{R}(E)f(r,R_{R},a_{R})+{\rm i}W_{V}(E)f(r,R_{V},a_{V})\ \\ & +{\rm i}(-4W_{S}(E)a_{S})\frac{\rm d}{{\rm d}r}f(r,R_{S},a_{S})+V_{C}, \end{aligned} $
(1) were used in the optical model calculations.
$ V_{R}(E) $ ,$ W_{S}(E) $ , and$ W_{V}(E) $ are the energy-dependent potential depths and expressed as$ V_{R}(E) = V_{0}+V_{1}E+V_{2}E^{2}, $
(2) $ W_{S}(E) = \max\{0,W_{0}+W_{1}E\}, $
(3) $ W_{V}(E) = \max\{0,U_{0}+U_{1}E\}. $
(4) The Coulomb potential
$ V_{C} $ is taken as a uniform charged sphere with radius$ R_{C} $ .The radial functions are given by
$ f(r,R_{i},a_{i}) = (1+\exp[(r-R_{i})/a_{i}])^{-1}, $
(5) $ R_{i} = r_{i}A^{\frac{1}{3}}, \; \; \; \; \; \; i = R, S, V, C, $
(6) where A is the target mass number.
$ r_{R} $ ,$ r_{S} $ ,$ r_{V} $ , and$ r_{C} $ are respectively the radius parameters of the real, surface, and volume imaginary potentials, as well as the Coulomb potential.$ a_{R} $ ,$ a_{S} $ , and$ a_{V} $ are the corresponding diffuseness parameters. In particular, the radius parameter of the real potential is expressed as$ r_{R} = r_{R_{0}}+r_{R_{1}}A^{\frac{1}{3}}. $
(7) The
$ ^{12} {\rm{C}}$ and$ ^{9} {\rm{Be}}$ global OMPs have been constructed on the basis of the experimental data of elastic-scattering angular distributions and total reaction cross sections for targets from$ ^{24} {\rm{Mg}}$ to$ ^{209} {\rm{Bi}}$ below 200 MeV [3, 3]. In the following, we apply the obtained$ ^{12} {\rm{C}}$ and$ ^{9} {\rm{Be}}$ global OMPs to predict the elastic scattering observables for$ ^{9,10,11,13,14} {\rm{C}}$ projectiles and compare them with the available experimental data.
Description of elastic scattering induced by the unstable nuclei 9,10,11,13,14C
- Received Date: 2021-05-12
- Available Online: 2021-11-15
Abstract: The elastic-scattering angular distributions and total reaction cross sections of