-
Studies on doubly heavy baryons that contain two heavy constituent quarks (c or b quark) have been conducted for a long time. They are predicted by the quark model and allowed by the quantum chrodynamics theory. Physicists believe in their existence, even though they have not been found in experiments. The SELEX collaboration announced the discovery of
Ξ+cc in 2002 and 2005 [1, 2]. However, the reported production is large, and the lifetime that was measured is very long. Their results do not agree with the theoretical predictions and have not been confirmed by other experiments. In 2017, the LHCb collaboration declared the discovery ofΞ++cc viaΞ++cc→Λ+cK−π+π+ withmΞ++cc=3.621 GeV [3]. In 2018, the LHCb collaboration measured its lifetime as256 fs [4] and confirmed the discovery viaΞ++cc→Ξ+cπ+ [5].Ξ++cc is the first doubly heavy baryon to be discovered in experiments with properties that agree with the theoretical expectations. Its discovery is meaningful to the study of the hadron spectrum and baryon decays. Physicists have already conducted substantial research on the spectrum of doubly heavy baryons. However, the determination of a proper framework to study their weak decays is a very challenging task. Numerous studies have been conducted on this topic [6-24], and the form factors as well as the semileptonic decays of a doubly heavy baryon to a singly heavy baryon have been studied under various frameworks. However, few systematic methods are available to deal with even two body nonleptonic decays, which is essential for guiding new particle discoveries, understanding the dynamics of strong interactions, and testing the standard model precisely.In 2017, we applied final state interactions (FSIs) to baryon decays at the charm scale to estimate the branching fractions of two body nonleptonic weak decays of doubly charmed baryons [25]. We suggested two golden discovery channels of
Ξ++cc , which, as mentioned above, were adopted by the LHCb collaboration and aided in the discovery of theΞ++cc particle. The discovery inspired the research of doubly heavy baryons and further questions are posed: which are the golden discovery channels of the other doubly charmed baryons and what else can we find in the decays of doubly charmed baryons? To answer these questions, further research on the weak decays of doubly heavy baryons is required. In our previous work, we calculated the decays of a doubly charmed baryon to a singly charmed baryon and a light vector meson. We also investigated the possibility of these decays as potential discovery channels [26]. After discoveringΞ++cc , measuring its lifetime, and confirming the discovery with another decay, the LHCb collaboration also focused on the weak decays ofΞ++cc with a charm meson in the final state [27]. Motivated by these theoretical questions and experimental efforts, we study the two body nonleptonic decays of a doubly charmed baryonBcc→BD(∗) , whereBcc represents a doubly charmed baryon,B denotes a light baryon, andD(∗) is either a pseudoscalar or vector charm meson.There are many interesting physics to be explored in baryon decays. For example, the CP violations have already been observed in K, B, and D meson decays but have not been observed in baryon decays. Theoretical progress in this topic is slow because it is challenging to calculate the dynamics. No systematic factorization method has been established thus far, even for two body nonleptonic decays. In general, the contributions in two body nonleptonic baryon decays can be topologically classified into several types: T, C, E, and B [28]. In b baryon decays, the E and B contributions are numerically small [29]. In the charm sector, the situation differs, and the E and B contributions may become important [30]. The study of these decays will aid in understanding the dynamics of baryon decays at the charm scale.
The remainder of this paper is organized as follows. In Section II, the phenomenological framework is introduced, the contributions in these decays are discussed, and the analytical expressions are presented. Section III presents several inputs, tables of our results, and discussions. A summary is provided in Section IV. Owing to space limitations, we list all of the expressions of the amplitudes in Appendix B, whereas the strong couplings are presented in Appendix C.
-
In our previous work, we extended the model of FSIs to baryon decays [25, 26] and suggested the discovery channels for
Ξ++cc successfully. We also found a misunderstanding of FSIs in certain earlier reports, and interested readers are referred to our upcoming paper. To begin with, we briefly introduce this framework by following the ideas proposed in Ref. [31]. Suppose that the weak Hamiltonian is in the formHW=λiQi , whereλi are the combinations of quark mixing matrix elements andQi are time reversal invariant weak operators. The amplitude ofBcc→i can be decomposed as⟨i;out|Q|Bcc;in⟩∗=∑jS∗ji⟨j;out|Q|Bcc;in⟩,
(1) where
Sji≡⟨i;out|j;in⟩ is the strong interaction S matrix element. Using the unitarity of the S-matrix andS=1+iT , one can obtain an identity related to the optical theorem:2Abs⟨i;out|Q|Bcc;in⟩=∑jT∗ji⟨j;out|Q|Bcc;in⟩.
(2) Specifically, the absorptive part in the amplitude of the
Bcc→BD(∗) decay can be obtained asAbsM(Bcc→BD(∗))=12∑j(j∏k=1∫d3qk(2π)32Ek)(2π)4δ4(pB+pD(∗)−j∑k=1qk)×M(pBcc→{qk})T∗(pBpD(∗)→{qk}).
(3) Eqs. (1) and (3) indicate that the decay process can be divided into two steps. The first is the generation of an intermediate state under weak interactions, which is dominated by short distance dynamics, and the second is the subsequent formation of a final state through the strong interactions among intermediate particles. In principle, all possible intermediate states should be considered. However, based on the argument that the
2 -body⇌ n-body rescattering is negligible [32, 33], we only need to consider the intermediate states with two particles.The weak decays
Bcc→BD(∗) are induced by the charged currentc→s/d . For charm decays induced by the flavor changing neutral current (FCNC) with a quark loop effect, cancellation occurs between the d and s quark loop contributions; therefore, the FCNC contributions can safely be ignored. The low energy effective Hamiltonian with a charged current is given byHeff=GF√2∑q=d,sV∗cqVuD[C1(μ)Oq1(μ)+C2(μ)Oq2(μ)]+h.c.,
(4) with
Oq1=(ˉuαDβ)V−A(ˉqβcα)V−A,Oq2=(ˉuαDα)V−A(ˉqβcβ)V−A,
(5) where
D=s,d ,Vcq , andVuD are the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements whose values are used from the CKMfitter Group [34],C1/2(μ) represents the Wilson coefficients, the Fermi constant isGF=1.166×10−5GeV−2 , andOq1/2 are the local four-quark operators in whichα andβ are color indices.The contributions induced by the above Hamiltonian in two body nonleptonic decays of
Bcc can be classified into eight topological diagrams, which are depicted in Fig. 1. The external W emission contribution is denoted by the symbol T. The internal W emission contributions can be classified as two types. In the C diagram, the two constituent quarks of the meson are all obtained from the weak vertex. In theC′ diagram, one constituent quark of the meson is obtained from the initial state baryon. The diagrams in the second line of Fig. 1 are all W exchange diagrams. InE1 , the light quark, which is obtained from the c quark by emitting a W boson, is picked up by the final state baryon, whereas inE2 , it is picked up by the final state meson. In the bow-tie diagram (denoted by B), both light quarks generated in the weak interaction are picked up by the final state baryon. The strong interactions in Fig. 1, both short and long distance, are included although they are not drawn.Figure 1. Topological diagrams of
Bcc→B(c)M(D(∗)) at tree level.B(c) denotes a light baryon or singly charmed baryon. M is a light meson. The thick lines represent c quarks and the wavy lines represent W bosons.The short distance strong interactions are associated with the weak vertex, and this part of the contribution occurs at a high energy scale so that the perturbative calculation is still valid. Drawing on the experience of studying b baryon decays [28, 29], one can observe that the W exchange contribution can be safely neglected at a short distance. The situation differs when one considers the long distance contributions, which are thought to be dominating because of the low energy release, and the W exchange mechanism may become important [35-39]. A decay process of
Bcc→BD(∗) can be divided into two steps: aBcc baryon first decays toBcM and then toBD(∗) via long distance interactions. The former step occurs at a short distance; therefore, the W exchange contribution can be omitted. The long distance part, which is essentially nonperturbative, is difficult to calculate. In this work, we model it as the FSIs and perform the calculation at the hadron level. In this model, the long distance dynamics are realized by exchanging hadron-state particles (depicted in Fig. 2). Now we arrive at the step for calculating the amplitude in detail. -
As stated in the previous subsection, the first step in obtaining the amplitude is to calculate the weak production of an intermediate state. To avoid double counting, this part of the contribution is short distance dynamics in principle. At the hadron level, this part is represented by a weak vertex. At a short distance, the W exchange mechanism can safely be neglected. Therefore, the weak vertex can be calculated reliably with the factorization hypothesis. Given the Hamiltonian in Eqs. (4) and (5), the T diagram in the factorization hypothesis is factorized as follows:
A(Bcc→BcM)=GF√2∑q=d,sV∗cqVuD(C2+C1/NC)⟨M|(ˉuαDα)V−A|0⟩⟨Bc|(ˉqβcβ)V−A|Bcc⟩
(6) with
Nc=3 . The weak transition ofBcc to a spin-1/2 singly charmed baryonBc is parameterized as⟨Bc(p′,s′z)|(V−A)μ|Bcc(p,sz)⟩=ˉu(p′,s′z)[γμf1(q2)+iσμνqνMf2(q2)+qμMf3(q2)]u(p,sz)−ˉu(p′,s′z)[γμg1(q2)+iσμνqνMg2(q2)+qμMg3(q2)]γ5u(p,sz),
(7) where
q=p−p′ , M is the mass ofBcc , andfi andgi are the form factors.The expressions of
fi andgi , which can be obtained with the aid of certain quark models or sum rules, are used as inputs here. In this study, we adopt the results calculated under the light-front quark model in Ref. [10].The decay constants of pseudoscalar and vector mesons are respectively defined as as
⟨0|Aμ|P(q)⟩=ifPqμ,
(8) and
⟨0|Vμ|V(q)⟩=fVmVϵμ,
(9) where the subscripts "P" and "V" correspond to a pseudoscalar and vector meson, respectively. Combining Eqs. (7)-(9), the weak vertex of
Bcc→BcP is expressed asWT(Bcc→BcP)=iGF√2V∗cqVuDa1fPˉu(p′,s′z)[(M−M′)f1(m2P)+(M+M′)g1(m2P)γ5]u(p,sz).
(10) The C diagram can be calculated via its relation to the T diagram under Fierz transformation:
WC(Bcc→BcP)=iGF√2V∗cqVuDa2fPˉu(p′,s′z)[(M−M′)f1(m2P)+(M+M′)g1(m2P)γ5]u(p,sz).
(11) In the above equations,
a1=C2+C1/NC anda2=C1+C2/NC are the combinations of Wilson coefficients. In this work, the decays are under the charm scale, so we usea1(mc) anda2(mc) in Ref. [40].M′ is the mass ofBc . We omit the terms withf3 andg3 in Eq. (11), because they are suppressed bym2P/M2 .For
Bcc→BcV , we obtainWT(Bcc→BcV)=GF√2V∗cqVuDa1fVϵ∗μˉu(p′,s′z)[(f1(m2V)−M+M′Mf2(m2V))γμ+2Mf2(m2V)p′μ−(g1(m2V)+M−M′Mg2(m2V))γμγ5−2Mg2(m2V)p′μγ5]u(p,sz),WC(Bcc→BcV)=GF√2V∗cqVuDa2fVϵ∗μˉu(p′,s′z)[(f1(m2V)−M+M′Mf2(m2V))γμ+2Mf2(m2V)p′μ−(g1(m2V)+M−M′Mg2(m2V))γμγ5−2Mg2(m2V)p′μγ5]u(p,sz).
(12) -
The rescattering between the intermediate particles is nonperturbative dynamics by nature and very difficult to calculate. In this work, we employ the framework of FSIs and perform the calculation with the one-particle-exchange model at the hadron level [31, 35-39, 41, 42]. In thefollowing, we use
Ω+cc→Ξ0D+s as an example to demonstrate the detailed process of our calculation. This decay can proceed asΩ+cc→Ω0c(K+/K∗+)→Ξ0D+s ,Ω+cc→(Ξ+c/Ξ′+c)(ϕ/η1/η8)→Ξ0D+s , andΩ+cc→(Ξ0c/Ξ′0c)(π+/ρ+)→Ξ0D+s . The first one is induced byc→suˉs at the quark level and the latter two are induced byc→duˉd , which indicates that it is a singly CKM suppressed decay. The intermediate statesΩ0c(K+/K∗+) and(Ξ0c/Ξ′0c)(π+/ρ+) are generated via the T diagram, and(Ξ+c/Ξ′+c)(ϕ/η1/η8) originates from the C mechanism.As mentioned previously and depicted in Fig. 2, the long distance contributions are calculated at the hadron level. The calculation is performed with the chiral Lagrangian. One can draw all of the leading diagrams according to the perturbation theory with only one particle exchanged, as in Fig. 3. The Lagrangian used in this study is obtained from Refs. [43-46]. The readers can refer to Ref. [25] for specific expressions.
Figure 3. Leading FSI contributions to
Ω+cc→Ξ0D+s manifested at hadron level. The black squares denote weak vertices and dots represent strong vertices. Each thick line in diagrams (g), (h), and (i) denotes a resonant structure. Diagrams (a), (d), and (g) are induced by the rescattering betweenΩ0c andK+/K∗+ , diagrams (b), (c), (e), and (h) by the rescattering betweenΞ+c/Ξ′+c andϕ/η1/η8 , and diagram (f) byΞ0c/Ξ′0c andπ+/ρ+. The three diagrams of the s channel, presented in Figs. 3(g), (h) and (i), make a sizeable contribution only when the mass of each resonant state is quite close to the mass of the mother particle
Ω+cc . Among the discovered singly charmed baryons, even the heaviest one is approximately500 MeV lighter thanΞ++cc . Therefore, these contributions are supposed to be suppressed by the off-shell effect. As a result, we neglect these contributions in our calculation and only consider the t channel contributions, which are the typical triangle diagrams depicted in Figs. 3(a)-(f). Eq. (3) is employed to calculate the absorptive part of these diagrams. In principle, the amplitude of the diagram can be obtained via the dispersion relationA(m21)=1π∫∞sAbsA(s′)s′−m21−iϵds′.
(13) As opposed to QCD sum rules, our calculation is performed in the physical kinematics region, where a singularity exists in the above integration. In this study, we follow the scheme adopted by Hai-Yang Cheng, Chun-Khiang Chua, and Amarjit Soni in Ref. [31]. Only the absorptive part of the amplitude is maintained for order estimation. An additional phenomenological factor is associated with the exchanged particle to account for its off-shell effect and to make the theoretical framework consistent. The expression of this factor is provided in the following subsection.
-
We derive the analytical expressions of the amplitudes by combining the discussions in Sections II B and II C in this subsection. To simplify the subscripts, we assign numbers to the particles in a triangle diagram, as illustrated in Fig. 4, in which the momentum flows are also defined. We use
Ma/b/c/d/e/f(P2;P3;P4) to denote the amplitude of such a triangle diagram. The subscripts "a/b/c/d/e/f " correspond to Figs. 3(a)-(f), whereasP2 ,P3 , andP4 denote the particles at positions2 ,3 , and4 , respectively.Figure 4. Numbers assigned to lines in triangle diagram. The arrows define the momentum directions in our calculation.
Specifically, the absorptive part of Fig. 3(a) is given by
P2=K+ ,P3=Ω0c , andP4=D∗0 AbsMa(K+;Ω0c;D∗0)=∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa1fK+F2(t,mD∗0)t−m2D∗0+imD∗0ΓD∗0gD∗0D+sK+p2αׯu(p6,s′z)[f1Ω0cΞ0D∗0γμ(−gμα+pμ4pα4m2D∗0)+f2Ω0cΞ0D∗0mΩ0c+mΞ0σμνipμ4(−gνα+pν4pα4m2D∗0)]×(/p3+mΩ0c)[(mΩ+cc−mΩ0c)f1(m2K+)+(mΩ+cc+mΩ0c)g1(m2k+)γ5]u(p1,sz).
(14) In the calculation, summations over the polarization states of the intermediate and exchanged particles need to be performed. For example, in Fig. 3(a), one needs to sum over the polarization states of
Ω0c andD∗0 . In Eq. (14),θ andϕ are the polar and azimuthal angles of→p3 in the spherical coordinate system, respectively, whereasgD∗0D+sK+ ,f1Ω0cΞ0D∗0 , andf2Ω0cΞ0D∗0 are strong coupling constants. Furthermore,P2 andP3 are set to be on-shell. To account for the off-shell effect and to make the theoretical framework self-consistent, a Breit-Wigner structure and a form factorF(t,m) are associated with the exchanged particle. The form factorF(t,m) is parameterized as [31]F(t,m)=(Λ2−m2Λ2−t)n,
(15) which is normalized to
1 att=m2 , where m is the mass of the exchanged particle. The cutoffΛ is given asΛ=m+ηΛQCD
(16) with
ΛQCD=330MeV . The phenomenological parameterη depends on all of the particles at the strong vertex. Because numerous strong vertices appear in the calculation, a huge amount of experimental data are required to determine these parameters individually. In our calculation, we setη=1.5 and vary it from1 to2 for the error estimations. In Eq. (15), n is another phenomenological parameter that needs to be extracted from experimental data. Owing to a lack of experimental data, we draw on the experience of Ref. [31] and set it to1 .Similarly, the absorptive part of Fig. 3(d) is given as
AbsMd(K∗+;Ω0c;D0)=−i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa1fK∗+F2(t,mD0)t−m2D0+imD0ΓD0gΩ0cΞ0D0gD+sD0K∗+(p5α+p4α)ׯu(p6,s′z)γ5(/p3+mΩ0c)(−gμα+pμ2pα2m2K∗+)×[(f1(m2K∗+)−mΩ+cc+mΩ0cmΩ+ccf2(m2K∗+))γμ+2mΩ+ccf2(m2K∗+)p3μ−(g1(m2K∗+)+mΩ+cc−mΩ0cmΩ+ccg2(m2K∗+))γμγ5−2mΩ+ccg2(m2K∗+)p3μγ5]u(p1,sz),
(17) where the spin summation is performed over the polarization states of
Ω0c andK∗+ . It should be stressed that certain symbols of strong coupling constants resemble those of weak transition form factors. Readers can distinguish these according to the feature that strong coupling constants have particle names as subscripts. The expressions of the remaining diagrams in Fig. 3 are provided in Appendix A. With all of the diagrams calculated, the amplitude ofΩ+cc→Ξ0D+s is given asA(Ω+cc→Ξ0D+s)=iAbs[Ma(K+;Ω0c;D∗0)+Mb(ϕ;Ξ+c;D+s)+Mb(ϕ;Ξ′+c;D+s)+Mc(ϕ;Ξ+c;Ξ0)+Mc(ϕ;Ξ′+c;Ξ0)+Mc(η1;Ξ+c;Ξ0)+Mc(η1;Ξ′+c;Ξ0)+Mc(η8;Ξ+c;Ξ0)+Mc(η8;Ξ′+c;Ξ0)+Md(K∗+;Ω0c;D0)+Me(η1;Ξ+c;D∗+s)+Me(η1;Ξ′+c;D∗+s)+Me(η8;Ξ+c;D∗+s)+Me(η8;Ξ′+c;D∗+s)+Mf(π+;Ξ0c;Ξ−)+Mf(π+;Ξ′0c;Ξ−)+Mf(ρ+;Ξ0c;Ξ−)+Mf(ρ+;Ξ′0c;Ξ−)].
(18) The amplitudes of the other decays can be obtained in the same manner. Owing to space limitations, we provide these expressions in Appendix B.
-
The decay width of
Bcc→BD(∗) can be calculated at the rest frame ofBcc byΓ(Bcc→BD(∗))=√(m2Bcc−(mB+mD(∗))2)((m2Bcc−(mB−mD(∗))232πm3Bcc∑pol.|A(Bcc→BD(∗))|2,
(19) where the summations are performed over the polarizations of the initial and final states. Moreover, a factor
1/2 has already been multiplied to average over the polarizations of the mother particleBcc .The calculation of the short distance contribution requires the decay constants of several pseudoscalar and vector mesons, which are presented in Table 1. Furthermore, numerous strong couplings are required, most of which are obtained from Refs. [31, 47-53]. Certain strong couplings that cannot be found in literature are calculated under the
SU(3)F symmetry. The data of the strong couplings are presented in Appendix C.fπ fK fη8 fη1 fρ fK∗ fω fϕ 130 156 163 152 216 217 195 233 Now we can obtain the numerical values of the related decays. We use the lifetime
τΞ++cc=256fs , which was measured by the LHCb collaboration [4], to calculate the branching fractions of theΞ++cc decays, and our results are presented in Table 2. It can be observed that the branching ratios of theΞ++cc→BD∗ decays tend to be larger than those of theΞ++cc→BD mode when the quark constituents are the same. This can easily be understood by the fact thatΞ++cc→BD∗ decays have more polarization states. Among these decays, the CKM favored ones certainly have the largest branching ratios. The branching ratio ofΞ++cc→Σ+D∗+ is estimated to reach the percentage level.Channel BR(10−3) CKM Channel BR(10−3) CKM Ξ++cc→Σ+D+ 2.98+3.16−2.02 CF Ξ++cc→Σ+D∗+ 16.06+17.28−10.50 CF Ξ++cc→Σ+D+s 0.17+0.18−0.12 SCS Ξ++cc→Σ+D∗+s 2.68+2.64−1.71 SCS Ξ++cc→pD+ 0.16+0.18−0.11 SCS Ξ++cc→pD∗+ 2.96+3.38−2.06 SCS Ξ++cc→pD+s 0.01+0.02−0.00 DCS Ξ++cc→pD∗+s 0.11+0.13−0.07 DCS Table 2. Results for branching ratios of
Ξ++cc→BD(∗) . The terms "CF," "SCS," and "DCS" represent CKM favored, singly CKM suppressed, and doubly CKM suppressed processes, respectively. The errors are estimated by varyingη from1 to2 , and the central values are given atη=1.5 . Topologically, these decays are all classified as theC′ diagram.In Tables 3 and 4 the decay widths of
Ξ+cc andΩ+cc decays instead of the branching ratios, because no experimental data of their lifetimes are available. Among the decays of the same mode,Bcc→BD orBcc→BD∗ , the CKM favored, singly CKM suppressed, and doubly CKM suppressed decays fall into a hierarchy naturally.Channel Γ/GeV CKM Contributions Channel Γ/GeV CKM Contributions Ξ+cc→Σ0D+ (5.93+6.31−4.05)∗10−15 CF C′ BΞ+cc→ΛD∗+ (1.82+2.03−1.26)∗10−13 CF C′ BΞ+cc→ΛD+ (5.84+6.16−3.98)∗10−15 CF C′ BΞ+cc→Σ0D∗+ (2.17+2.45−1.51)∗10−13 CF C′ BΞ+cc→Σ+D0 (1.23+1.24−0.77)∗10−15 CF B Ξ+cc→Σ+D∗0 (6.77+7.37−4.46)∗10−14 CF B Ξ+cc→Ξ0D+s (4.52+5.22−3.49)∗10−16 CF B Ξ+cc→Ξ0D∗+s (2.52+2.23−1.48)∗10−14 CF B Ξ+cc→pD0 (1.85+2.02−1.27)∗10−15 SCS B Ξ+cc→Σ0D∗+s (1.15+1.41−0.85)∗10−14 SCS C′ BΞ+cc→ΛD+s (3.00+2.93−2.00)∗10−16 SCS C′ BΞ+cc→ΛD∗+s (1.58+1.73−1.09)∗10−14 SCS C′ BΞ+cc→nD+ (1.59+1.87−1.13)∗10−16 SCS C′ BΞ+cc→nD∗+ (1.04+1.41−0.87)∗10−15 SCS C′ BΞ+cc→Σ0D+s (2.85+2.72−1.78)∗10−16 SCS C′ BΞ+cc→pD∗0 (9.46+10.20−6.49)∗10−15 SCS B Ξ+cc→nD+s (3.26+3.88−2.41)∗10−17 DCS C′ Ξ+cc→nD∗+s (1.47+1.57−1.00)∗10−16 DCS C′ Table 3. Results for branching ratios of
Ξ+cc→BD(∗) . The terms "CF," "SCS," and "DCS" represent CKM favored, singly CKM suppressed, and doubly CKM suppressed processes, respectively. The errors are estimated by varyingη from1 to2 , and the central values are given atη=1.5 . B andC′ represent the contributions in Fig. 1.Channel Γ/GeV CKM Contributions Channels Γ/GeV CKM Contributions Ω+cc→Ξ0D+ (1.88+1.97−1.25)∗10−14 CF C′ Ω+cc→Ξ0D∗+ (4.99+4.05−2.62)∗10−14 CF C′ Ω+cc→Σ+D0 (1.76+1.71−1.07)∗10−15 SCS B Ω+cc→Σ0D∗+ (1.80+2.14−1.27)∗10−14 SCS C′ BΩ+cc→ΛD+ (1.75+1.98−1.21)∗10−15 SCS C′ BΩ+cc→ΛD∗+ (7.65+8.69−5.32)∗10−15 SCS C′ BΩ+cc→Ξ0D+s (9.93+10.87−6.84)∗10−16 SCS C′ BΩ+cc→Ξ0D∗+s (4.26+4.06−2.81)∗10−16 SCS C′ BΩ+cc→Σ0D+ (2.37+2.14−1.20)∗10−16 SCS C′ BΩ+cc→Σ+D∗0 (6.91+6.24−4.15)∗10−15 SCS B Ω+cc→Σ0D+s (1.17+10.93−6.57)∗10−16 DCS C′ BΩ+cc→Σ0D∗+s (1.68+1.92−1.18)∗10−16 DCS C′ BΩ+cc→pD0 (1.74+2.05−1.23)∗10−17 DCS B Ω+cc→pD∗0 (3.83+4.85−2.74)∗10−16 DCS B Ω+cc→nD+ (4.32+5.56−3.30)∗10−17 DCS B Ω+cc→ΛD∗+s (1.06+1.27−0.75)∗10−16 DCS B Ω+cc→ΛD+s (7.00+7.87−4.85)∗10−18 DCS B Ω+cc→nD∗+ (2.74+3.29−2.09)∗10−17 DCS B Table 4. The same as Table 3 but for decay widths of
Ω+cc→BD(∗). Ξ+cc→ΛD∗+ andΞ+cc→Σ0D∗+ possess the largest decay widths among theΞ+cc→BD(∗) decays. When estimated with a recently calculated lifetime ofτΞ+cc=45fs in Ref. [57], their branching ratios are given byBR(Ξ+cc→ΛD∗+)∈[0.38%,2.63%],BR(Ξ+cc→Σ0D∗+)∈[0.45%,3.16%].
(20) The lifetime of
Ω+cc is predicted to lie in the range of75∼180 fs in Ref. [57]. Here, we use the boundary of75 fs to estimate the three largest branching fractions in theΩ+cc→BD(∗) decays, which are given asBR(Ω+cc→Ξ0D∗+)∈[0.27%,1.03%],BR(Ω+cc→Ξ0D+)∈[0.07%,0.44%],BR(Ω+cc→Σ0D∗+)∈[0.06%,0.45%].
(21) We also specify the topological contributions of the decays in the tables. It can be observed that the bow-tie mechanism makes a sizeable contribution to the charm decays. Let us take
Ω+cc→Ξ0D+ andΩ+cc→Σ+D0 as an example for clarification. The former decay is a pure color commensurate process, whereas the latter one is purely dominated by the bow-tie mechanism. It can be observed from Table 4 thatΓ(Ω+cc→Ξ0D+)Γ(Ω+cc→Σ+D0)∼10.
(22) The ratio of their CKM matrix elements is
VcsV∗udVcsV∗us∼4.4.
(23) Considering that the CKM factors are squared in the calculation of decay widths, it can be found that the CKM factors will cause a difference of approximately
20 times. This means that the bow-tie mechanism and color commensurate mechanism contribute with the same order. -
The discovery of
Ξ++cc in 2017 has inspired interest in studying doubly charmed baryons. Among all of the related topics, how to calculate their weak decays is a meaningful and challenging one, which can provide valuable suggestions for experimental research as well as aid in understanding the dynamics of baryon decays. In our previous work, we applied the model of FSIs to baryon decays and realized the estimation of two body nonleptonic decays of charm baryons.In this study, we calculated the decays of a doubly charmed baryon to a light baryon and a charm meson. In the same decay mode,
Bcc→BD orBcc→BD∗ , the CKM favored, singly CKM suppressed, and doubly CKM suppressed decays fall into a hierarchy naturally. TheBcc→BD∗ decays tends to have larger branching ratios or decay widths because they have more polarization states. Moreover,Ξ++cc→Σ+D∗+ has the largest branching ratio inΞ++cc→BD(∗) decays, which lies in the range of(0.46∼3.33)% . The two largest branching ratios in theΞ+cc→BD(∗) mode areBR(Ξ+cc→ΛD∗+)∈[0.38%,2.63%] andBR(Ξ+cc→Σ0D∗+)∈[0.45%,3.16%] , which are estimated withτΞ+cc=45 fs. For theΩ+cc→BD(∗) mode,BR(Ω+cc→Ξ0D∗+)∈[0.27%,1.03%] ,BR(Ω+cc→Ξ0D+)∈[0.07%,0.44%] , andBR(Ω+cc→Σ0D∗+)∈[0.06%,0.45%] are the three largest ones, and they are calculated withτΩ+cc=75 fs.By comparing the decay widths of pure color commensurate processes with those of pure bow-tie processes, we found that the bow-tie mechanism also plays an important role in charm decays.
-
We would like to thank Z.-T. Zou, F.-S. Yu, and F.-K. Guo for helpful discussions.
-
AbsMb(ϕ;Ξ+c;D+s)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fϕF2(t,mD+s)t−m2D+s+imD+sΓD+sgΞ+cΞ0D+sgD+sD+sϕ(p4α+p5α)ׯu(p6,s′z)γ5(/p3+mΞ+c)(−gμα+pμ2pα2m2ϕ)×[(f1(m2ϕ)−mΩ+cc+mΞ+cmΩ+ccf2(m2ϕ))γμ+2mΩ+ccf2(m2ϕ)p3μ−(g1(m2ϕ)+mΩ+cc−mΞ+cmΩ+ccg2(m2ϕ))γμγ5−2mΩ+ccg2(m2ϕ)p3μγ5]u(p1,sz).
AbsMb(ϕ;Ξ′+c;D+s)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fϕF2(t,mD+s)t−m2D+s+imD+sΓD+sgΞ′+cΞ0D+sgD+sD+sϕ(p4α+p5α)ׯu(p6,s′z)γ5(/p3+mΞ′+c)(−gμα+pμ2pα2m2ϕ)×[(f1(m2ϕ)−mΩ+cc+mΞ′+cmΩ+ccf2(m2ϕ))γμ+2mΩ+ccf2(m2ϕ)p3μ−(g1(m2ϕ)+mΩ+cc−mΞ′+cmΩ+ccg2(m2ϕ))γμγ5−2mΩ+ccg2(m2ϕ)p3μγ5]u(p1,sz).
AbsMe(η1;Ξ+c;D∗+s)=−∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη1F2(t,mD∗+s)t−m2D∗+s+imD∗+sΓD∗+sgD∗+sD+sη1p2αׯu(p6,s′z)[f1Ξ+cΞ0D∗+sγμ(−gμα+pμ4pα4m2D∗+s)+f2Ξ+cΞ0D∗+smΞ+c+mΞ0σμνipμ4(−gνα+pν4pα4m2D∗+s)]×(/p3+mΞ+c)[(mΩ+cc−mΞ+c)f1(m2η1)+(mΩ+cc+mΞ+c)g1(m2η1)γ5]u(p1,sz),
AbsMe(η1;Ξ′+c;D∗+s)=−∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη1F2(t,mD∗+s)t−m2D∗+s+imD∗+sΓD∗+sgD∗+sD+sη1p2αׯu(p6,s′z)[f1Ξ′+cΞ0D∗+sγμ(−gμα+pμ4pα4m2D∗+s)+f2Ξ′+cΞ0D∗+smΞ′+c+mΞ0σμνipμ4(−gνα+pν4pα4m2D∗+s)]×(/p3+mΞ′+c)[(mΩ+cc−mΞ′+c)f1(m2η1)+(mΩ+cc+mΞ′+c)g1(m2η1)γ5]u(p1,sz),
AbsMe(η8;Ξ+c;D∗+s)=−∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη8F2(t,mD∗+s)t−m2D∗+s+imD∗+sΓD∗+sgD∗+sD+sη8p2αׯu(p6,s′z)[f1Ξ+cΞ0D∗+sγμ(−gμα+pμ4pα4m2D∗+s)+f2Ξ+cΞ0D∗+smΞ+c+mΞ0σμνipμ4(−gνα+pν4pα4m2D∗+s)]×(/p3+mΞ+c)[(mΩ+cc−mΞ+c)f1(m2η8)+(mΩ+cc+mΞ+c)g1(m2η8)γ5]u(p1,sz),
AbsMe(η8;Ξ′+c;D∗+s)=−∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη8F2(t,mD∗+s)t−m2D∗+s+imD∗+sΓD∗+sgD∗+sD+sη8p2αׯu(p6,s′z)[f1Ξ′+cΞ0D∗+sγμ(−gμα+pμ4pα4m2D∗+s)+f2Ξ′+cΞ0D∗+smΞ′+c+mΞ0σμνipμ4(−gνα+pν4pα4m2D∗+s)]×(/p3+mΞ′+c)[(mΩ+cc−mΞ′+c)f1(m2η8)+(mΩ+cc+mΞ′+c)g1(m2η8)γ5]u(p1,sz),
AbsMc(ϕ;Ξ+c;Ξ0)=−i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fϕF2(t,mΞ0)t−m2Ξ0+imΞ0ΓΞ0gΞ+cΞ0D+sׯu(p5,s′z)[f1Ξ0Ξ0ϕγμ(−gαμ+pα2pμ2m2ϕ)+f2Ξ0Ξ0ϕmΞ0+mΞ0σμν(−ipμ2)(−gαν+pα2pν2m2ϕ)]×(/p4+mΞ0)γ5(/p3+mΞ+c)[(f1(m2ϕ)−mΩ+cc+mΞ+cmΩ+ccf2(m2ϕ))γα+2mΩ+ccf2(m2ϕ)p3α−(g1(m2ϕ)+mΩ+cc−mΞ+cmΩ+ccg2(m2ϕ))γαγ5−2mΩ+ccg2(m2ϕ)p3αγ5]u(p1,sz).
AbsMc(ϕ;Ξ′+c;Ξ0)=−i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fϕF2(t,mΞ0)t−m2Ξ0+imΞ0ΓΞ0gΞ′+cΞ0D+sׯu(p5,s′z)[f1Ξ0Ξ0ϕγμ(−gαμ+pα2pμ2m2ϕ)+f2Ξ0Ξ0ϕmΞ0+mΞ0σμν(−ipμ2)(−gαν+pα2pν2m2ϕ)]×(/p4+mΞ0)γ5(/p3+mΞ′+c)[(f1(m2ϕ)−mΩ+cc+mΞ′+cmΩ+ccf2(m2ϕ))γα+2mΩ+ccf2(m2ϕ)p3α−(g1(m2ϕ)+mΩ+cc−mΞ′+cmΩ+ccg2(m2ϕ))γαγ5−2mΩ+ccg2(m2ϕ)p3αγ5]u(p1,sz).
AbsMc(η1;Ξ+c;Ξ0)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη1F2(t,mΞ0)t−m2Ξ0+imΞ0ΓΞ0gΞ0Ξ0η1gΞ+cΞ0D+sׯu(p5,s′z)γ5(/p4+mΞ0)γ5(/p3+mΞ+c)×[(mΩ+cc−mΞ+c)f1(m2η1)+(mΩ+cc+mΞ+c)g1(m2η1)γ5]u(p1,sz).
AbsMc(η1;Ξ′+c;Ξ0)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη1F2(t,mΞ0)t−m2Ξ0+imΞ0ΓΞ0gΞ0Ξ0η1gΞ′+cΞ0D+sׯu(p5,s′z)γ5(/p4+mΞ0)γ5(/p3+mΞ′+c)×[(mΩ+cc−mΞ′+c)f1(m2η1)+(mΩ+cc+mΞ′+c)g1(m2η1)γ5]u(p1,sz).
AbsMc(η8;Ξ+c;Ξ0)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη8F2(t,mΞ0)t−m2Ξ0+imΞ0ΓΞ0gΞ0Ξ0η8gΞ+cΞ0D+sׯu(p5,s′z)γ5(/p4+mΞ0)γ5(/p3+mΞ+c)×[(mΩ+cc−mΞ+c)f1(m2η8)+(mΩ+cc+mΞ+c)g1(m2η8)γ5]u(p1,sz).
AbsMc(η8;Ξ′+c;Ξ0)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗csVusa2fη8F2(t,mΞ0)t−m2Ξ0+imΞ0ΓΞ0gΞ0Ξ0η8gΞ′+cΞ0D+sׯu(p5,s′z)γ5(/p4+mΞ0)γ5(/p3+mΞ′+c)×[(mΩ+cc−mΞ′+c)f1(m2η8)+(mΩ+cc+mΞ′+c)g1(m2η8)γ5]u(p1,sz).
AbsMf(π+;Ξ0c;Ξ−)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗cdVuda2fπ+F2(t,mΞ−)t−m2Ξ−+imΞ−ΓΞ−gΞ0Ξ−π+gΞ0cΞ−D+sׯu(p5,s′z)γ5(/p4+mΞ−)γ5(/p3+mΞ0c)×[(mΩ+cc−mΞ0c)f1(m2π+)+(mΩ+cc+mΞ0c)g1(m2π+)γ5]u(p1,sz).
AbsMf(π+;Ξ′0c;Ξ−)=i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗cdVuda2fπ+F2(t,mΞ−)t−m2Ξ−+imΞ−ΓΞ−gΞ0Ξ−π+gΞ′0cΞ−D+sׯu(p5,s′z)γ5(/p4+mΞ−)γ5(/p3+mΞ′0c)×[(mΩ+cc−mΞ′0c)f1(m2π+)+(mΩ+cc+mΞ′0c)g1(m2π+)γ5]u(p1,sz).
AbsMf(ρ+;Ξ0c;Ξ−)=−i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗cdVuda2fρ+F2(t,mΞ−)t−m2Ξ−+imΞ−ΓΞ−gΞ0cΞ−D+sׯu(p5,s′z)[f1Ξ0Ξ−ρ+γμ+f2Ξ0Ξ−ρ+mΞ0+mΞ−σμν(−ipμ2)]×(/p4+mΞ−)γ5(/p3+mΞ0c)(−gαμ+pα2pμ2m2ρ+)(−gαν+pα2pν2m2ρ+)×[(f1(m2ρ+)−mΩ+cc+mΞ0cmΩ+ccf2(m2ρ+))γα+2mΩ+ccf2(m2ρ+)p3α−(g1(m2ρ+)+mΩ+cc−mΞ0cmΩ+ccg2(m2ρ+))γαγ5−2mΩ+ccg2(m2ρ+)p3αγ5]u(p1,sz).
AbsMf(ρ+;Ξ′0c;Ξ−)=−i∫|→p2|sinθdθdφ32π2mΩ+ccGF√2V∗cdVuda2fρ+F2(t,mΞ−)t−m2Ξ−+imΞ−ΓΞ−gΞ′0cΞ−D+sׯu(p5,s′z)[f1Ξ0Ξ−ρ+γμ+f2Ξ0Ξ−ρ+mΞ0+mΞ−σμν(−ipμ2)]×(/p4+mΞ−)γ5(/p3+mΞ′0c)(−gαμ+pα2pμ2m2ρ+)(−gαν+pα2pν2m2ρ+)×[(f1(m2ρ+)−mΩ+cc+mΞ′0cmΩ+ccf2(m2ρ+))γα+2mΩ+ccf2(m2ρ+)p3α−(g1(m2ρ+)+mΩ+cc−mΞ′0cmΩ+ccg2(m2ρ+))γαγ5−2mΩ+ccg2(m2ρ+)p3αγ5]u(p1,sz).
-
The expressions of the amplitudes for all of the
Bcc→BD(∗) decays are presented in this section. To make the expressions simpler, we define a functionM(P1,P2,P3,P4,P5,P6) to represent the absorptive part of the triangle diagram depicted in Fig. 4. The absorptive part in Eq. (14) is related to this function as follows:AbsMa(K+;Ω0c;D∗0)=M(Ω+cc,K+,Ω0c,D∗0,Ξ0,D+s).
The amplitudes of all
Bcc→BD(∗) decays are calculated as follows using this function:A(Ξ++cc→Σ+D+)=i[M(Ξ++cc,π+,Ξ+c,D∗0,D+,Σ+)+M(Ξ++cc,π+,Ξ′+c,D∗0,D+,Σ+)+M(Ξ++cc,ρ+,Ξ+c,D0,D+,Σ+)+M(Ξ++cc,ρ+,Ξ′+c,D0,D+,Σ+)+M(Ξ++cc,ˉK0,Σ++c,D∗+s,D+,Σ+)+M(Ξ++cc,ˉK∗0,Σ++c,D+s,D+,Σ+)+M(Ξ++cc,π+,Ξ+c,Σ0,Σ+,D+)+M(Ξ++cc,π+,Ξ+c,Λ,Σ+,D+)+M(Ξ++cc,π+,Ξ′+c,Σ0,Σ+,D+)+M(Ξ++cc,π+,Ξ′+c,Λ,Σ+,D+)+M(Ξ++cc,ρ+,Ξ+c,Σ0,Σ+,D+)+M(Ξ++cc,ρ+,Ξ+c,Λ,Σ+,D+)+M(Ξ++cc,ρ+,Ξ′+c,Σ0,Σ+,D+)+M(Ξ++cc,ρ+,Ξ′+c,Λ,Σ+,D+)+M(Ξ++cc,ˉK0,Σ++c,p,Σ+,D+)+M(Ξ++cc,ˉK∗0,Σ++c,p,Σ+,D+)],
A(Ξ++cc→Σ+D∗+)=i[M(Ξ++cc,π+,Ξ+c,D0,D∗+,Σ+)+M(Ξ++cc,π+,Ξ′+c,D0,D∗+,Σ+)+M(Ξ++cc,ρ+,Ξ+c,D∗0,D∗+,Σ+)+M(Ξ++cc,ρ+,Ξ′+c,D∗0,D∗+,Σ+)+M(Ξ++cc,ˉK0,Σ++c,D+s,D∗+,Σ+)+M(Ξ++cc,ˉK∗0,Σ++c,D∗+s,D∗+,Σ+)+M(Ξ++cc,π+,Ξ+c,Σ0,Σ+,D∗+)+M(Ξ++cc,π+,Ξ+c,Λ,Σ+,D∗+)+M(Ξ++cc,π+,Ξ′+c,Σ0,Σ+,D∗+)+M(Ξ++cc,π+,Ξ′+c,Λ,Σ+,D∗+)+M(Ξ++cc,ρ+,Ξ+c,Σ0,Σ+,D∗+)+M(Ξ++cc,ρ+,Ξ+c,Λ,Σ+,D∗+)+M(Ξ++cc,ρ+,Ξ′+c,Σ0,Σ+,D∗+)+M(Ξ++cc,ρ+,Ξ′+c,Λ,Σ+,D∗+)+M(Ξ++cc,ˉK0,Σ++c,p,Σ+,D∗+)+M(Ξ++cc,ˉK∗0,Σ++c,p,Σ+,D∗+)],
A(Ξ++cc→Σ+D+s)=i[M(Ξ++cc,K+,Ξ+c,D∗0,D+s,Σ+)+M(Ξ++cc,k+,Ξ′+c,D∗0,D+s,Σ+)+M(Ξ++cc,K∗+,Ξ+c,D0,D+s,Σ+)+M(Ξ++cc,K∗+,Ξ′+c,D0,D+s,Σ+)+M(Ξ++cc,ϕ,Σ++c,D+s,D+s,Σ+)+M(Ξ++cc,η1,Σ++c,D∗+s,D+s,Σ+)+M(Ξ++cc,η8,Σ++c,D∗+s,D+s,Σ+)+M(Ξ++cc,K+,Ξ+c,Ξ0,Σ+,D+s)+M(Ξ++cc,K+,Ξ′+c,Ξ0,Σ+,D+s)+M(Ξ++cc,K∗+,Ξ+c,Ξ0,Σ+,D+s)+M(Ξ++cc,K∗+,Ξ′+c,Ξ0,Σ+,D+s)+M(Ξ++cc,ϕ,Σ++c,Σ+,Σ+,D+s)+M(Ξ++cc,η1,Σ++c,Σ+,Σ+,D+s)+M(Ξ++cc,η8,Σ++c,Σ+,Σ+,D+s)+M(Ξ++cc,π+,Λ+c,Σ0,Σ+,D+s)+M(Ξ++cc,π+,Λ+c,Λ,Σ+,D+s)+M(Ξ++cc,π+,Σ+c,Σ0,Σ+,D+s)+M(Ξ++cc,π+,Σ+c,Λ,Σ+,D+s)+M(Ξ++cc,ρ+,Λ+c,Σ0,Σ+,D+s)+M(Ξ++cc,ρ+,Λ+c,Λ,Σ+,D+s)+M(Ξ++cc,ρ+,Σ+c,Σ0,Σ+,D+s)+M(Ξ++cc,ρ+,Σ+c,Λ,Σ+,D+s)],
A(Ξ++cc→Σ+D∗+s)=i[M(Ξ++cc,K+,Ξ+c,D0,D∗+s,Σ+)+M(Ξ++cc,K+,Ξ′+c,D0,D∗+s,Σ+)+M(Ξ++cc,K∗+,Ξ+c,D∗0,D∗+s,Σ+)+M(Ξ++cc,K∗+,Ξ′+c,D∗0,D∗+s,Σ+)+M(Ξ++cc,ϕ,Σ++c,D∗+s,D∗+s,Σ+)+M(Ξ++cc,η1,Σ++c,D+s,D∗+s,Σ+)+M(Ξ++cc,η8,Σ++c,D+s,D∗+s,Σ+)+M(Ξ++cc,K+,Ξ+c,Ξ0,Σ+,D∗+s)+M(Ξ++cc,K+,Ξ′+c,Ξ0,Σ+,D∗+s)+M(Ξ++cc,K∗+,Ξ+c,Ξ0,Σ+,D∗+s)+M(Ξ++cc,K∗+,Ξ′+c,Ξ0,Σ+,D∗+s)+M(Ξ++cc,ϕ,Σ++c,Σ+,Σ+,D∗+s)+M(Ξ++cc,η1,Σ++c,Σ+,Σ+,D∗+s)+M(Ξ++cc,η8,Σ++c,Σ+,Σ+,D∗+s)+M(Ξ++cc,π+,Λ+c,Σ0,Σ+,D∗+s)+M(Ξ++cc,π+,Λ+c,Λ,Σ+,D∗+s)+M(Ξ++cc,π+,Σ+c,Σ0,Σ+,D∗+s)+M(Ξ++cc,π+,Σ+c,Λ,Σ+,D∗+s)+M(Ξ++cc,ρ+,Λ+c,Σ0,Σ+,D∗+s)+M(Ξ++cc,ρ+,Λ+c,Λ,Σ+,D∗+s)+M(Ξ++cc,ρ+,Σ+c,Σ0,Σ+,D∗+s)+M(Ξ++cc,ρ+,Σ+c,Λ,Σ+,D∗+s)],
A(Ξ++cc→pD+)=i[M(Ξ++cc,π+,Λ+c,D∗0,D+,p)+M(Ξ++cc,π+,Σ+c,D∗0,D+,p)+M(Ξ++cc,ρ+,Λ+c,D0,D+,p)+M(Ξ++cc,ρ+,Σ+c,D0,D+,p)+M(Ξ++cc,ρ0,Σ++c,D+,D+,p)+M(Ξ++cc,ω,Σ++c,D+,D+,p)+M(Ξ++cc,π0,Σ++c,D∗+,D+,p)+M(Ξ++cc,η1,Σ++c,D∗+,D+,p)+M(Ξ++cc,η8,Σ++c,D∗+,D+,p)+M(Ξ++cc,π+,Λ+c,n,p,D+)+M(Ξ++cc,π+,Σ+c,n,p,D+)+M(Ξ++cc,ρ+,Λ+c,n,p,D+)+M(Ξ++cc,ρ+,Σ+c,n,p,D+)+M(Ξ++cc,ρ0,Σ++c,p,p,D+)+M(Ξ++cc,π0,Σ++c,p,p,D+)+M(Ξ++cc,η1,Σ++c,p,p,D+)+M(Ξ++cc,η8,Σ++c,p,p,D+)+M(Ξ++cc,K+,Ξ+c,Σ0,p,D+)+M(Ξ++cc,K+,Ξ+c,Λ,p,D+)+M(Ξ++cc,K+,Ξ′+c,Σ0,p,D+)+M(Ξ++cc,K+,Ξ′+c,Λ,p,D+)+M(Ξ++cc,K∗+,Ξ′+c,Σ0,p,D+)+M(Ξ++cc,K∗+,Ξ′+c,Λ,p,D+)+M(Ξ++cc,K∗+,Ξ+c,Σ0,p,D+)+M(Ξ++cc,K∗+,Ξ+c,Λ,p,D+)],
A(Ξ++cc→pD∗+)=i[M(Ξ++cc,π+,Λ+c,D0,D∗+,p)+M(Ξ++cc,π+,Σ+c,D0,D∗+,p)+M(Ξ++cc,ρ+,Λ+c,D∗0,D∗+,p)+M(Ξ++cc,ρ+,Σ+c,D∗0,D∗+,p)+M(Ξ++cc,ρ0,Σ++c,D∗+,D∗+,p)+M(Ξ++cc,ω,Σ++c,D∗+,D∗+,p)+M(Ξ++cc,π0,Σ++c,D+,D∗+,p)+M(Ξ++cc,η1,Σ++c,D+,D∗+,p)+M(Ξ++cc,η8,Σ++c,D+,D∗+,p)+M(Ξ++cc,π+,Λ+c,n,p,D∗+)+M(Ξ++cc,π+,Σ+c,n,p,D∗+)+M(Ξ++cc,ρ+,Λ+c,n,p,D∗+)+M(Ξ++cc,ρ+,Σ+c,n,p,D∗+)+M(Ξ++cc,ρ0,Σ++c,p,p,D∗+)+M(Ξ++cc,π0,Σ++c,p,p,D∗+)+M(Ξ++cc,η1,Σ++c,p,p,D∗+)+M(Ξ++cc,η8,Σ++c,p,p,D∗+)+M(Ξ++cc,K+,Ξ+c,Σ0,p,D∗+)+M(Ξ++cc,K+,Ξ+c,Λ,p,D∗+)+M(Ξ++cc,K+,Ξ′+c,Σ0,p,D∗+)+M(Ξ++cc,K+,Ξ′+c,Λ,p,D∗+)+M(Ξ++cc,K∗+,Ξ′+c,Σ0,p,D∗+)+M(Ξ++cc,K∗+,Ξ′+c,Λ,p,D∗+)+M(Ξ++cc,K∗+,Ξ+c,Σ0,p,D∗+)+M(Ξ++cc,K∗+,Ξ+c,Λ,p,D∗+)],
A(Ξ++cc→pD+s)=i[M(Ξ++cc,K+,Λ+c,D∗0,D+s,p)+M(Ξ++cc,K+,Σ+c,D∗0,D+s,p)+M(Ξ++cc,K∗+,Λ+c,D0,D+s,p)+M(Ξ++cc,K∗+,Σ+c,D0,D+s,p)+M(Ξ++cc,K+,Λ+c,Σ0,p,D+s)+M(Ξ++cc,K+,Λ+c,Λ,p,D+s)+M(Ξ++cc,K+,Σ+c,Σ0,p,D+s)+M(Ξ++cc,K+,Σ+c,Λ,p,D+s)+M(Ξ++cc,K∗+,Λ+c,Σ0,p,D+s)+M(Ξ++cc,K∗+,Λ+c,Λ,p,D+s)+M(Ξ++cc,K∗+,Σ+c,Σ0,p,D+s)+M(Ξ++cc,K∗+,Σ+c,Λ,p,D+s)+M(Ξ++cc,K0,Σ++c,D∗+,D+s,p)+M(Ξ++cc,K∗0,Σ++c,D+,D+s,p)+M(Ξ++cc,K0,Σ++c,Σ+,p,D+s)+M(Ξ++cc,K∗0,Σ++c,Σ+,p,D+s)],
A(Ξ++cc→pD∗+s)=i[M(Ξ++cc,K+,Λ+c,D0,D∗+s,p)+M(Ξ++cc,K+,Σ+c,D0,D∗+s,p)+M(Ξ++cc,K∗+,Λ+c,D∗0,D∗+s,p)+M(Ξ++cc,K∗+,Σ+c,D∗0,D∗+s,p)+M(Ξ++cc,K+,Λ+c,Σ0,p,D∗+s)+M(Ξ++cc,K+,Λ+c,Λ,p,D∗+s)+M(Ξ++cc,K+,Σ+c,Σ0,p,D∗+s)+M(Ξ++cc,K+,Σ+c,Λ,p,D∗+s)+M(Ξ++cc,K∗+,Λ+c,Σ0,p,D∗+s)+M(Ξ++cc,K∗+,Λ+c,Λ,p,D∗+s)+M(Ξ++cc,K∗+,Σ+c,Σ0,p,D∗+s)+M(Ξ++cc,K∗+,Σ+c,Λ,p,D∗+s)+M(Ξ++cc,K0,Σ++c,D+,D∗+s,p)+M(Ξ++cc,K∗0,Σ++c,D∗+,D∗+s,p)+M(Ξ++cc,K0,Σ++c,Σ+,p,D∗+s)+M(Ξ++cc,K∗0,Σ++c,Σ+,p,D∗+s)],
A(Ξ+cc→Σ0D+)=i[M(Ξ+cc,π+,Ξ0c,D∗0,D+,Σ0)+M(Ξ+cc,ρ+,Ξ0c,D0,D+,Σ0)+M(Ξ+cc,π+,Ξ0c,Σ−,Σ0,D+)+M(Ξ+cc,ρ+,Ξ0c,Σ−,Σ0,D+)+M(Ξ+cc,π+,Ξ′0c,D∗0,D+,Σ0)+M(Ξ+cc,ρ+,Ξ′0c,D0,D+,Σ0)+M(Ξ+cc,π+,Ξ′0c,Σ−,Σ0,D+)+M(Ξ+cc,ρ+,Ξ′0c,Σ−,Σ0,D+)+M(Ξ+cc,ˉK0,Σ+c,D∗+s,D+,Σ0)+M(Ξ+cc,ˉK∗0,Σ+c,D+s,D+,Σ0)+M(Ξ+cc,ˉK0,Λ+c,D∗+s,D+,Σ0)+M(Ξ+cc,ˉK∗0,Λ+c,D+s,D+,Σ0)+M(Ξ+cc,ˉK0,Λ+c,n,Σ0,D+)+M(Ξ+cc,ˉK0,Σ+c,n,Σ0,D+)+M(Ξ+cc,ˉK∗0,Λ+c,n,Σ0,D+)+M(Ξ+cc,ˉK∗0,Σ+c,n,Σ0,D+)],
A(Ξ+cc→ΛD+)=i[M(Ξ+cc,π+,Ξ0c,D∗0,D+,Λ)+M(Ξ+cc,ρ+,Ξ0c,D0,D+,Λ)+M(Ξ+cc,π+,Ξ0c,Σ−,Λ,D+)+M(Ξ+cc,ρ+,Ξ0c,Σ−,Λ,D+)+M(Ξ+cc,ˉK0,Σ+c,D∗+s,D+,Λ)+M(Ξ+cc,ˉK∗0,Σ+c,D+s,D+,Λ)+M(Ξ+cc,ˉK0,Λ+c,D∗+s,D+,Λ)+M(Ξ+cc,ˉK∗0,Λ+c,D+s,D+,Λ)+M(Ξ+cc,ˉK0,Λ+c,n,Λ,D+)+M(Ξ+cc,ˉK0,Σ+c,n,Λ,D+)+M(Ξ+cc,ˉK∗0,Λ+c,n,Λ,D+)+M(Ξ+cc,ˉK∗0,Σ+c,n,Λ,D+)+M(Ξ+cc,π+,Ξ′0c,D∗0,D+,Λ)+M(Ξ+cc,ρ+,Ξ′0c,D0,D+,Λ)+M(Ξ+cc,π+,Ξ′0c,Σ−,Λ,D+)+M(Ξ+cc,ρ+,Ξ′0c,Σ−,Λ,D+)],
A(Ξ+cc→Σ0D∗+)=i[M(Ξ+cc,π+,Ξ0c,D0,D∗+,Σ0)+M(Ξ+cc,ρ+,Ξ0c,D∗0,D∗+,Σ0)+M(Ξ+cc,π+,Ξ0c,Σ−,Σ0,D∗+)+M(Ξ+cc,ρ+,Ξ0c,Σ−,Σ0,D∗+)+M(Ξ+cc,ˉK0,Σ+c,D+s,D∗+,Σ0)+M(Ξ+cc,ˉK∗0,Σ+c,D∗+s,D∗+,Σ0)+M(Ξ+cc,ˉK0,Λ+c,D+s,D∗+,Σ0)+M(Ξ+cc,ˉK∗0,Λ+c,D∗+s,D∗+,Σ0)+M(Ξ+cc,ˉK0,Λ+c,n,Σ0,D∗+)+M(Ξ+cc,ˉK0,Σ+c,n,Σ0,D∗+)+M(Ξ+cc,ˉK∗0,Λ+c,n,Σ0,D∗+)+M(Ξ+cc,ˉK∗0,Σ+c,n,Σ0,D∗+)+M(Ξ+cc,π+,Ξ′0c,D0,D∗+,Σ0)+M(Ξ+cc,ρ+,Ξ′0c,D∗0,D∗+,Σ0)+M(Ξ+cc,π+,Ξ′0c,Σ−,Σ0,D∗+)+M(Ξ+cc,ρ+,Ξ′0c,Σ−,Σ0,D∗+)],
A(Ξ+cc→ΛD∗+)=i[M(Ξ+cc,π+,Ξ0c,D0,D∗+,Λ)+M(Ξ+cc,ρ+,Ξ0c,D∗0,D∗+,Λ)+M(Ξ+cc,π+,Ξ0c,Σ−,Λ,D∗+)+M(Ξ+cc,ρ+,Ξ0c,Σ−,Λ,D∗+)+M(Ξ+cc,ˉK0,Σ+c,D+s,D∗+,Λ)+M(Ξ+cc,ˉK∗0,Σ+c,D∗+s,D∗+,Λ)+M(Ξ+cc,ˉK0,Λ+c,D+s,D∗+,Λ)+M(Ξ+cc,ˉK∗0,Λ+c,D∗+s,D∗+,Λ)+M(Ξ+cc,ˉK0,Λ+c,n,Λ,D∗+)+M(Ξ+cc,ˉK0,Σ+c,n,Λ,D∗+)+M(Ξ+cc,ˉK∗0,Λ+c,n,Λ,D∗+)+M(Ξ+cc,ˉK∗0,Σ+c,n,Λ,D∗+)+M(Ξ+cc,π+,Ξ′0c,D0,D∗+,Λ)+M(Ξ+cc,ρ+,Ξ′0c,D∗0,D∗+,Λ)+M(Ξ+cc,π+,Ξ′0c,Σ−,Λ,D∗+)+M(Ξ+cc,ρ+,Ξ′0c,Σ−,Λ,D∗+)],
A(Ξ+cc→ΛD+s)=i[M(Ξ+cc,K+,Ξ0c,D∗0,D+s,Λ)+M(Ξ+cc,K∗+,Ξ0c,D0,D+s,Λ)+M(Ξ+cc,K+,Ξ0c,Ξ−,Λ,D+s)+M(Ξ+cc,K∗+,Ξ0c,Ξ−,Λ,D+s)+M(Ξ+cc,ϕ,Λ+c,D+s,D+s,Λ)+M(Ξ+cc,ϕ,Σ+c,D+s,D+s,Λ)+M(Ξ+cc,η1,Λ+c,D∗+s,D+s,Λ)+M(Ξ+cc,η1,Σ+c,D∗+s,D+s,Λ)+M(Ξ+cc,η8,Λ+c,D∗+s,D+s,Λ)+M(Ξ+cc,η8,Σ+c,D∗+s,D+s,Λ)+M(Ξ+cc,ϕ,Λ+c,Λ,Λ,D+s)+M(Ξ+cc,η1,Λ+c,Λ,Λ,D+s)+M(Ξ+cc,η8,Λ+c,Λ,Λ,D+s)+M(Ξ+cc,ϕ,Σ+c,Λ,Λ,D+s)+M(Ξ+cc,η1,Σ+c,Λ,Λ,D+s)+M(Ξ+cc,η8,Σ+c,Λ,Λ,D+s)+M(Ξ+cc,π+,Σ0c,Σ−,Λ,D+s)+M(Ξ+cc,ρ+,Σ0c,Σ−,Λ,D+s)+M(Ξ+cc,ρ0,Λ+c,Σ0,Λ,D+s)+M(Ξ+cc,ρ0,Σ+c,Σ0,Λ,D+s)+M(Ξ+cc,ω,Λ+c,Λ,Λ,D+s)+M(Ξ+cc,ω,Σ+c,Λ,Λ,D+s)+M(Ξ+cc,π0,Λ+c,Σ0,Λ,D+s)+M(Ξ+cc,π0,Σ+c,Σ0,Λ,D+s)+M(Ξ+cc,η1,Λ+c,Λ,Λ,D+s)+M(Ξ+cc,η8,Λ+c,Λ,Λ,D+s)+M(Ξ+cc,η1,Σ+c,Λ,Λ,D+s)+M(Ξ+cc,η8,Σ+c,Λ,Λ,D+s)+M(Ξ+cc,K+,Ξ′0c,D∗0,D+s,Λ)+M(Ξ+cc,K∗+,Ξ′0c,D0,D+s,Λ)+M(Ξ+cc,K+,Ξ′0c,Ξ−,Λ,D+s)+M(Ξ+cc,K∗+,Ξ′0c,Ξ−,Λ,D+s)],
A(Ξ+cc→Σ0D+s)=i[M(Ξ+cc,K+,Ξ0c,D∗0,D+s,Σ0)+M(Ξ+cc,K∗+,Ξ0c,D0,D+s,Σ0)+M(Ξ+cc,K+,Ξ0c,Ξ−,Σ0,D+s)+M(Ξ+cc,K∗+,Ξ0c,Ξ−,Σ0,D+s)+M(Ξ+cc,ϕ,Λ+c,D+s,D+s,Σ0)+M(Ξ+cc,ϕ,Σ+c,D+s,D+s,Σ0)+M(Ξ+cc,η1,Λ+c,D∗+s,D+s,Σ0)+M(Ξ+cc,η1,Σ+c,D∗+s,D+s,Σ0)+M(Ξ+cc,η8,Λ+c,D∗+s,D+s,Σ0)+M(Ξ+cc,η8,Σ+c,D∗+s,D+s,Σ0)+M(Ξ+cc,ϕ,Λ+c,Σ0,Σ0,D+s)+M(Ξ+cc,η1,Λ+c,Σ0,Σ0,D+s)+M(Ξ+cc,η8,Λ+c,Σ0,Σ0,D+s)+M(Ξ+cc,ϕ,Σ+c,Σ0,Σ0,D+s)+M(Ξ+cc,η1,Σ+c,Σ0,Σ0,D+s)+M(Ξ+cc,η8,Σ+c,Σ0,Σ0,D+s)+M(Ξ+cc,π+,Σ0c,Σ−,Σ0,D+s)+M(Ξ+cc,ρ+,Σ0c,Σ−,Σ0,D+s)+M(Ξ+cc,ρ0,Λ+c,Λ,Σ0,D+s)+M(Ξ+cc,ρ0,Σ+c,Λ,Σ0,D+s)+M(Ξ+cc,ω,Λ+c,Σ0,Σ0,D+s)+M(Ξ+cc,ω,Σ+c,Σ0,Σ0,D+s)+M(Ξ+cc,π0,Λ+c,Λ,Σ0,D+s)+M(Ξ+cc,π0,Σ+c,Λ,Σ0,D+s)+M(Ξ+cc,η1,Λ+c,Σ0,Σ0,D+s)+M(Ξ+cc,η8,Λ+c,Σ0,Σ0,D+s)+M(Ξ+cc,η1,Σ+c,Σ0,Σ0,D+s)+M(Ξ+cc,η8,Σ+c,Σ0,Σ0,D+s)+M(Ξ+cc,K+,Ξ′0c,D∗0,D+s,Σ0)+M(Ξ+cc,K∗+,Ξ′0c,D0,D+s,Σ0)+M(Ξ+cc,K+,Ξ′0c,Ξ−,Σ0,D+s)+M(Ξ+cc,K∗+,Ξ′0c,Ξ−,Σ0,D+s)],
A(Ξ+cc→Σ0D∗+s)=i[M(Ξ+cc,K+,Ξ0c,D0,D∗+s,Σ0)+M(Ξ+cc,K∗+,Ξ0c,D∗0,D∗+s,Σ0)+M(Ξ+cc,K+,Ξ0c,Ξ−,Σ0,D∗+s)+M(Ξ+cc,K∗+,Ξ0c,Ξ−,Σ0,D∗+s)+M(Ξ+cc,ϕ,Λ+c,D∗+s,D∗+s,Σ0)+M(Ξ+cc,ϕ,Σ+c,D∗+s,D∗+s,Σ0)+M(Ξ+cc,η1,Λ+c,D+s,D∗+s,Σ0)+M(Ξ+cc,η1,Σ+c,D+s,D∗+s,Σ0)+M(Ξ+cc,η8,Λ+c,D+s,D∗+s,Σ0)+M(Ξ+cc,η8,Σ+c,D+s,D∗+s,Σ0)+M(Ξ+cc,ϕ,Λ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,η1,Λ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,η8,Λ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,ϕ,Σ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,η1,Σ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,η8,Σ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,π+,Σ0c,Σ−,Σ0,D∗+s)+M(Ξ+cc,ρ+,Σ0c,Σ−,Σ0,D∗+s)+M(Ξ+cc,ρ0,Λ+c,Λ,Σ0,D∗+s)+M(Ξ+cc,ρ0,Σ+c,Λ,Σ0,D∗+s)+M(Ξ+cc,ω,Λ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,ω,Σ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,π0,Λ+c,Λ,Σ0,D∗+s)+M(Ξ+cc,π0,Σ+c,Λ,Σ0,D∗+s)+M(Ξ+cc,η1,Λ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,η8,Λ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,η1,Σ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,η8,Σ+c,Σ0,Σ0,D∗+s)+M(Ξ+cc,K+,Ξ′0c,D0,D∗+s,Σ0)+M(Ξ+cc,K∗+,Ξ′0c,D∗0,D∗+s,Σ0)+M(Ξ+cc,K+,Ξ′0c,Ξ−,Σ0,D∗+s)+M(Ξ+cc,K∗+,Ξ′0c,Ξ−,Σ0,D∗+s)],
A(Ξ+cc→ΛD∗+s)=i[M(Ξ+cc,K+,Ξ0c,D0,D∗+s,Λ)+M(Ξ+cc,K∗+,Ξ0c,D∗0,D∗+s,Λ)+M(Ξ+cc,K+,Ξ0c,Ξ−,Λ,D∗+s)+M(Ξ+cc,K∗+,Ξ0c,Ξ−,Λ,D∗+s)+M(Ξ+cc,ϕ,Λ+c,D∗+s,D∗+s,Λ)+M(Ξ+cc,ϕ,Σ+c,D∗+s,D∗+s,Λ)+M(Ξ+cc,η1,Λ+c,D+s,D∗+s,Λ)+M(Ξ+cc,η1,Σ+c,D+s,D∗+s,Λ)+M(Ξ+cc,η8,Λ+c,D+s,D∗+s,Λ)+M(Ξ+cc,η8,Σ+c,D+s,D∗+s,Λ)+M(Ξ+cc,ϕ,Λ+c,Λ,Λ,D∗+s)+M(Ξ+cc,η1,Λ+c,Λ,Λ,D∗+s)+M(Ξ+cc,η8,Λ+c,Λ,Λ,D∗+s)+M(Ξ+cc,ϕ,Σ+c,Λ,Λ,D∗+s)+M(Ξ+cc,η1,Σ+c,Λ,Λ,D∗+s)+M(Ξ+cc,η8,Σ+c,Λ,Λ,D∗+s)+M(Ξ+cc,π+,Σ0c,Σ−,Λ,D∗+s)+M(Ξ+cc,ρ+,Σ0c,Σ−,Λ,D∗+s)+M(Ξ+cc,ρ0,Λ+c,Σ0,Λ,D∗+s)+M(Ξ+cc,ρ0,Σ+c,Σ0,Λ,D∗+s)+M(Ξ+cc,ω,Λ+c,Λ,Λ,D∗+s)+M(Ξ+cc,ω,Σ+c,Λ,Λ,D∗+s)+M(Ξ+cc,π0,Λ+c,Σ0,Λ,D∗+s)+M(Ξ+cc,π0,Σ+c,Σ0,Λ,D∗+s)+M(Ξ+cc,η1,Λ+c,Λ,Λ,D∗+s)+M(Ξ+cc,η8,Λ+c,Λ,Λ,D∗+s)+M(Ξ+cc,η1,Σ+c,Λ,Λ,D∗+s)+M(Ξ+cc,η8,Σ+c,Λ,Λ,D∗+s)+M(Ξ+cc,K+,Ξ′0c,D0,D∗+s,Λ)+M(Ξ+cc,K∗+,Ξ′0c,D∗0,D∗+s,Λ)+M(Ξ+cc,K+,Ξ′0c,Ξ−,Λ,D∗+s)+M(Ξ+cc,K∗+,Ξ′0c,Ξ−,Λ,D∗+s)],
A(Ξ+cc→nD+s)=i[M(Ξ+cc,K+,Σ0c,D∗0,D+s,n)+M(Ξ+cc,K∗+,Σ0c,D0,D+s,n)+M(Ξ+cc,K+,Σ0c,Σ−,n,D+s)+M(Ξ+cc,K∗+,Σ0c,Σ−,n,D+s)+M(Ξ+cc,K0,Λ+c,D∗+,D+s,n)+M(Ξ+cc,K0,Σ+c,D∗+,D+s,n)+M(Ξ+cc,K∗0,Λ+c,D+,D+s,n)+M(Ξ+cc,K∗0,Σ+c,D+,D+s,n)+M(Ξ+cc,K0,Λ+c,Σ0,n,D+s)+M(Ξ+cc,K0,Λ+c,Λ,n,D+s)+M(Ξ+cc,K0,Σ+c,Σ0,n,D+s)+M(Ξ+cc,K0,Σ+c,Λ,n,D+s)+M(Ξ+cc,K∗0,Λ+c,Σ0,n,D+s)+M(Ξ+cc,K∗0,Λ+c,Λ,n,D+s)+M(Ξ+cc,K∗0,Σ+c,Σ0,n,D+s)+M(Ξ+cc,K∗0,Σ+c,Λ,n,D+s)],
A(Ξ+cc→nD∗+s)=i[M(Ξ+cc,K+,Σ0c,D0,D∗+s,n)+M(Ξ+cc,K∗+,Σ0c,D∗0,D∗+s,n)+M(Ξ+cc,K+,Σ0c,Σ−,n,D∗+s)+M(Ξ+cc,K∗+,Σ0c,Σ−,n,D∗+s)+M(Ξ+cc,K0,Λ+c,D+,D∗+s,n)+M(Ξ+cc,K0,Σ+c,D+,D∗+s,n)+M(Ξ+cc,K∗0,Λ+c,D∗+,D∗+s,n)+M(Ξ+cc,K∗0,Σ+c,D∗+,D∗+s,n)+M(Ξ+cc,K0,Λ+c,Σ0,n,D∗+s)+M(Ξ+cc,K0,Λ+c,Λ,n,D∗+s)+M(Ξ+cc,K0,Σ+c,Σ0,n,D∗+s)+M(Ξ+cc,K0,Σ+c,Λ,n,D∗+s)+M(Ξ+cc,K∗0,Λ+c,Σ0,n,D∗+s)+M(Ξ+cc,K∗0,Λ+c,Λ,n,D∗+s)+M(Ξ+cc,K∗0,Σ+c,Σ0,n,D∗+s)+M(Ξ+cc,K∗0,Σ+c,Λ,n,D∗+s)],
A(Ξ+cc→nD+)=i[M(Ξ+cc,π+,Σ0c,D∗0,D+,n)+M(Ξ+cc,ρ+,Σ0c,D0,D+,n)+M(Ξ+cc,ρ0,Λ+c,D+,D+,n)+M(Ξ+cc,ρ0,Σ+c,D+,D+,n)+M(Ξ+cc,ω,Λ+c,D+,D+,n)+M(Ξ+cc,ω,Σ+c,D+,D+,n)+M(Ξ+cc,π0,Λ+c,D∗+,D+,n)+M(Ξ+cc,π0,Σ+c,D∗+,D+,n)+M(Ξ+cc,η1,Λ+c,D∗+,D+,n)+M(Ξ+cc,η8,Λ+c,D∗+,D+,n)+M(Ξ+cc,η1,Σ+c,D∗+,D+,n)+M(Ξ+cc,η8,Σ+c,D∗+,D+,n)+M(Ξ+cc,ρ0,Λ+c,n,n,D+)+M(Ξ+cc,ρ0,Σ+c,n,n,D+)+M(Ξ+cc,π0,Λ+c,n,n,D+)+M(Ξ+cc,π0,Σ+c,n,n,D+)+M(Ξ+cc,η1,Λ+c,n,n,D+)+M(Ξ+cc,η8,Λ+c,n,n,D+)+M(Ξ+cc,η1,Σ+c,n,n,D+)+M(Ξ+cc,η8,Σ+c,n,n,D+)+M(Ξ+cc,K+,Ξ0c,Σ−,n,D+)+M(Ξ+cc,K∗+,Ξ0c,Σ−,n,D+)+M(Ξ+cc,K+,Ξ′0c,Σ−,n,D+)+M(Ξ+cc,K∗+,Ξ′0c,Σ−,n,D+)],
A(Ξ+cc→nD∗+)=i[M(Ξ+cc,π+,Σ0c,D0,D∗+,n)+M(Ξ+cc,ρ+,Σ0c,D∗0,D∗+,n)+M(Ξ+cc,ρ0,Λ+c,D∗+,D∗+,n)+M(Ξ+cc,ρ0,Σ+c,D∗+,D∗+,n)+M(Ξ+cc,ω,Λ+c,D∗+,D∗+,n)+M(Ξ+cc,ω,Σ+c,D∗+,D∗+,n)+M(Ξ+cc,π0,Λ+c,D+,D∗+,n)+M(Ξ+cc,π0,Σ+c,D+,D∗+,n)+M(Ξ+cc,η1,Λ+c,D+,D∗+,n)+M(Ξ+cc,η8,Λ+c,D+,D∗+,n)+M(Ξ+cc,η1,Σ+c,D+,D∗+,n)+M(Ξ+cc,η8,Σ+c,D+,D∗+,n)+M(Ξ+cc,ρ0,Λ+c,n,n,D∗+)+M(Ξ+cc,ρ0,Σ+c,n,n,D∗+)+M(Ξ+cc,π0,Λ+c,n,n,D∗+)+M(Ξ+cc,π0,Σ+c,n,n,D∗+)+M(Ξ+cc,η1,Λ+c,n,n,D∗+)+M(Ξ+cc,η8,Λ+c,n,n,D∗+)+M(Ξ+cc,η1,Σ+c,n,n,D∗+)+M(Ξ+cc,η8,Σ+c,n,n,D∗+)+M(Ξ+cc,K+,Ξ0c,Σ−,n,D∗+)+M(Ξ+cc,K+,Ξ′0c,Σ−,n,D∗+)+M(Ξ+cc,K∗+,Ξ′0c,Σ−,n,D∗+)+M(Ξ+cc,K∗+,Ξ0c,Σ−,n,D∗+)],
A(Ξ+cc→pD0)=i[M(Ξ+cc,K+,Ξ0c,Σ0,p,D0)+M(Ξ+cc,K+,Ξ0c,Λ,p,D0)+M(Ξ+cc,K+,Ξ′0c,Σ0,p,D0)+M(Ξ+cc,K+,Ξ′0c,Λ,p,D0)+M(Ξ+cc,K∗+,Ξ0c,Σ0,p,D0)+M(Ξ+cc,K∗+,Ξ0c,Λ,p,D0)+M(Ξ+cc,K∗+,Ξ′0c,Σ0,p,D0)+M(Ξ+cc,K∗+,Ξ′0c,Λ,p,D0)+M(Ξ+cc,π+,Σ0c,n,p,D0)+M(Ξ+cc,ρ+,Σ0c,n,p,D0)+M(Ξ+cc,ρ0,Σ+c,p,p,D0)+M(Ξ+cc,π0,Σ+c,p,p,D0)+M(Ξ+cc,η1,Σ+c,p,p,D0)+M(Ξ+cc,η8,Σ+c,p,p,D0)+M(Ξ+cc,ρ0,Λ+c,p,p,D0)+M(Ξ+cc,π0,Λ+c,p,p,D0)+M(Ξ+cc,η1,Λ+c,p,p,D0)+M(Ξ+cc,η8,Λ+c,p,p,D0)],
A(Ξ+cc→pD∗0)=i[M(Ξ+cc,K+,Ξ0c,Σ0,p,D∗0)+M(Ξ+cc,K+,Ξ0c,Λ,p,D∗0)+M(Ξ+cc,K+,Ξ′0c,Σ0,p,D∗0)+M(Ξ+cc,K+,Ξ′0c,Λ,p,D∗0)+M(Ξ+cc,K∗+,Ξ0c,Σ0,p,D∗0)+M(Ξ+cc,K∗+,Ξ0c,Λ,p,D∗0)+M(Ξ+cc,K∗+,Ξ′0c,Σ0,p,D∗0)+M(Ξ+cc,K∗+,Ξ′0c,Λ,p,D∗0)+M(Ξ+cc,π+,Σ0c,n,p,D∗0)+M(Ξ+cc,ρ+,Σ0c,n,p,D∗0)+M(Ξ+cc,ρ0,Σ+c,p,p,D∗0)+M(Ξ+cc,π0,Σ+c,p,p,D∗0)+M(Ξ+cc,η1,Σ+c,p,p,D∗0)+M(Ξ+cc,η8,Σ+c,p,p,D∗0)+M(Ξ+cc,ρ0,Λ+c,p,p,D∗0)+M(Ξ+cc,π0,Λ+c,p,p,D∗0)+M(Ξ+cc,η1,Λ+c,p,p,D∗0)+M(Ξ+cc,η8,Λ+c,p,p,D∗0)],
A(Ξ+cc→Σ+D0)=i[M(Ξ+cc,π+,Ξ0c,Σ0,Σ+,D0)+M(Ξ+cc,π+,Ξ0c,Λ,Σ+,D0)+M(Ξ+cc,π+,Ξ′0c,Σ0,Σ+,D0)+M(Ξ+cc,π+,Ξ′0c,Λ,Σ+,D0)+M(Ξ+cc,ρ+,Ξ0c,Σ0,Σ+,D0)+M(Ξ+cc,ρ+,Ξ0c,Λ,Σ+,D0)+M(Ξ+cc,ρ+,Ξ′0c,Σ0,Σ+,D0)+M(Ξ+cc,ρ+,Ξ′0c,Λ,Σ+,D0)+M(Ξ+cc,ˉK0,Σ+c,p,Σ+,D0)+M(Ξ+cc,ˉK∗0,Σ+c,p,Σ+,D0)+M(Ξ+cc,ˉK0,Λ+c,p,Σ+,D0)+M(Ξ+cc,ˉK∗0,Λ+c,p,Σ+,D0)],
A(Ξ+cc→Σ+D∗0)=i[M(Ξ+cc,π+,Ξ0c,Σ0,Σ+,D∗0)+M(Ξ+cc,π+,Ξ0c,Λ,Σ+,D∗0)+M(Ξ+cc,π+,Ξ′0c,Σ0,Σ+,D∗0)+M(Ξ+cc,π+,Ξ′0c,Λ,Σ+,D∗0)+M(Ξ+cc,ρ+,Ξ0c,Σ0,Σ+,D∗0)+M(Ξ+cc,ρ+,Ξ0c,Λ,Σ+,D∗0)+M(Ξ+cc,ρ+,Ξ′0c,Σ0,Σ+,D∗0)+M(Ξ+cc,ρ+,Ξ′0c,Λ,Σ+,D∗0)+M(Ξ+cc,ˉK0,Σ+c,p,Σ+,D∗0)+M(Ξ+cc,ˉK∗0,Σ+c,p,Σ+,D∗0)+M(Ξ+cc,ˉK0,Λ+c,p,Σ+,D∗0)+M(Ξ+cc,ˉK∗0,Λ+c,p,Σ+,D∗0)],
A(Ξ+cc→Ξ0D+s)=i[M(Ξ+cc,π+,Ξ0c,Ξ−,Ξ0,D+s)+M(Ξ+cc,ρ+,Ξ0c,Ξ−,Ξ0,D+s)+M(Ξ+cc,ˉK0,Σ+c,Σ0,Ξ0,D+s)+M(Ξ+cc,ˉK0,Σ+c,Λ,Ξ0,D+s)+M(Ξ+cc,ˉK∗0,Σ+c,Σ0,Ξ0,D+s)+M(Ξ+cc,ˉK∗0,Σ+c,Λ,Ξ0,D+s)+M(Ξ+cc,π+,Ξ′0c,Ξ−,Ξ0,D+s)+M(Ξ+cc,ρ+,Ξ′0c,Ξ−,Ξ0,D+s)+M(Ξ+cc,ˉK0,Λ+c,Σ0,Ξ0,D+s)+M(Ξ+cc,ˉK0,Λ+c,Λ,Ξ0,D+s)+M(Ξ+cc,ˉK∗0,Λ+c,Σ0,Ξ0,D+s)+M(Ξ+cc,ˉK∗0,Λ+c,Λ,Ξ0,D+s)],
A(Ξ+cc→Ξ0D∗+s)=i[M(Ξ+cc,π+,Ξ0c,Ξ−,Ξ0,D∗+s)+M(Ξ+cc,ρ+,Ξ0c,Ξ−,Ξ0,D∗+s)+M(Ξ+cc,ˉK0,Σ+c,Σ0,Ξ0,D∗+s)+M(Ξ+cc,ˉK0,Σ+c,Λ,Ξ0,D∗+s)+M(Ξ+cc,ˉK∗0,Σ+c,Σ0,Ξ0,D∗+s)+M(Ξ+cc,ˉK∗0,Σ+c,Λ,Ξ0,D∗+s)+M(Ξ+cc,π+,Ξ′0c,Ξ−,Ξ0,D∗+s)+M(Ξ+cc,ρ+,Ξ′0c,Ξ−,Ξ0,D∗+s)+M(Ξ+cc,ˉK0,Λ+c,Σ0,Ξ0,D∗+s)+M(Ξ+cc,ˉK0,Λ+c,Λ,Ξ0,D∗+s)+M(Ξ+cc,ˉK∗0,Λ+c,Σ0,Ξ0,D∗+s)+M(Ξ+cc,ˉK∗0,Λ+c,Λ,Ξ0,D∗+s)],
A(Ω+cc→Ξ0D+)=i[M(Ω+cc,π+,Ω0c,D∗0,D+,Ξ0)+M(Ω+cc,ρ+,Ω0c,D0,D+,Ξ0)+M(Ω+cc,π+,Ω0c,Ξ−,Ξ0,D+)+M(Ω+cc,ρ+,Ω0c,Ξ−,Ξ0,D+)+M(Ω+cc,ˉK0,Ξ+c,Σ0,Ξ0,D+)+M(Ω+cc,ˉK0,Ξ+c,Λ,Ξ0,D+)+M(Ω+cc,ˉK0,Ξ′+c,Σ0,Ξ0,D+)+M(Ω+cc,ˉK0,Ξ′+c,Λ,Ξ0,D+)+M(Ω+cc,ˉK∗0,Ξ+c,Σ0,Ξ0,D+)+M(Ω+cc,ˉK∗0,Ξ+c,Λ,Ξ0,D+)+M(Ω+cc,ˉK∗0,Ξ′+c,Σ0,Ξ0,D+)+M(Ω+cc,ˉK∗0,Ξ′+c,Λ,Ξ0,D+)+M(Ω+cc,ˉK0,Ξ+c,D∗+s,D+,Ξ0)+M(Ω+cc,ˉK0,Ξ′+c,D∗+s,D+,Ξ0)+M(Ω+cc,ˉK∗0,Ξ+c,D+s,D+,Ξ0)+M(Ω+cc,ˉK∗0,Ξ′+c,D+s,D+,Ξ0)],
A(Ω+cc→Ξ0D∗+)=i[M(Ω+cc,π+,Ω0c,D0,D∗+,Ξ0)+M(Ω+cc,ρ+,Ω0c,D∗0,D∗+,Ξ0)+M(Ω+cc,π+,Ω0c,Ξ−,Ξ0,D∗+)+M(Ω+cc,ρ+,Ω0c,Ξ−,Ξ0,D∗+)+M(Ω+cc,ˉK0,Ξ+c,Σ0,Ξ0,D∗+)+M(Ω+cc,ˉK0,Ξ+c,Λ,Ξ0,D∗+)+M(Ω+cc,ˉK0,Ξ′+c,Σ0,Ξ0,D∗+)+M(Ω+cc,ˉK0,Ξ′+c,Λ,Ξ0,D∗+)+M(Ω+cc,ˉK∗0,Ξ+c,Σ0,Ξ0,D∗+)+M(Ω+cc,ˉK∗0,Ξ+c,Λ,Ξ0,D∗+)+M(Ω+cc,ˉK∗0,Ξ′+c,Σ0,Ξ0,D∗+)+M(Ω+cc,ˉK∗0,Ξ′+c,Λ,Ξ0,D∗+)+M(Ω+cc,ˉK0,Ξ+c,D+s,D∗+,Ξ0)+M(Ω+cc,ˉK0,Ξ′+c,D+s,D∗+,Ξ0)+M(Ω+cc,ˉK∗0,Ξ+c,D∗+s,D∗+,Ξ0)+M(Ω+cc,ˉK∗0,Ξ′+c,D∗+s,D∗+,Ξ0)],
A(Ω+cc→Ξ0D+s)=i[M(Ω+cc,K+,Ω0c,D∗0,D+s,Ξ0)+M(Ω+cc,K∗+,Ω0c,D0,D+s,Ξ0)+M(Ω+cc,ϕ,Ξ+c,D+s,D+s,Ξ0)+M(Ω+cc,ϕ,Ξ′+c,D+s,D+s,Ξ0)+M(Ω+cc,η1,Ξ+c,D∗+s,D+s,Ξ0)+M(Ω+cc,η1,Ξ′+c,D∗+s,D+s,Ξ0)+M(Ω+cc,η8,Ξ+c,D∗+s,D+s,Ξ0)+M(Ω+cc,η8,Ξ′+c,D∗+s,D+s,Ξ0)+M(Ω+cc,ϕ,Ξ+c,Ξ0,Ξ0,D+s)+M(Ω+cc,η1,Ξ+c,Ξ0,Ξ0,D+s)+M(Ω+cc,η8,Ξ+c,Ξ0,Ξ0,D+s)+M(Ω+cc,ϕ,Ξ′+c,Ξ0,Ξ0,D+s)+M(Ω+cc,η1,Ξ′+c,Ξ0,Ξ0,D+s)+M(Ω+cc,η8,Ξ′+c,Ξ0,Ξ0,D+s)+M(Ω+cc,π+,Ξ0c,Ξ−,Ξ0,D+s)+M(Ω+cc,ρ+,Ξ0c,Ξ−,Ξ0,D+s)+M(Ω+cc,π+,Ξ′0c,Ξ−,Ξ0,D+s)+M(Ω+cc,ρ+,Ξ′0c,Ξ−,Ξ0,D+s)],
A(Ω+cc→Ξ0D∗+s)=i[M(Ω+cc,K+,Ω0c,D0,D∗+s,Ξ0)+M(Ω+cc,K∗+,Ω0c,D∗0,D∗+s,Ξ0)+M(Ω+cc,ϕ,Ξ+c,D∗+s,D∗+s,Ξ0)+M(Ω+cc,ϕ,Ξ′+c,D∗+s,D∗+s,Ξ0)+M(Ω+cc,η1,Ξ+c,D+s,D∗+s,Ξ0)+M(Ω+cc,η1,Ξ′+c,D+s,D∗+s,Ξ0)+M(Ω+cc,η8,Ξ+c,D+s,D∗+s,Ξ0)+M(Ω+cc,η8,Ξ′+c,D+s,D∗+s,Ξ0)+M(Ω+cc,ϕ,Ξ+c,Ξ0,Ξ0,D∗+s)+M(Ω+cc,η1,Ξ+c,Ξ0,Ξ0,D∗+s)+M(Ω+cc,η8,Ξ+c,Ξ0,Ξ0,D∗+s)+M(Ω+cc,ϕ,Ξ′+c,Ξ0,Ξ0,D∗+s)+M(Ω+cc,η1,Ξ′+c,Ξ0,Ξ0,D∗+s)+M(Ω+cc,η8,Ξ′+c,Ξ0,Ξ0,D∗+s)+M(Ω+cc,π+,Ξ0c,Ξ−,Ξ0,D∗+s)+M(Ω+cc,ρ+,Ξ0c,Ξ−,Ξ0,D∗+s)+M(Ω+cc,π+,Ξ′0c,Ξ−,Ξ0,D∗+s)+M(Ω+cc,ρ+,Ξ′0c,Ξ−,Ξ0,D∗+s)],
A(Ω+cc→Σ0D+s)=i[M(Ω+cc,K+,Ξ0c,D∗0,D+s,Σ0)+M(Ω+cc,K+,Ξ′0c,D∗0,D+s,Σ0)+M(Ω+cc,K∗+,Ξ0c,D0,D+s,Σ0)+M(Ω+cc,K∗+,Ξ′0c,D0,D+s,Σ0)+M(Ω+cc,K+,Ξ0c,Ξ−,Σ0,D+s)+M(Ω+cc,K+,Ξ′0c,Ξ−,Σ0,D+s)+M(Ω+cc,K∗+,Ξ0c,Ξ−,Σ0,D+s)+M(Ω+cc,K∗+,Ξ′0c,Ξ−,Σ0,D+s)+M(Ω+cc,K0,Ξ+c,Ξ0,Σ0,D+s)+M(Ω+cc,K0,Ξ′+c,Ξ0,Σ0,D+s)+M(Ω+cc,K∗0,Ξ+c,Ξ0,Σ0,D+s)+M(Ω+cc,K∗0,Ξ′+c,Ξ0,Σ0,D+s)+M(Ω+cc,K0,Ξ+c,D∗+,D+s,Σ0)+M(Ω+cc,K0,Ξ′+c,D∗+,D+s,Σ0)+M(Ω+cc,K∗0,Ξ+c,D+,D+s,Σ0)+M(Ω+cc,K∗0,Ξ′+c,D+,D+s,Σ0)],
A(Ω+cc→ΛD+s)=i[M(Ω+cc,K+,Ξ0c,D∗0,D+s,Λ)+M(Ω+cc,K+,Ξ′0c,D∗0,D+s,Λ)+M(Ω+cc,K∗+,Ξ0c,D0,D+s,Λ)+M(Ω+cc,K∗+,Ξ′0c,D0,D+s,Λ)+M(Ω+cc,K+,Ξ0c,Ξ−,Λ,D+s)+M(Ω+cc,K+,Ξ′0c,Ξ−,Λ,D+s)+M(Ω+cc,K∗+,Ξ0c,Ξ−,Λ,D+s)+M(Ω+cc,K∗+,Ξ′0c,Ξ−,Λ,D+s)+M(Ω+cc,K0,Ξ+c,Ξ0,Λ,D+s)+M(Ω+cc,K0,Ξ′+c,Ξ0,Λ,D+s)+M(Ω+cc,K∗0,Ξ+c,Ξ0,Λ,D+s)+M(Ω+cc,K∗0,Ξ′+c,Ξ0,Λ,D+s)+M(Ω+cc,K0,Ξ+c,D∗+,D+s,Λ)+M(Ω+cc,K0,Ξ′+c,D∗+,D+s,Λ)+M(Ω+cc,K∗0,Ξ+c,D+,D+s,Λ)+M(Ω+cc,K∗0,Ξ′+c,D+,D+s,Λ)],
A(Ω+cc→Σ0D∗+s)=i[M(Ω+cc,K+,Ξ0c,D0,D∗+s,Σ0)+M(Ω+cc,K+,Ξ′0c,D0,D∗+s,Σ0)+M(Ω+cc,K∗+,Ξ0c,D∗0,D∗+s,Σ0)+M(Ω+cc,K∗+,Ξ′0c,D∗0,D∗+s,Σ0)+M(Ω+cc,K+,Ξ0c,Ξ−,Σ0,D∗+s)+M(Ω+cc,K+,Ξ′0c,Ξ−,Σ0,D∗+s)+M(Ω+cc,K∗+,Ξ0c,Ξ−,Σ0,D∗+s)+M(Ω+cc,K∗+,Ξ′0c,Ξ−,Σ0,D∗+s)+M(Ω+cc,K0,Ξ+c,Ξ0,Σ0,D∗+s)+M(Ω+cc,K0,Ξ′+c,Ξ0,Σ0,D∗+s)+M(Ω+cc,K∗0,Ξ+c,Ξ0,Σ0,D∗+s)+M(Ω+cc,K∗0,Ξ′+c,Ξ0,Σ0,D∗+s)+M(Ω+cc,K0,Ξ+c,D+,D∗+s,Σ0)+M(Ω+cc,K0,Ξ′+c,D+,D∗+s,Σ0)+M(Ω+cc,K∗0,Ξ+c,D∗+,D∗+s,Σ0)+M(Ω+cc,K∗0,Ξ′+c,D∗+,D∗+s,Σ0)],
A(Ω+cc→ΛD∗+s)=i[M(Ω+cc,K+,Ξ0c,D0,D∗+s,Λ)+M(Ω+cc,K+,Ξ′0c,D0,D∗+s,Λ)+M(Ω+cc,K∗+,Ξ0c,D∗0,D∗+s,Λ)+M(Ω+cc,K∗+,Ξ′0c,D∗0,D∗+s,Λ)+M(Ω+cc,K+,Ξ0c,Ξ−,Λ,D∗+s)+M(Ω+cc,K+,Ξ′0c,Ξ−,Λ,D∗+s)+M(Ω+cc,K∗+,Ξ0c,Ξ−,Λ,D∗+s)+M(Ω+cc,K∗+,Ξ′0c,Ξ−,Λ,D∗+s)+M(Ω+cc,K0,Ξ+c,Ξ0,Λ,D∗+s)+M(Ω+cc,K0,Ξ′+c,Ξ0,Λ,D∗+s)+M(Ω+cc,K∗0,Ξ+c,Ξ0,Λ,D∗+s)+M(Ω+cc,K∗0,Ξ′+c,Ξ0,Λ,D∗+s)+M(Ω+cc,K0,Ξ+c,D+,D∗+s,Λ)+M(Ω+cc,K0,Ξ′+c,D+,D∗+s,Λ)+M(Ω+cc,K∗0,Ξ+c,D∗+,D∗+s,Λ)+M(Ω+cc,K∗0,Ξ′+c,D∗+,D∗+s,Λ)],
A(Ω+cc→Σ0D+)=i[M(Ω+cc,π+,Ξ0c,D∗0,D+,Σ0)+M(Ω+cc,π+,Ξ′0c,D∗0,D+,Σ0)+M(Ω+cc,ρ+,Ξ0c,D∗0,D+,Σ0)+M(Ω+cc,ρ+,Ξ′0c,D∗0,D+,Σ0)+M(Ω+cc,π+,Ξ0c,Σ−,Σ0,D+)+M(Ω+cc,π+,Ξ′0c,Σ−,Σ0,D+)+M(Ω+cc,ρ+,Ξ0c,Σ−,Σ0,D+)+M(Ω+cc,ρ+,Ξ′0c,Σ−,Σ0,D+)+M(Ω+cc,ρ0,Ξ+c,D+,D+,Σ0)+M(Ω+cc,ρ0,Ξ′+c,D+,D+,Σ0)+M(Ω+cc,π0,Ξ+c,D∗+,D+,Σ0)+M(Ω+cc,π0,Ξ′+c,D∗+,D+,Σ0)+M(Ω+cc,η1,Ξ+c,D∗+,D+,Σ0)+M(Ω+cc,η8,Ξ+c,D∗+,D+,Σ0)+M(Ω+cc,η1,Ξ′+c,D∗+,D+,Σ0)+M(Ω+cc,η8,Ξ′+c,D∗+,D+,Σ0)+M(Ω+cc,ω,Ξ+c,D+,D+,Σ0)+M(Ω+cc,ω,Ξ′+c,D+,D+,Σ0)+M(Ω+cc,ρ0,Ξ+c,Λ,Σ0,D+)+M(Ω+cc,ρ0,Ξ′+c,Λ,Σ0,D+)+M(Ω+cc,ω,Ξ+c,Σ0,Σ0,D+)+M(Ω+cc,ω,Ξ′+c,Σ0,Σ0,D+)+M(Ω+cc,π0,Ξ+c,Λ,Σ0,D+)+M(Ω+cc,π0,Ξ′+c,Λ,Σ0,D+)+M(Ω+cc,η1,Ξ+c,Σ0,Σ0,D+)+M(Ω+cc,η8,Ξ+c,Σ0,Σ0,D+)+M(Ω+cc,η1,Ξ′+c,Σ0,Σ0,D+)+M(Ω+cc,η8,Ξ′+c,Σ0,Σ0,D+)+M(Ω+cc,K+,Ω0c,Ξ−,Σ0,D+)+M(Ω+cc,K∗+,Ω0c,Ξ−,Σ0,D+)+M(Ω+cc,ϕ,Ξ+c,Σ0,Σ0,D+)+M(Ω+cc,η1,Ξ+c,Σ0,Σ0,D+)+M(Ω+cc,η8,Ξ+c,Σ0,Σ0,D+)+M(Ω+cc,ϕ,Ξ′+c,Σ0,Σ0,D+)+M(Ω+cc,η1,Ξ′+c,Σ0,Σ0,D+)+M(Ω+cc,η8,Ξ′+c,Σ0,Σ0,D+)],
A(Ω+cc→ΛD+)=i[M(Ω+cc,π+,Ξ0c,D∗0,D+,Λ)+M(Ω+cc,π+,Ξ′0c,D∗0,D+,Λ)+M(Ω+cc,ρ+,Ξ0c,D∗0,D+,Λ)+M(Ω+cc,ρ+,Ξ′0c,D∗0,D+,Λ)+M(Ω+cc,π+,Ξ0c,Σ−,Λ,D+)+M(Ω+cc,π+,Ξ′0c,Σ−,Λ,D+)+M(Ω+cc,ρ+,Ξ0c,Σ−,Λ,D+)+M(Ω+cc,ρ+,Ξ′0c,Σ−,Λ,D+)+M(Ω+cc,ρ0,Ξ+c,D+,D+,Λ)+M(Ω+cc,ρ0,Ξ′+c,D+,D+,Λ)+M(Ω+cc,π0,Ξ+c,D∗+,D+,Λ)+M(Ω+cc,π0,Ξ′+c,D∗+,D+,Λ)+M(Ω+cc,η1,Ξ+c,D∗+,D+,Λ)+M(Ω+cc,η8,Ξ+c,D∗+,D+,Λ)+M(Ω+cc,η1,Ξ′+c,D∗+,D+,Λ)+M(Ω+cc,η8,Ξ′+c,D∗+,D+,Λ)+M(Ω+cc,ω,Ξ+c,D+,D+,Λ)+M(Ω+cc,ω,Ξ′+c,D+,D+,Λ)+M(Ω+cc,ρ0,Ξ+c,Λ,Λ,D+)+M(Ω+cc,ρ0,Ξ′+c,Λ,Λ,D+)+M(Ω+cc,ω,Ξ+c,Σ0,Λ,D+)+M(Ω+cc,ω,Ξ′+c,Σ0,Λ,D+)+M(Ω+cc,π0,Ξ+c,Λ,Λ,D+)+M(Ω+cc,π0,Ξ′+c,Λ,Λ,D+)+M(Ω+cc,η1,Ξ+c,Σ0,Λ,D+)+M(Ω+cc,η8,Ξ+c,Σ0,Λ,D+)+M(Ω+cc,η1,Ξ′+c,Σ0,Λ,D+)+M(Ω+cc,η8,Ξ′+c,Σ0,Λ,D+)+M(Ω+cc,K+,Ω0c,Ξ−,Λ,D+)+M(Ω+cc,K∗+,Ω0c,Ξ−,Λ,D+)+M(Ω+cc,ϕ,Ξ+c,Σ0,Λ,D+)+M(Ω+cc,η1,Ξ+c,Σ0,Λ,D+)+M(Ω+cc,η8,Ξ+c,Σ0,Λ,D+)+M(Ω+cc,ϕ,Ξ′+c,Σ0,Λ,D+)+M(Ω+cc,η1,Ξ′+c,Σ0,Λ,D+)+M(Ω+cc,η8,Ξ′+c,Σ0,Λ,D+)],
A(Ω+cc→Σ0D∗+)=i[M(Ω+cc,π+,Ξ0c,D0,D∗+,Σ0)+M(Ω+cc,π+,Ξ′0c,D0,D∗+,Σ0)+M(Ω+cc,ρ+,Ξ0c,D∗0,D∗+,Σ0)+M(Ω+cc,ρ+,Ξ′0c,D∗0,D∗+,Σ0)+M(Ω+cc,π+,Ξ0c,Σ−,Σ0,D∗+)+M(Ω+cc,π+,Ξ′0c,Σ−,Σ0,D∗+)+M(Ω+cc,ρ+,Ξ0c,Σ−,Σ0,D∗+)+M(Ω+cc,ρ+,Ξ′0c,Σ−,Σ0,D∗+)+M(Ω+cc,ρ0,Ξ+c,D∗+,D∗+,Σ0)+M(Ω+cc,ρ0,Ξ′+c,D∗+,D∗+,Σ0)+M(Ω+cc,π0,Ξ+c,D+,D∗+,Σ0)+M(Ω+cc,π0,Ξ′+c,D+,D∗+,Σ0)+M(Ω+cc,η1,Ξ+c,D+,D∗+,Σ0)+M(Ω+cc,η8,Ξ+c,D+,D∗+,Σ0)+M(Ω+cc,η1,Ξ′+c,D+,D∗+,Σ0)+M(Ω+cc,η8,Ξ′+c,D+,D∗+,Σ0)+M(Ω+cc,ω,Ξ+c,D∗+,D∗+,Σ0)+M(Ω+cc,ω,Ξ′+c,D∗+,D∗+,Σ0)+M(Ω+cc,ρ0,Ξ+c,Λ,Σ0,D∗+)+M(Ω+cc,ρ0,Ξ′+c,Λ,Σ0,D∗+)+M(Ω+cc,ω,Ξ+c,Σ0,Σ0,D∗+)+M(Ω+cc,ω,Ξ′+c,Σ0,Σ0,D∗+)+M(Ω+cc,π0,Ξ+c,Λ,Σ0,D∗+)+M(Ω+cc,π0,Ξ′+c,Λ,Σ0,D∗+)+M(Ω+cc,η1,Ξ+c,Σ0,Σ0,D∗+)+M(Ω+cc,η8,Ξ+c,Σ0,Σ0,D∗+)+M(Ω+cc,η1,Ξ′+c,Σ0,Σ0,D∗+)+M(Ω+cc,η8,Ξ′+c,Σ0,Σ0,D∗+)+M(Ω+cc,K+,Ω0c,Ξ−,Σ0,D∗+)+M(Ω+cc,K∗+,Ω0c,Ξ−,Σ0,D∗+)+M(Ω+cc,ϕ,Ξ+c,Σ0,Σ0,D∗+)+M(Ω+cc,η1,Ξ+c,Σ0,Σ0,D∗+)+M(Ω+cc,η8,Ξ+c,Σ0,Σ0,D∗+)+M(Ω+cc,ϕ,Ξ′+c,Σ0,Σ0,D∗+)+M(Ω+cc,η1,Ξ′+c,Σ0,Σ0,D∗+)+M(Ω+cc,η8,Ξ′+c,Σ0,Σ0,D∗+)],
A(Ω+cc→ΛD∗+)=i[M(Ω+cc,π+,Ξ0c,D0,D∗+,Λ)+M(Ω+cc,π+,Ξ′0c,D0,D∗+,Λ)+M(Ω+cc,ρ+,Ξ0c,D∗0,D∗+,Λ)+M(Ω+cc,ρ+,Ξ′0c,D∗0,D∗+,Λ)+M(Ω+cc,π+,Ξ0c,Σ−,Λ,D∗+)+M(Ω+cc,π+,Ξ′0c,Σ−,Λ,D∗+)+M(Ω+cc,ρ+,Ξ0c,Σ−,Λ,D∗+)+M(Ω+cc,ρ+,Ξ′0c,Σ−,Λ,D∗+)+M(Ω+cc,ρ0,Ξ+c,D∗+,D∗+,Λ)+M(Ω+cc,ρ0,Ξ′+c,D∗+,D∗+,Λ)+M(Ω+cc,π0,Ξ+c,D+,D∗+,Λ)+M(Ω+cc,π0,Ξ′+c,D+,D∗+,Λ)+M(Ω+cc,η1,Ξ+c,D+,D∗+,Λ)+M(Ω+cc,η8,Ξ+c,D+,D∗+,Λ)+M(Ω+cc,η1,Ξ′+c,D+,D∗+,Λ)+M(Ω+cc,η8,Ξ′+c,D+,D∗+,Λ)+M(Ω+cc,ω,Ξ+c,D∗+,D∗+,Λ)+M(Ω+cc,ω,Ξ′+c,D∗+,D∗+,Λ)+M(Ω+cc,ρ0,Ξ+c,Λ,Λ,D∗+)+M(Ω+cc,ρ0,Ξ′+c,Λ,Λ,D∗+)+M(Ω+cc,ω,Ξ+c,Σ0,Λ,D∗+)+M(Ω+cc,ω,Ξ′+c,Σ0,Λ,D∗+)+M(Ω+cc,π0,Ξ+c,Λ,Λ,D∗+)+M(Ω+cc,π0,Ξ′+c,Λ,Λ,D∗+)+M(Ω+cc,η1,Ξ+c,Σ0,Λ,D∗+)+M(Ω+cc,η8,Ξ+c,Σ0,Λ,D∗+)+M(Ω+cc,η1,Ξ′+c,Σ0,Λ,D∗+)+M(Ω+cc,η8,Ξ′+c,Σ0,Λ,D∗+)+M(Ω+cc,K+,Ω0c,Ξ−,Λ,D∗+)+M(Ω+cc,K∗+,Ω0c,Ξ−,Λ,D∗+)+M(Ω+cc,ϕ,Ξ+c,Σ0,Λ,D∗+)+M(Ω+cc,η1,Ξ+c,Σ0,Λ,D∗+)+M(Ω+cc,η8,Ξ+c,Σ0,Λ,D∗+)+M(Ω+cc,ϕ,Ξ′+c,Σ0,Λ,D∗+)+M(Ω+cc,η1,Ξ′+c,Σ0,Λ,D∗+)+M(Ω+cc,η8,Ξ′+c,Σ0,Λ,D∗+)],
A(Ω+cc→Σ+D0)=i[M(Ω+cc,K+,Ω0c,Ξ0,Σ+,D0)+M(Ω+cc,K∗+,Ω0c,Ξ0,Σ+,D0)+M(Ω+cc,π+,Ξ0c,Σ0,Σ+,D0)+M(Ω+cc,π+,Ξ′0c,Σ0,Σ+,D0)+M(Ω+cc,π+,Ξ0c,Λ,Σ+,D0)+M(Ω+cc,π+,Ξ′0c,Λ,Σ+,D0)+M(Ω+cc,ρ+,Ξ0c,Σ0,Σ+,D0)+M(Ω+cc,ρ+,Ξ′0c,Σ0,Σ+,D0)+M(Ω+cc,ρ+,Ξ0c,Λ,Σ+,D0)+M(Ω+cc,ρ+,Ξ′0c,Λ,Σ+,D0)+M(Ω+cc,ϕ,Ξ+c,Σ+,Σ+,D0)+M(Ω+cc,η1,Ξ+c,Σ+,Σ+,D0)+M(Ω+cc,η8,Ξ+c,Σ+,Σ+,D0)+M(Ω+cc,ϕ,Ξ′0c,Σ+,Σ+,D0)+M(Ω+cc,η1,Ξ′0c,Σ+,Σ+,D0)+M(Ω+cc,η8,Ξ′0c,Σ+,Σ+,D0)],
A(Ω+cc→Σ+D∗0)=i[M(Ω+cc,K+,Ω0c,Ξ0,Σ+,D∗0)+M(Ω+cc,K∗+,Ω0c,Ξ0,Σ+,D∗0)+M(Ω+cc,π+,Ξ0c,Σ0,Σ+,D∗0)+M(Ω+cc,π+,Ξ′0c,Σ0,Σ+,D∗0)+M(Ω+cc,π+,Ξ0c,Λ,Σ+,D∗0)+M(Ω+cc,π+,Ξ′0c,Λ,Σ+,D∗0)+M(Ω+cc,ρ+,Ξ0c,Σ0,Σ+,D∗0)+M(Ω+cc,ρ+,Ξ′0c,Σ0,Σ+,D∗0)+M(Ω+cc,ρ+,Ξ0c,Λ,Σ+,D∗0)+M(Ω+cc,ρ+,Ξ′0c,Λ,Σ+,D∗0)+M(Ω+cc,ϕ,Ξ+c,Σ+,Σ+,D∗0)+M(Ω+cc,η1,Ξ+c,Σ+,Σ+,D∗0)+M(Ω+cc,η8,Ξ+c,Σ+,Σ+,D∗0)+M(Ω+cc,ϕ,Ξ′0c,Σ+,Σ+,D∗0)+M(Ω+cc,η1,Ξ′0c,Σ+,Σ+,D∗0)+M(Ω+cc,η8,Ξ′0c,Σ+,Σ+,D∗0)],
A(Ω+cc→pD0)=i[M(Ω+cc,K+,Ξ0c,Σ0,p,D0)+M(Ω+cc,K+,Ξ′0c,Σ0,p,D0)+M(Ω+cc,K+,Ξ0c,Λ,p,D0)+M(Ω+cc,K+,Ξ′0c,Λ,p,D0)+M(Ω+cc,K∗+,Ξ0c,Σ0,p,D0)+M(Ω+cc,K∗+,Ξ′0c,Σ0,p,D0)+M(Ω+cc,K∗+,Ξ0c,Λ,p,D0)+M(Ω+cc,K∗+,Ξ′0c,Λ,p,D0)+M(Ω+cc,K0,Ξ+c,Σ+,p,D0)+M(Ω+cc,K0,Ξ′+c,Σ+,p,D0)+M(Ω+cc,K∗0,Ξ+c,Σ+,p,D0)+M(Ω+cc,K∗0,Ξ′+c,Σ+,p,D0)],
A(Ω+cc→pD∗0)=i[M(Ω+cc,K+,Ξ0c,Σ0,p,D∗0)+M(Ω+cc,K+,Ξ′0c,Σ0,p,D∗0)+M(Ω+cc,K+,Ξ0c,Λ,p,D∗0)+M(Ω+cc,K+,Ξ′0c,Λ,p,D∗0)+M(Ω+cc,K∗+,Ξ0c,Σ0,p,D∗0)+M(Ω+cc,K∗+,Ξ′0c,Σ0,p,D∗0)+M(Ω+cc,K∗+,Ξ0c,Λ,p,D∗0)+M(Ω+cc,K∗+,Ξ′0c,Λ,p,D∗0)+M(Ω+cc,K0,Ξ+c,Σ+,p,D∗0)+M(Ω+cc,K0,Ξ′+c,Σ+,p,D∗0)+M(Ω+cc,K∗0,Ξ+c,Σ+,p,D∗0)+M(Ω+cc,K∗0,Ξ′+c,Σ+,p,D∗0)],
A(Ω+cc→nD+)=i[M(Ω+cc,K+,Ξ0c,Σ−,n,D+)+M(Ω+cc,K+,Ξ′0c,Σ−,n,D+)+M(Ω+cc,K∗+,Ξ0c,Σ−,n,D+)+M(Ω+cc,K∗+,Ξ′0c,Σ−,n,D+)+M(Ω+cc,K0,Ξ+c,Σ0,n,D+)+M(Ω+cc,K0,Ξ+c,Λ,n,D+)+M(Ω+cc,K0,Ξ′+c,Σ0,n,D+)+M(Ω+cc,K0,Ξ′+c,Λ,n,D+)+M(Ω+cc,K∗0,Ξ+c,Σ0,n,D+)+M(Ω+cc,K∗0,Ξ+c,Λ,n,D+)+M(Ω+cc,K∗0,Ξ′+c,Σ0,n,D+)+M(Ω+cc,K∗0,Ξ′+c,Λ,n,D+)],
A(Ω+cc→nD∗+)=i[M(Ω+cc,K+,Ξ0c,Σ−,n,D∗+)+M(Ω+cc,K+,Ξ′0c,Σ−,n,D∗+)+M(Ω+cc,K∗+,Ξ0c,Σ−,n,D∗+)+M(Ω+cc,K∗+,Ξ′0c,Σ−,n,D∗+)+M(Ω+cc,K0,Ξ+c,Σ0,n,D∗+)+M(Ω+cc,K0,Ξ+c,Λ,n,D∗+)+M(Ω+cc,K0,Ξ′+c,Σ0,n,D∗+)+M(Ω+cc,K0,Ξ′+c,Λ,n,D∗+)+M(Ω+cc,K∗0,Ξ+c,Σ0,n,D∗+)+M(Ω+cc,K∗0,Ξ+c,Λ,n,D∗+)+M(Ω+cc,K∗0,Ξ′+c,Σ0,n,D∗+)+M(Ω+cc,K∗0,Ξ′+c,Λ,n,D∗+)],
A(Ω+cc→nD∗+)=i[M(Ω+cc,K+,Ξ0c,Σ−,n,D∗+)+M(Ω+cc,K+,Ξ′0c,Σ−,n,D∗+)+M(Ω+cc,K∗+,Ξ0c,Σ−,n,D∗+)+M(Ω+cc,K∗+,Ξ′0c,Σ−,n,D∗+)+M(Ω+cc,K0,Ξ+c,Σ0,n,D∗+)+M(Ω+cc,K0,Ξ+c,Λ,n,D∗+)+M(Ω+cc,K0,Ξ′+c,Σ0,n,D∗+)+M(Ω+cc,K0,Ξ′+c,Λ,n,D∗+)+M(Ω+cc,K∗0,Ξ+c,Σ0,n,D∗+)+M(Ω+cc,K∗0,Ξ+c,Λ,n,D∗+)+M(Ω+cc,K∗0,Ξ′+c,Σ0,n,D∗+)+M(Ω+cc,K∗0,Ξ′+c,Λ,n,D∗+)].
-
In this section, we list all of the strong coupling constants used in our calculation. Some of these values are obtained from Refs. [35, 41-47]. Those that cannot be found directly in the literature are calculated under the assumption of
SU(3)F symmetry.According to the
SU(3)F multiplets to which the particles belong, the vertices in this study can be divided intoBBV ,BBP ,DD∗P ,DDV ,D∗D∗V ,BcBD , andBcBD∗ , where P denotes a light pseudoscalar meson, V represents a light vector meson, andBc is a singly charmed baryon. These definitions clarify the meanings of our symbols for each vertex, the coupling constants of which are presented in Tables 5, 6, 7, and 8.Vertex f1 f2 Vertex f1 f2 Vertex f1 f2 p→ nρ+ −2.40 32.95 Λ→Σ−ρ+ 2.00 12.30 Σ0→Σ+ρ+ 7.20 −25.00 Σ+→Λρ+ 2.00 12.30 Σ+→p¯K∗0 5.66 −1.70 Σ+→Ξ0K∗+ −2.26 37.05 Σ+→Σ+ϕ −6.00 2.50 p→Σ0K∗+ 4.00 −1.20 p→ΛK∗+ 5.10 −28.00 p→Σ+K∗0 5.66 −1.70 Σ0→Σ−ρ+ −7.20 25.00 Σ0→n¯K∗0 −4.00 1.20 Λ→n¯K∗0 5.10 −28.00 Σ0→Ξ−K∗+ −1.60 26.20 Σ0→Σ0ϕ −6.00 2.50 Σ0→Σ0ω 4.30 −1.10 Λ→Σ0ρ0 1.90 11.90 p→pρ0 −2.50 22.20 Λ→Ξ0K∗0 −6.00 17.10 Λ→Ξ−K∗+ −6.00 17.10 Λ→Λϕ −5.30 24.60 n→Σ0K∗0 −4.00 1.20 Λ→Λω −7.10 8.70 n→Σ−K∗+ 5.66 −1.70 n→ΛK∗0 5.10 −28.00 Ξ−→Σ+¯K∗0 −2.26 37.05 n→nρ0 2.50 −22.20 Ξ0→Λ¯K∗0 4.45 −27.54 Ξ0→Ξ−ρ+ 6.08 −1.56 Ξ0→Σ0¯K∗0 1.60 −26.20 Ξ0→Ξ0ϕ −9.50 32.30 Σ0→Ξ0K∗0 1.60 −26.20 Table 5. Strong coupling constants of
BBV vertices.Vertex g Vertex g Vertex g p→nπ+ 21.20 Λ→Σ−π+ 10.00 Σ0→Σ+π+ −10.70 Σ+→Λπ+ 10.00 Σ+→p¯K0 5.75 Σ+→Ξ0K+ 19.80 p→Σ0K+ 4.25 p→ΛK+ −13.50 p→Σ+K0 5.75 Σ−→Σ0π+ 10.70 Σ0→n¯K0 −4.25 Ξ−→Σ+¯K0 19.80 Σ0→Ξ−K+ 14.00 Λ→Ξ−K+ 4.25 Λ→n¯K0 −13.50 p→pη8 4.25 n→Σ−K+ 4.70 p→pπ0 14.90 p→pη1 14.14 n→nπ0 −14.90 n→Σ0K0 −4.25 n→ΛK0 −13.50 Ξ0→Σ0¯K0 −14.00 n→nη8 4.25 Ξ0→Ξ−π+ 4.70 Λ→Ξ0K0 4.25 n→nη1 14.14 Σ0→Ξ0K0 −14.00 Σ0→Σ0η8 10.00 Ξ0→Λ¯K0 4.25 Λ→Σ0π0 10.00 Σ0→Σ0η1 14.14 Ξ0→Ξ0η8 −13.50 Λ→Λη8 −10.00 Σ+→Σ+η8 10.00 Ξ0→Ξ0η1 14.14 Λ→Λη1 −14.14 Σ+→Σ+η1 14.14 Table 6. Strong coupling constants of
BBP vertices.Vertex g Vertex g Vertex g f D∗→Dπ 17.90 D→Dρ 3.69 D∗→D∗ρ 3.69 4.61 Table 7. Strong coupling constants of
DD∗P ,DDV , andD∗D∗V vertices.Vertex g Vertex g f Λc→NDq 4.82 Λc→ND∗q −5.80 3.60 Σc→NDq 3.78 Σc→ND∗q 11.21 4.64 Table 8. Strong coupling constants of
BcBD andBcBD∗ vertices.
Weak decays of doubly heavy baryons: Bcc→BD(∗)
- Received Date: 2020-10-30
- Available Online: 2021-04-15
Abstract: The discovery of