Gravitational Waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM

  • In this work, we make the first study of electroweak baryogenesis (EWBG) based on the LHC data in the CP-violating next-to-minimal supersymmetric model (NMSSM) where a strongly first order electroweak phase transition (EWPT) is obtained in the general complex Higgs potential. With representative benchmark points which pass the current LEP and LHC constraints, we demonstrate the structure of EWPT for those points and how a strongly first order EWPT is obtained in the complex NMSSM where the resulting gravitational wave production properties are found to be within the reaches of future space-based interferometers like BBO and Ultimate-DECIGO. We further calculate the generated baryon asymmetries where the CP violating sources are (1):higgsino-singlino dominated, (2):higgsino-gaugino dominated or (3):from both sources. It is shown that all three representing scenarios could evade the strong constraints set by various electric dipole moments (EDM) searches where cancellations among the EDM contributions occur at the tree level (higgsino-singlino dominated) or loop level (higgsino-gaugino dominated). The 125 GeV SM like Higgs can be either the second lightest neutral Higgs H2 or the third lightest neutral Higgs H3. Finally, we comment on the future direct and indirect probe of CPV in the Higgs sector from the collider and EDM experiments.
      PCAS:
  • 加载中
  • [1] ATLAS collaboration, G. Aad et al, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 716:1-29 (2012), 1207.7214
    [2] CMS Collaboration, S. Chatrchyan et al, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 716:30-61 (2012), 1207.7235
    [3] Planck collaboration, P. A. R. Ade et al, Planck 2015 results. XⅢ. Cosmological parameters, Astron. Astrophys., 594:A13 (2016), 1502.01589
    [4] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B155 (1985) 36.
    [5] D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys., 14:125003 (2012), 1206.2942
    [6] A. D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz., 5:32-35 (1967)
    [7] J. E. Kim and H. P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett. B, 138:150-154 (1984)
    [8] Y. Nir, Gauge unification, Yukawa hierarchy and the mu problem, Phys. Lett. B, 354:107-110 (1995), hep-ph/9504312
    [9] M. Cvetic and P. Langacker, Implications of Abelian extended gauge structures from string models, Phys. Rev. D, 54:3570-3579 (1996), hep-ph/9511378
    [10] M. Carena, G. Nardini, M. Quiros, and C. E. M. Wagner, MSSM Electroweak Baryogenesis and LHC Data, JHEP, 02:001 (2013), 1207.6330
    [11] D. Curtin, P. Jaiswal, and P. Meade, Excluding Electroweak Baryogenesis in the MSSM, JHEP, 08:005 (2012), 1203.2932
    [12] T. Cohen and A. Pierce, Electroweak Baryogenesis and Colored Scalars, Phys. Rev. D, 85:033006 (2012), 1110.0482
    [13] T. Cohen, D. E. Morrissey, and A. Pierce, Electroweak Baryogenesis and Higgs Signatures, Phys. Rev. D, 86:013009 (2012), 1203.2924
    [14] U. Ellwanger, C. Hugonie, and A. M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept., 496:1-77 (2010), 0910.1785
    [15] M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A, 25:3505-3602 (2010), 0906.0777].
    [16] M. Pietroni, The Electroweak phase transition in a nonminimal supersymmetric model, Nucl. Phys. B, 402:27-45 (1993), hep-ph/9207227
    [17] A. T. Davies, C. D. Froggatt, and R. G. Moorhouse, Electroweak baryogenesis in the next-to-minimal supersymmetric model, Phys. Lett. B, 372:88-94 (1996), hep-ph/9603388
    [18] S. J. Huber and M. G. Schmidt, Electroweak baryogenesis:Concrete in a SUSY model with a gauge singlet, Nucl. Phys. B, 606:183-230 (2001), hep-ph/0003122
    [19] K. Funakubo, S. Tao, and F. Toyoda, Phase transitions in the NMSSM, Prog. Theor. Phys., 114:369-389 (2005), hep-ph/0501052
    [20] M. Carena, N. R. Shah, and C. E. M. Wagner, Light Dark Matter and the Electroweak Phase Transition in the NMSSM, Phys. Rev. D, 85:036003 (2012), 1110.4378
    [21] C. Bal醶s, A. Mazumdar, E. Pukartas, and G. White, Baryogenesis, dark matter and inflation in the Next-to-Minimal Supersymmetric Standard Model, JHEP, 01:073 (2014), 1309.5091
    [22] J. Kozaczuk, S. Profumo, L. S. Haskins, and C. L. Wainwright, Cosmological Phase Transitions and their Properties in the NMSSM, JHEP, 01:144 (2015), 1407.4134
    [23] W. Huang, Z. Kang, J. Shu, P. Wu, and J. M. Yang, New insights in the electroweak phase transition in the NMSSM, Phys. Rev. D, 91:025006 (2015), 1405.1152
    [24] X.-J. Bi, L. Bian, W. Huang, J. Shu, and P.-F. Yin, Interpretation of the Galactic Center excess and electroweak phase transition in the NMSSM, Phys. Rev. D, 92:023507 (2015), 1503.03749
    [25] S. J. Huber, T. Konstandin, G. Nardini, and I. Rues, Detectable Gravitational Waves from Very Strong Phase Transitions in the General NMSSM, JCAP, 1603:036 (2016), 1512.06357
    [26] J. Shu and Y. Zhang, Impact of a CP Violating Higgs Sector:From LHC to Baryogenesis, Phys. Rev. Lett., 111:091801 (2013), 1304.0773
    [27] S. Inoue, M. J. Ramsey-Musolf, and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D, 89:115023 (2014), 1403.4257
    [28] S. F. King, M. Muhlleitner, R. Nevzorov, and K. Walz, Exploring the CP-violating NMSSM:EDM Constraints and Phenomenology, Nucl. Phys. B, 901:526-555 (2015), 1508.03255
    [29] L. Bian and N. Chen, The CP violation beyond the SM Higgs and theoretical predictions of electric dipole moment, 1608.07975
    [30] L. Bian, T. Liu, and J. Shu, Cancellations Between Two-Loop Contributions to the Electron Electric Dipole Moment with a CP-Violating Higgs Sector, Phys. Rev. Lett., 115:021801 (2015), 1411.6695
    [31] K. Cheung, T.-J. Hou, J. S. Lee, and E. Senaha, Singlino-driven Electroweak Baryogenesis in the Next-to-MSSM, Phys. Lett. B, 710:188-191 (2012), 1201.3781
    [32] J. Kozaczuk, S. Profumo, and C. L. Wainwright, Electroweak Baryogenesis and the Fermi Gamma-Ray Line, Phys. Rev. D, 87:075011 (2013), 1302.4781
    [33] Virgo, LIGO Scientific Collaboration, B. P. Abbott et al, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116:061102 (2016), 1602.03837
    [34] R.-G. Cai, Z. Cao, Z.-K. Guo, S.-J. Wang, and T. Yang, The Gravitational Wave Physics, 1703.00187
    [35] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D, 7:1888-1910 (1973)
    [36] J. M. Cline, K. Kainulainen, and M. Trott, Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies, JHEP, 11:089 (2011), 1107.3559
    [37] M. Quiros, Finite temperature field theory and phase transitions, in Proceedings, Summer School in High-energy physics and cosmology:Trieste, Italy, June 29-July 17, 1998, pp. 187-259, 1999 hep-ph/9901312
    [38] R. R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D, 45:4695 (1992), hep-ph/9204216
    [39] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys., 53:43 (1981)
    [40] J. Bernon, L. Bian, and Y. Jiang, JHEP, 1805:151 (2018), doi:10.1007/JHEP05(2018)151[arXiv:1712.08430][hep-ph]
    [41] S. R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D, 15:2929-2936 (1977)
    [42] A. D. Linde, Fate of the False Vacuum at Finite Temperature:Theory and Applications, Phys. Lett. B, 100:37-40 (1981)
    [43] A. D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B, 216:421 (1983)
    [44] M. E. Shaposhnikov, Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory, JETP Lett., 44:465-468 (1986)
    [45] M. E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B, 287:757-775 (1987)
    [46] J. M. Cline, Baryogenesis, in Les Houches Summer School-Session 86:Particle Physics and Cosmology:The Fabric of Spacetime Les Houches, France, July 31-August 25, 2006, 2006 hep-ph/0609145
    [47] H. H. Patel and M. J. Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition, and Perturbation Theory, JHEP, 07:029 (2011), 1101.4665
    [48] C. Cheung and Y. Zhang, Electroweak Cogenesis, JHEP, 09:002 (2013), 1306.4321
    [49] H. H. Patel and M. J. Ramsey-Musolf, Stepping Into Electroweak Symmetry Breaking:Phase Transitions and Higgs Phenomenology, Phys. Rev. D, 88:035013 (2013), 1212.5652
    [50] M. Jiang, L. Bian, W. Huang, and J. Shu, Impact of a complex singlet:Electroweak baryogenesis and dark matter, Phys. Rev. D, 93:065032 (2016), 1502.07574
    [51] J. Shu, T. M. P. Tait, and C. E. M. Wagner, Baryogenesis from an Earlier Phase Transition, Phys. Rev. D, 75:063510 (2007), hep-ph/0610375
    [52] S. Inoue, G. Ovanesyan, and M. J. Ramsey-Musolf, Two-Step Electroweak Baryogenesis, Phys. Rev. D, 93:015013 (2016), 1508.05404
    [53] H. H. Patel, M. J. Ramsey-Musolf, and M. B. Wise, Color Breaking in the Early Universe, Phys. Rev. D, 88:015003 (2013), 1303.1140
    [54] M. Chala, G. Nardini, and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D, 94:055006 (2016), 1605.08663
    [55] V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, 1611.02073
    [56] W. Chao, H.-K. Guo, and J. Shu, Gravitational Wave Signals of Electroweak Phase Transition Triggered by Dark Matter, 1702.02698
    [57] Z. Kang, J. Li, T. Li, D. Liu, and J. Shu, Probing the CP-even Higgs sector via H3 H2H1 in the natural next-to-minimal supersymmetric standard model, Phys. Rev. D, 88:015006 (2013), 1301.0453
    [58] J. M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev. D, 89:095031 (2014), 1310.6035
    [59] T. Huang, J. M. No, L. Perni, M. Ramsey-Musolf, A. Safonov, M. Spannowsky et al, Resonant Di-Higgs Production in the bbWW Channel:Probing the Electroweak Phase Transition at the LHC, 1701.04442
    [60] C. L. Wainwright, CosmoTransitions:Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun., 183:2006-2013 (2012), 1109.4189
    [61] C. Caprini et al, Science with the space-based interferometer eLISA. Ⅱ:Gravitational waves from cosmological phase transitions, JCAP, 1604:001 (2016), 1512.06239
    [62] R. Apreda, M. Maggiore, A. Nicolis, and A. Riotto, Gravitational waves from electroweak phase transitions, Nucl. Phys. B, 631:342-368 (2002), gr-qc/0107033
    [63] A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D, 45:4514-4535 (1992)
    [64] A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett., 69:2026-2029 (1992)
    [65] A. Kosowsky and M. S. Turner, Gravitational radiation from colliding vacuum bubbles:envelope approximation to many bubble collisions, Phys. Rev. D, 47:4372-4391 (1993), astro-ph/9211004
    [66] S. J. Huber and T. Konstandin, Gravitational Wave Production by Collisions:More Bubbles, JCAP, 0809:022 (2008), 0806.1828
    [67] M. Kamionkowski, A. Kosowsky, and M. S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D, 49:2837-2851 (1994), astro-ph/9310044
    [68] H. Audley et al., Laser Interferometer Space Antenna, 1702.00786.
    [69] A. Klein et al, Science with the space-based interferometer eLISA:Supermassive black hole binaries, Phys. Rev. D, 93:024003 (2016), 1511.05581
    [70] H. Kudoh, A. Taruya, T. Hiramatsu, and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D, 73:064006 (2006), gr-qc/0511145
    [71] X. Gong et al, Descope of the ALIA mission, J. Phys. Conf. Ser., 610:012011 (2015), 1410.7296
    [72] C. Lee, V. Cirigliano, and M. J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D, 71:075010 (2005), hep-ph/0412354
    [73] D. J. H. Chung, B. Garbrecht, M. J. Ramsey-Musolf, and S. Tulin, Lepton-mediated electroweak baryogenesis, Phys. Rev. D, 81:063506 (2010), 0905.4509
    [74] D. J. H. Chung, B. Garbrecht, M. Ramsey-Musolf, and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP, 12:067 (2009), 0908.2187
    [75] J. M. No, Phys. Rev. D, 84:124025 (2011), doi:10.1103/PhysRevD.84.124025[arXiv:1103.2159] [hep-ph]
    [76] C. Caprini and J. M. No, JCAP, 1201:031 (2012), doi:10.1088/1475-7516/2012/01/031[arXiv:1111.1726][hep-ph]
    [77] D. J. H. Chung, B. Garbrecht, M. J. Ramsey-Musolf, and S. Tulin, Yukawa Interactions and Supersymmetric Electroweak Baryogenesis, Phys. Rev. Lett., 102:061301 (2009), 0808.1144
    [78] V. Cirigliano, M. J. Ramsey-Musolf, S. Tulin, and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D, 73:115009 (2006), hep-ph/0603058
    [79] P. Huet and A. E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D, 53:4578-4597 (1996), hep-ph/9506477
    [80] ACME collaboration, J. Baron et al, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science, 343:269-272 (2014), 1310.7534
    [81] J. Ellis, J. S. Lee, and A. Pilaftsis, A Geometric Approach to CP Violation:Applications to the MCPMFV SUSY Model, JHEP, 10:049 (2010), 1006.3087
    [82] J. Baglio, R. Grer, M. Mlleitner, D. T. Nhung, H. Rzehak, M. Spira et al, NMSSMCALC:A Program Package for the Calculation of Loop-Corrected Higgs Boson Masses and Decay Widths in the (Complex) NMSSM, Comput. Phys. Commun., 185:3372-3391 (2014), 1312.4788
    [83] P. Bechtle, O. Brein, S. Heinemeyer, O. St, T. Stefaniak, G. Weiglein et al, HiggsBounds-4:Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C, 74:2693 (2014), 1311.0055
    [84] C. A. Baker et al, An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett., 97:131801 (2006), hep-ex/0602020
    [85] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Reduced Limit on the Permanent Electric Dipole Moment of Hg199, Phys. Rev. Lett., 116:161601 (2016), 1601.04339
    [86] J. F. Gunion, B. Grzadkowski and X.-G. He, Determining the top-anti-top and Z Z couplings of a neutral Higgs boson of arbitrary CP nature at the NLC, Phys. Rev. Lett., 77:5172-5175 (1996), hep-ph/9605326
    [87] M. R. Buckley and D. Goncalves, Boosting the Direct CP Measurement of the Higgs-Top Coupling, Phys. Rev. Lett., 116:091801 (2016), 1507.07926
    [88] J. Ellis, D. S. Hwang, K. Sakurai, and M. Takeuchi, Disentangling Higgs-Top Couplings in Associated Production, JHEP, 04:004 (2014), 1312.5736
    [89] C. R. Schmidt and M. E. Peskin, A Probe of CP violation in top quark pair production at hadron supercolliders, Phys. Rev. Lett., 69:410-413 (1992)
    [90] W. Bernreuther and A. Brandenburg, Tracing CP violation in the production of top quark pairs by multiple TeV proton proton collisions, Phys. Rev. D, 49:4481-4492 (1994), hep-ph/9312210
    [91] W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B, 837:90-121 (2010), 1003.3926
    [92] M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in the tt channel at the LHC, JHEP, 11:159 (2016), 1608.07282
    [93] P. S. Bhupal Dev, A. Djouadi, R. M. Godbole, M. M. Muhlleitner, and S. D. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett., 100:051801 (2008), 0707.2878
    [94] R. Harnik, A. Martin, T. Okui, R. Primulando, and F. Yu, Measuring CP violation in h + - at colliders, Phys. Rev. D, 88:076009 (2013), 1308.1094
    [95] S. Berge, W. Bernreuther, and S. Kirchner, Prospects of constraining the Higgs boson?s CP nature in the tau decay channel at the LHC, Phys. Rev. D, 92:096012 (2015), 1510.03850
    [96] Y. Chen, A. Falkowski, I. Low, and R. Vega-Morales, New Observables for CP Violation in Higgs Decays, Phys. Rev. D, 90:113006 (2014), 1405.6723
    [97] Q.-H. Cao, C. B. Jackson, W.-Y. Keung, I. Low, and J. Shu, The Higgs Mechanism and Loop-induced Decays of a Scalar into Two Z Bosons, Phys. Rev. D, 81:015010 (2010), 0911.3398
    [98] W. Huang, J. Shu, and Y. Zhang, On the Higgs Fit and Electroweak Phase Transition, JHEP, 03:164 (2013), 1210.0906
    [99] D. J. H. Chung, A. J. Long, and L.-T. Wang, 125 eV Higgs boson and electroweak phase transition model classes, Phys. Rev. D, 87:023509 (2013), 1209.1819
    [100] H. Davoudiasl, I. Lewis and E. Ponton, Electroweak Phase Transition, Higgs Diphoton Rate, and New Heavy Fermions, Phys. Rev. D, 87:093001 (2013), 1211.3449
    [101] A. Menon, D. E. Morrissey, and C. E. M. Wagner, Phys. Rev. D, 70:035005 (2004) doi:10.1103/PhysRevD.70.035005[hep-ph/0404184]
  • 加载中

Get Citation
Ligong Bian, Huai-Ke Guo and Jing Shu. Gravitational Waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM[J]. Chinese Physics C, 2018, 42(9): 093106. doi: 10.1088/1674-1137/42/9/093106
Ligong Bian, Huai-Ke Guo and Jing Shu. Gravitational Waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM[J]. Chinese Physics C, 2018, 42(9): 093106.  doi: 10.1088/1674-1137/42/9/093106 shu
Milestone
Received: 2018-03-16
Revised: 2018-06-09
Fund

    The work of LGB is Supported by the National Natural Science Foundation of China (11605016, 11647307), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1A2B4008759), and Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017H1D3A1A01014046)

Article Metric

Article Views(799)
PDF Downloads(25)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Gravitational Waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM

    Corresponding author: Ligong Bian,
    Corresponding author: Huai-Ke Guo,
    Corresponding author: Jing Shu,
  • 1. Department of Physics, Chongqing University, Chongqing 401331, China
  • 2. Department of Physics, Chung-Ang University, Seoul 06974, Korea
  • 3.  CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 5. CAS Center for Excellence in Particle Physics, Beijing 100049, China
  • 6. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
  • 7. Center for High Energy Physics, Peking University, Beijing 100871, China
Fund Project:  The work of LGB is Supported by the National Natural Science Foundation of China (11605016, 11647307), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1A2B4008759), and Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017H1D3A1A01014046)

Abstract: In this work, we make the first study of electroweak baryogenesis (EWBG) based on the LHC data in the CP-violating next-to-minimal supersymmetric model (NMSSM) where a strongly first order electroweak phase transition (EWPT) is obtained in the general complex Higgs potential. With representative benchmark points which pass the current LEP and LHC constraints, we demonstrate the structure of EWPT for those points and how a strongly first order EWPT is obtained in the complex NMSSM where the resulting gravitational wave production properties are found to be within the reaches of future space-based interferometers like BBO and Ultimate-DECIGO. We further calculate the generated baryon asymmetries where the CP violating sources are (1):higgsino-singlino dominated, (2):higgsino-gaugino dominated or (3):from both sources. It is shown that all three representing scenarios could evade the strong constraints set by various electric dipole moments (EDM) searches where cancellations among the EDM contributions occur at the tree level (higgsino-singlino dominated) or loop level (higgsino-gaugino dominated). The 125 GeV SM like Higgs can be either the second lightest neutral Higgs H2 or the third lightest neutral Higgs H3. Finally, we comment on the future direct and indirect probe of CPV in the Higgs sector from the collider and EDM experiments.

    HTML

Reference (101)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return