Dynamical interactions of dark energy and dark matter: Yang-Mills condensate and QCD axions

  • We analyze a model of cold axion dark matter weakly coupled with a dark gluon condensate, reproducing dark energy. We first review how to recover the dark energy behavior using the functional renormalization group approach, and ground our study in the properties of the effective Lagrangian, to be determined non-perturbatively. Then, within the context of GSM×SU(2)D×U(1)PQ, we consider Yang-Mills condensate (YMC) interactions with QCD axions. We predict a transfer of dark energy density into dark matter density, that can be tested in the next generation of experiments dedicated to dark energy measurements. We obtain new bounds on the interactions between the Yang-Mills condensate and axion dark matter from Planck data:the new physics interaction scale related to the axion/gluon condensate mixing is constrained to be higher than the 106 GeV energy scale.
      PCAS:
  • 加载中
  • [1] P. Don, A. Marcian, Y. Zhang, and C. Antolini, Phys. Rev. D, 93(4): 043012 (2016) [arXiv:1509.05824 [gr-qc]]
    [2] A. G. Riess et al, Astron. J., 116: 1009 (1998) [astroph/9805201]
    [3] S. Perlmutter et al, Astrophys. J., 517: 565 (1999) [astroph/9812133]
    [4] M. Kowalski et al, Astrophys. J., 686: 749 (2008) [arXiv:0804.4142 [astro-ph]]
    [5] D. N. Spergel et al (WMAP Collaboration), Astrophys. J. Suppl., 148: 175 (2003) [astro-ph/0302209]
    [6] A. W. Graham, D. Merritt, B. Moore, J. Diemand, and B. Terzic, Astron. J., 132: 2685 (2006) [astro-ph/0509417]
    [7] D. N. Spergel et al (WMAP Collaboration), Astrophys. J. Suppl., 170: 377 (2007) [astro-ph/0603449]
    [8] E. Komatsu et al (WMAP Collaboration), Astrophys. J. Suppl., 180: 330 (2009) [arXiv:0803.0547 [astro-ph]]
    [9] S. Cole et al (2dFGRS Collaboration), Mon. Not. Roy. Astron. Soc., 362: 505 (2005) [astro-ph/0501174]
    [10] M. Tegmark et al (SDSS Collaboration), Phys. Rev. D, 74:123507 (2006) [astro-ph/0608632]
    [11] S. Capozziello, S. Carloni, and A. Troisi, Recent Res. Dev. Astron. Astrophys., 1: 625 (2003) [astro-ph/0303041]
    [12] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D, 70: 043528 (2004) [astro-ph/0306438]
    [13] L. Amendola and S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, Cambridge, UK, 2010)
    [14] Y. Zhang, Phys. Lett. B, 340: 18-22 (1994)
    [15] T. Y. Xia and Y. Zhang, Phys. Lett. B, 656: 19-24 (2007)
    [16] S. Wang, Y. Zhang, and T. Y. Xia, The three-loop Yang Mills condensate dark energy model and its cosmological constraints, JCAP, 10: 037 (2008)
    [17] H. Pagels and E. Tomboulis, Nucl. Phys. B, 143: 485 (1978)
    [18] S. Adler, Phys. Rev. D, 23: 2905 (1981); S. Adler, Nucl. Phys. B, 217: 3881 (1983); S. Adler and T. Piran, Rev. Mod. Phys., 56: 1 (1984); S. Adler and T. Piran, Phys. Lett. B, 113: 405 (1982)
    [19] S. G. Matinyan and G. K. Savvidy, Nucl. Phys. B, 134: 539 (1978)
    [20] C. N. Yang, Phys Rev. Lett., 33: 445 (1974)
    [21] W. Zhao and Y. Zhang, Phys. Lett. B, 640: 69 (2006)
    [22] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Spacetime (Cambridge Univ. Press, 1973)
    [23] L. Parker and Y. Zhang, Phys. Rev. D, 44: 2421 (1991)
    [24] G. K. Savvidy, Phys. Lett. B, 71: 133 (1977)
    [25] S. Weinberg, In Hawking, S .W. Israel, W. General Relativity, (Cambridge: Cambridge University Press, 1980) p.790-831
    [26] C. Wetterich, Phys. Lett. B, 301: 90 (1993)
    [27] T. R. Morris, Int. J. Mod. Phys. A, 9: 2411 (1994) [hepph/9308265]
    [28] T. Papenbrock and C. Wetterich, Z. Phys. C, 65: 519 (1995) [hep-th/9403164]
    [29] C. S. Fischer and R. Alkofer, Phys. Lett. B, 536: 177 (2002) [hep-ph/0202202]
    [30] C. S. Fischer and J. M. Pawlowski, Phys. Rev. D, 75: 025012 (2007) [arXiv:hep-th/0609009]; Phys. Rev. D, 80: 025023 (2009) [arXiv:0903.2193 [hep-th]]
    [31] C. S. Fischer, A. Maas, and J. M. Pawlowski, Annals Phys., 324: 2408 (2009) [arXiv:0810.1987 [hep-ph]]
    [32] U. Ellwanger, M. Hirsch, and A. Weber, Z. Phys. C, 69: 687 (1996); U. Ellwanger, M. Hirsch, and A. Weber, Eur. Phys. J. C, 1: 563 (1998); B. Bergerhoff and C. Wetterich, Phys. Rev. D, 57: 1591 (1998); [hep-ph/9708425] J. Kato, hep-th/0401068
    [33] J. M. Pawlowski, D. F. Litim, S. Nedelko, and L. von Smekal, Phys. Rev. Lett., 93: 152002 (2004) [hep-th/0312324]; J. M. Pawlowski, D. F. Litim, S. Nedelko, and L. von Smekal, AIP Conf. Proc., 756: 278 (2005) [arXiv:hep-th/0412326]
    [34] M. Reuter and C. Wetterich, hep-th/9411227
    [35] M. Reuter and C. Wetterich, Phys. Rev. D, 56: 7893 (1997) [hep-th/9708051]
    [36] H. Gies, Phys. Rev. D, 66: 025006 (2002) [hep-th/0202207]
    [37] A. Eichhorn, H. Gies, and J. M. Pawlowski, Phys. Rev. D, 83: 045014 (2011); Phys. Rev. D, 83: 069903 (2011) [arXiv:1010.2153 [hep-ph]]
    [38] A. Codello, R. Percacci, L. Rachwa, and A. Tonero, Eur. Phys. J. C, 76(4): 226 (2016) doi:10.1140/epjc/s10052-016-4063-3 [arXiv:1505.03119 [hep-th]]
    [39] Y. A. Simonov, JETP Lett., 55: 627 (1992)
    [40] A. Peshier, B. Kampfer, O. P. Pavlenko, and G. Soff, Phys. Lett. B, 337: 235 (1994)
    [41] M. I. Gorenstein and S.-N. Yang, Phys. Rev. D, 52: 5206 (1995)
    [42] Z. G. Berezhiani, A. D. Dolgov, and R. N. Mohapatra, Phys. Lett. B, 375: 26 (1996) doi:10.1016/0370-2693(96)00219-5 [hep-ph/9511221]
    [43] A. Drago, M. Gibilisco and C. Ratti, Nucl. Phys. A, 742: 165 (2004) doi:10.1016/j.nuclphysa.2004.06.017 [hep-ph/0112282]
    [44] E. W. Kolb and M. S. Turner, Front. Phys., 69: 1 (1990)
    [45] J. Preskill, M. B. Wise and F. Wilczek, Phys. Lett. B, 120:127 (1983); L. F. Abbott and P. Sikivie, Phys. Lett. B, 120:133 (1983); M. Dine and W. Fischler, Phys. Lett. B, 120: 137 (1983); P. Sikivie, Lect. Notes Phys., 741: 19 (2008)
    [46] P. W. Graham, D. E. Kaplan, and S. Rajendran, Phys. Rev. Lett., 115: 22, 221801 (2015) doi:10.1103/PhysRevLett.115.221801 [arXiv:1504.07551 [hepph]]
    [47] D. Ejlli and A. D. Dolgov, Phys. Rev. D, 90: 063514 (2014) doi:10.1103/PhysRevD.90.063514 [arXiv:1312.3558 [hep-ph]]
    [48] M. Le Bellac, Thermal Field Theory, Cambridge University Press (2000), ISBN 0521654777
    [49] A.Salvio, A.Strumia, and W.Xue, JCAP, 1401: 011 (2014) doi:10.1088/1475-7516/2014/01/011 [arXiv:1310.6982 [hep-ph]]
    [50] D. Blas, J. Lesgourgues, and T. Tram, JCAP, 07: 034 (2011) [arXiv:1104.2933]
    [51] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, JCAP, 02: 001 (2013) [arXiv:1210.7183]
    [52] https://github.com/cmbant/getdist
    [53] A.Addazi and M.Bianchi, JHEP, 1412: 089 (2014) doi:10.1007/JHEP12(2014)089 [arXiv:1407.2897 [hep-ph]]
    [54] A.Addazi and M.Bianchi, JHEP, 1507: 144 (2015) doi:10.1007/JHEP07(2015)144 [arXiv:1502.01531 [hep-ph]]
    [55] A.Addazi and M.Bianchi, JHEP, 1506: 012 (2015) doi:10.1007/JHEP06(2015)012 [arXiv:1502.08041 [hep-ph]]
    [56] A. Addazi, M. Bianchi, and G. Ricciardi, JHEP, 1602: 035 (2016) doi:10.1007/JHEP02(2016)035 [arXiv:1510.00243 [hepph]]
    [57] E. Elizalde, J. E. Lidsey, S. Nojiri, and S. D. Odintsov, Phys. Lett. B, 574: 1 (2003) doi:10.1016/j.physletb.2003.08.074 [hepth/0307177]
    [58] A. Addazi, S. Capozziello, and S. Odintsov, Phys. Lett. B, 760: 611 (2016) doi:10.1016/j.physletb.2016.07.047 [arXiv:1607.05706 [gr-qc]]
    [59] M. Carrillo Gonzalez and M. Trodden, arXiv:1705.04737 [astroph.CO]
    [60] T. Abbott et al (DES Collaboration), astro-ph/0510346
    [61] R. Laureijs et al (EUCLID Collaboration), arXiv:1110.3193 [astro-ph.CO]
    [62] S. Dodelson, K. Heitmann, C. Hirata, K. Honscheid, A. Roodman, U. Seljak, A. Slosar, and M. Trodden, arXiv:1604.07626 [astro-ph.CO]
    [63] S. Dodelson, K. Heitmann, C. Hirata, K. Honscheid, A. Roodman, U. Seljak, A. Slosar, and M. Trodden, arXiv:1604.07821 [astro-ph.IM]
    [64] C. P. Ma and E. Bertschinger, Astrophys. J., 455: 7 (1995) doi:10.1086/176550 [astro-ph/9506072]
    [65] W. Yang, N. Banerjee, and S. Pan, Phys. Rev. D, 95(12):123527 (2017) Addendum: [Phys. Rev. D, 96(8): 089903 (2017)] doi:10.1103/PhysRevD.95.123527, 10.1103/PhysRevD.96.089903 [arXiv:1705.09278 [astro-ph.CO]]
    [66] S. Kumar and R. C. Nunes, Eur. Phys. J. C, 77(11): 734 (2017) doi:10.1140/epjc/s10052-017-5334-3 [arXiv:1709.02384 [astroph.CO]]
    [67] J. E. Mandula and M. Ogilvie, Phys. Lett. B, 185: 127 (1987) doi:10.1016/0370-2693(87)91541-3
    [68] S. Gongyo, H. Suganuma, and T. Iritani, PoS ConfinementX, : 050 (2012) [arXiv:1301.2646 [hep-lat]]
    [69] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. (Beijing), 11(2): 111203 (2016) doi:10.1007/s11467-015-0517-6 [arXiv:1511.08361 [hep-ph]]
  • 加载中

Get Citation
Andrea Addazi, Pietro Donà and Antonino Marcianò. Dynamical interactions of dark energy and dark matter: Yang-Mills condensate and QCD axions[J]. Chinese Physics C, 2018, 42(7): 075102. doi: 10.1088/1674-1137/42/7/075102
Andrea Addazi, Pietro Donà and Antonino Marcianò. Dynamical interactions of dark energy and dark matter: Yang-Mills condensate and QCD axions[J]. Chinese Physics C, 2018, 42(7): 075102.  doi: 10.1088/1674-1137/42/7/075102 shu
Milestone
Received: 2018-03-16
Fund

    Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)

Article Metric

Article Views(1683)
PDF Downloads(14)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Dynamical interactions of dark energy and dark matter: Yang-Mills condensate and QCD axions

  • 1.  Department of Physics &
Fund Project:  Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)

Abstract: We analyze a model of cold axion dark matter weakly coupled with a dark gluon condensate, reproducing dark energy. We first review how to recover the dark energy behavior using the functional renormalization group approach, and ground our study in the properties of the effective Lagrangian, to be determined non-perturbatively. Then, within the context of GSM×SU(2)D×U(1)PQ, we consider Yang-Mills condensate (YMC) interactions with QCD axions. We predict a transfer of dark energy density into dark matter density, that can be tested in the next generation of experiments dedicated to dark energy measurements. We obtain new bounds on the interactions between the Yang-Mills condensate and axion dark matter from Planck data:the new physics interaction scale related to the axion/gluon condensate mixing is constrained to be higher than the 106 GeV energy scale.

    HTML

Reference (69)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return