Cosmic ray electron spectrum due to the dispersion ofinjection spectrum

  • The cosmic-ray total electron spectrum (electrons plus positrons) has been measured precisely up to TeV energies, with more interesting features found. Exhaustive analyses of the electron spectrum strongly support a spectral hardening above 100 GeV, rather than a featureless single power-law, which is confirmed by the most recent observations. Meanwhile, the measurements of the DAMPE satellite have verified the presence of a knee-like structure around 1 TeV in the electron spectrum, resembling the cosmic-ray knee. In this paper, we establish a physical model in which the observed electron spectrum is composed of a superposition of CR sources with various spectral indices and high-energy cutoffs. The dispersion of the power index is assumed to be Gaussian, while the cutoff energy Ec follows a power-law distribution. These simple ideas can account naturally for both the hundred-GeV excess and the TeV spectral break.
      PCAS:
  • 加载中
  • [1] M. A. DuVernois, S. W. Barwick, J. J. Beatty et al, ApJ, 559: 296303 (2001)
    [2] J. J. Beatty, A. Bhattacharyya, C. Bower et al, Physical Review Letters, 93(24): 241102 (2004)
    [3] M. Aguilar, J. Alcaraz et al (AMS-01 Collaboration), Physics Letters B, 646: 145154 (2007)
    [4] J. Chang, J. H. Adams, H. S. Ahn et al, Nature, 456: 362365 (2008)
    [5] S. Torii, T. Yamagami, T. Tamura et al, High-energy electron observations by PPB-BETS flight in Antarctica. ArXiv e-prints, September 2008
    [6] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Nature, 458: 607609 (2009)
    [7] A. A. Abdo, M. Ackermann, M. Ajello et al, Physical Review Letters, 102(18): 181101 (2009)
    [8] L. Accardo, M. Aguilar, D. Aisa et al, Physical Review Letters, 113(12): 121101 (2014)
    [9] M. Aguilar, D. Aisa, A. Alvino et al, Physical Review Letters, 113(12): 121102 (2014)
    [10] X.-J. Bi, P.-F. Yin, and Q. Yuan, Frontiers of Physics, 8: 794-827 (2013)
    [11] I. Cholis and D. Hooper, Phys. Rev. D, 88(2): 023013 (2013)
    [12] Q. Yuan and X.-J. Bi, Physics Letters B, 727: 17 (2013)
    [13] L. Feng, R.-Z. Yang, H.-N. He et al, Physics Letters B, 728: 250255 (2014)
    [14] X. Li, Z.-Q. Shen, B.-Q. Lu et al, Physics Letters B, 749: 267-271 (2015)
    [15] A. D. Panov, J. H. Adams, H. S. Ahn et al, Bulletin of the Russian Academy of Sciences, Physics, 73: 564567 (2009)
    [16] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Science, 332: 69 (2011)
    [17] H. S. Ahn, P. Allison, M. G. Bagliesi et al, ApJl, 714: L89L93 (2010)
    [18] Y. S. Yoon, H. S. Ahn, P. S. Allison et al, ApJ, 728: 122 (2011)
    [19] M. Aguilar, D. Aisa, B. Alpat et al, Physical Review Letters, 114(17): 171103 (2015)
    [20] M. Aguilar, D. Aisa, B. Alpat et al, Physical Review Letters, 115(21): 211101 (2015)
    [21] M. Aguilar, L. Ali Cavasonza, G. Ambrosi et al, Phys. Rev. Lett., 120: 021101 (2018)
    [22] S. Abdollahi, M. Ackermann, M. Ajello et al, Phys. Rev. D, 95(8): 082007 (2017)
    [23] DAMPE Collaboration, G. Ambrosi, Q. An et al, Nature, 552: 6366 (2017)
    [24] W. Liu, X.-J. Bi, S.-J. Lin, B.-B. Wang, and P.-F. Yin, Phys. Rev. D, 96(2): 023006 (2017)
    [25] V. Ptuskin, V. Zirakashvili, and E.-S. Seo, ApJ, 763: 47 (2013)
    [26] F. Aharonian, A. G. Akhperjanian, U. Barres de Almeida et al, Physical Review Letters, 101(26): 261104 (2008)
    [27] F. Aharonian, A. G. Akhperjanian, G. Anton et al, AA, 508: 561564 (2009)
    [28] D. Borla Tridon, International Cosmic Ray Conference, 6: 47 (2011)
    [29] D. Staszak (VERITAS Collaboration), In 34th International Cosmic Ray Conference (ICRC2015), volume 34 of International Cosmic Ray Conference, page 411, July 2015
    [30] M. Amenomori, X. J. Bi, D. Chen et al, ApJ, 678: 11651179 (2008)
    [31] M. G. Aartsen, R. Abbasi, Y. Abdou et al, Phys. Rev. D, 88(4):042004 (2013)
    [32] G. Vannoni, S. Gabici, and F. A. Aharonian, AA, 497: 1726 (2009)
    [33] S. Thoudam and J. R. Hrandel, MNRAS, 414: 14321438 (2011)
    [34] Y. Ohira, R. Yamazaki, N. Kawanaka, and K. Ioka, MNRAS, 427: 91102 (2012)
    [35] K. Fang, X.-J. Bi, and P.-F. Yin, ApJ, 854: 57 (2018)
    [36] R. Schlickeiser and J. Ruppel, New Journal of Physics, 12(3):033044 (2010)
    [37] L . Stawarz, V. Petrosian, and R. D. Blandford, ApJ, 710: 236-247 (2010)
    [38] N. Kawanaka, K. Ioka, and M. M. Nojiri. Is Cosmic Ray Electron Excess from Pulsars Spiky or Smooth?: Continuous and Multiple Electron/Positron Injections. ApJ, 710:958963, February 2010.
    [39] K. Fang, B.-B. Wang, X.-J. Bi, S.-J. Lin, and P.-F. Yin, ApJ, 836: 172 (2017)
    [40] B.-B. Wang, X.-J. Bi, S.-J. Lin, and P.-f. Yin, Explanations of the DAMPE high energy electron/positron spectrum in the dark matter annihilation and pulsar scenarios, ArXiv e-prints, July 2017
    [41] Q. Yuan, L. Feng, P.-F. Yin et al, Interpretations of the DAMPE electron data, ArXiv e-prints, November 2017
    [42] K. Fang, X.-J. Bi, P.-F. Yin, and Q. Yuan, Two-zone diffusion of electrons and positrons from Geminga explains the positron anomaly, ArXiv e-prints, March 2018
    [43] C. Jin, W. Liu, H.-B. Hu, and Y.-Q. Guo, On the PeV knee of cosmic rays spectrum and TeV cutoff of electron spectrum, ArXiv e-prints, November 2016
    [44] S. P. Reynolds, ARAA, 46: 89126 (2008)
    [45] G. Dubner and E. Giacani, AA Rev., 23: 3 (2015)
    [46] P. Slane, A. Bykov, D. C. Ellison, G. Dubner, and D. Castro, Space Sci. Rev., 188: 187210 (2015)
    [47] A. M. Bykov, D. C. Ellison, A. Marcowith, and S. M. Osipov, Space Sci. Rev., 214: 41 (2018)
    [48] D. A. Green, Bulletin of the Astronomical Society of India, 42: 4758 (2014)
    [49] M. Pohl and J. A. Esposito, ApJ, 507: 327338 (1998)
    [50] I. Bsching, M. Pohl, and R. Schlickeiser, AA, 377: 1056-1062 (2001)
    [51] Q. Yuan, B. Zhang, and X.-J. Bi, Phys. Rev. D, 84(4): 043002 (2011)
    [52] M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, Nature Communications, 2: 194 (2011)
    [53] D. Maurin, R. Taillet, F. Donato et al, Galactic Cosmic Ray Nuclei as a Tool for Astroparticle Physics, ArXiv Astrophysics e-prints, December 2002
    [54] A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annual Review of Nuclear and Particle Science, 57: 285327 (2007)
    [55] L. J. Gleeson and W. I. Axford, ApJ, 154: 1011 (1968)
    [56] M. Aguilar, D. Aisa, B. Alpat et al, Physical Review Letters, 113(22): 221102 (2014)
    [57] E. G. Berezhko and G. F. Krymskii, Soviet Physics Uspekhi, 31: 2751 (1988)
    [58] P. A. Becker, T. Le, and C. D. Dermer, ApJ, 647: 539551 (2006)
    [59] V. N. Zirakashvili and F. Aharonian, AA, 465: 695702 (2007)
    [60] P. Blasi, MNRAS, 402: 28072816 (2010)
    [61] T. Kobayashi, Y. Komori, K. Yoshida, and J. Nishimura, ApJ, 601: 340351 (2004)
    [62] A. U. Abeysekara, A. Albert, R. Alfaro et al, Science, 358: 911914 (2017)
  • 加载中

Get Citation
Tian-Lu Chen, Wei Liu, Qi Gao, Mao-Yuan Liu, Hai-Jin Li, Danzengluobu and Ying Shi. Cosmic ray electron spectrum due to the dispersion ofinjection spectrum[J]. Chinese Physics C, 2018, 42(7): 075001. doi: 10.1088/1674-1137/42/7/075001
Tian-Lu Chen, Wei Liu, Qi Gao, Mao-Yuan Liu, Hai-Jin Li, Danzengluobu and Ying Shi. Cosmic ray electron spectrum due to the dispersion ofinjection spectrum[J]. Chinese Physics C, 2018, 42(7): 075001.  doi: 10.1088/1674-1137/42/7/075001 shu
Milestone
Received: 2018-03-22
Fund

    Supported by National Natural Sciences Foundation of China (11663006, 11747316, 11135010, 11405182) and the Research Project of Chinese Ministry of Education (213036A)

Article Metric

Article Views(1388)
PDF Downloads(61)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Cosmic ray electron spectrum due to the dispersion ofinjection spectrum

  • 1. School of Physics and Technology, Wuhan University, Wuhan 430072, China
  • 2. Physics Department of the Science School, Tibet University, Lhasa 850000, China
  • 3. Key Laboratory of Cosmic Rays(Tibet University), Ministry of Education, Lhasa 850000, China
  • 4.  Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 5. Physics Department of the Science School, Tibet University, Lhasa 850000, China
  • 6. Key Laboratory of Cosmic Rays(Tibet University), Ministry of Education, Lhasa 850000, China
  • 7.  School of Physics and Technology, Wuhan University, Wuhan 430072, China
Fund Project:  Supported by National Natural Sciences Foundation of China (11663006, 11747316, 11135010, 11405182) and the Research Project of Chinese Ministry of Education (213036A)

Abstract: The cosmic-ray total electron spectrum (electrons plus positrons) has been measured precisely up to TeV energies, with more interesting features found. Exhaustive analyses of the electron spectrum strongly support a spectral hardening above 100 GeV, rather than a featureless single power-law, which is confirmed by the most recent observations. Meanwhile, the measurements of the DAMPE satellite have verified the presence of a knee-like structure around 1 TeV in the electron spectrum, resembling the cosmic-ray knee. In this paper, we establish a physical model in which the observed electron spectrum is composed of a superposition of CR sources with various spectral indices and high-energy cutoffs. The dispersion of the power index is assumed to be Gaussian, while the cutoff energy Ec follows a power-law distribution. These simple ideas can account naturally for both the hundred-GeV excess and the TeV spectral break.

    HTML

Reference (62)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return