Possible candidate nuclei for chirality-parity quartet bands

  • The potential energy surfaces of the even-even 68-92Se, 112-150Ba, and 208-230Ra isotopes are calculated using the macroscopic-microscopic method in a multidimensional space {αλ,μ} including quadrupole (λ=2, μ=0, 2) and octupole (λ=3, μ=0, 1, 2, 3) degrees of freedom. The calculated results show that the even-even isotopes 92Se, 112,114,144-150Ba and 220-228Ra can exhibit the coexistence of triaxial and octupole deformations, thereby leading to simultaneous chiral and reflected symmetry breaking. Therefore, chirality-parity quartet bands are expected in these and their neighboring odd-A/odd-odd nuclei.
      PCAS:
  • 加载中
  • [1] S. Frauendorf, and J. Meng, Nucl. Phys. A,, 617: 131 (1997)
    [2] J. Meng, B. Qi, S. Q. Zhang, and S. Y. Wang, Mod. Phys. Lett. A, 23: 2560 (2008)
    [3] J. Meng and S. Q. Zhang, J. Phys. G, 37: 064025 (2010)
    [4] R. R. Chasman, Phys. Rev. Lett., 42: 630 (1979)
    [5] R. R. Chasman, Phys. Lett. B, 96: 7 (1980)
    [6] I. Ahmad, and P. A. Butler, Annu. Rev. Nucl. Part. Sci., 43:71 (1993)
    [7] P. A. Butler, and W. Nazarewicz, Rev. Mod. Phys., 68: 349 (1996)
    [8] K. Starosta et al, Phys. Rev. Lett., 86: 971 (2001)
    [9] T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, and D. R. LaFosse, Phys. Rev. C, 63: 061304(R) (2001)
    [10] R. A. Bark, A. M. Baxter, A. P. Byrne, G. D. Dracoulis, T. Kibdi, T. R. McGoram, S. M. Mullins, Nucl. Phys. A, 691:577 (2001)
    [11] A. A. Hecht et al, Phys. Rev. C, 63: 051302(R) (2001)
    [12] D. J. Hartley et al, Phys. Rev. C, 64: 031304(R) (2001)
    [13] E. Mergel et al, Eur. Phys. J. A, 15: 417 (2002)
    [14] T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, and D. R. LaFosse, Phys. Rev. C, 67: 044319 (2003)
    [15] S. Zhu et al, Phys. Rev. Lett., 91: 132501 (2003)
    [16] C. Vaman, D. B. Fossan, T. Koike, K. Starosta, I. Y. Lee, and A. O. Macchiavelli, Phys. Rev. Lett., 92: 032501 (2004)
    [17] P. Joshi et al, Phys. Lett. B, 595: 135 (2004)
    [18] J. Timr et al, Phys. Lett. B, 598: 178 (2004)
    [19] J. A. Alcntara-Nez et al, Phys. Rev. C, 69: 024317 (2004)
    [20] S. Y. Wang, Y. Z. Liu, T. Komatsubara, Y. J. Ma, and Y. H. Zhang, Phys. Rev. C, 74: 017302 (2006)
    [21] E. Grodner et al, Phys. Rev. Lett., 97: 172501 (2006)
    [22] D. Tonev et al, Phys. Rev. Lett., 96: 052501 (2006)
    [23] J. Timr, C. Vaman, K. Starosta, D. B. Fossan, T. Koike, D. Sohler, I. Y. Lee, and A. O. Macchiavelli, Phys. Rev. C, 73: 011301(R) (2006)
    [24] P. Joshi, M. P. Carpenter, D. B. Fossan, T. Koike, E. S. Paul, G. Rainovski, K. Starosta, C. Vaman, and R. Wadsworth, Phys. Rev. Lett., 98: 102501 (2007)
    [25] E. A. Lawrie et al, Phys. Rev. C, 78: 021305(R) (2008)
    [26] T. Suzuki et al, Phys. Rev. C, 78: 031302(R) (2008)
    [27] S. Y. Wang et al, Phys. Lett. B, 703: 40 (2011)
    [28] P. L. Masiteng et al, Phys. Lett. B, 719: 83 (2013)
    [29] K. Y. Ma et al, Phys. Rev. C, 97: 014305 (2018)
    [30] A. D. Ayangeakaa et al, Phys. Rev. Lett., 110: 172504 (2013)
    [31] I. Kuti et al, Phys. Rev. Lett., 113: 032501 (2014)
    [32] C. Liu et al, Phys. Rev. Lett., 116: 112501 (2016)
    [33] B. Qi, H. Jia, N. B. Zhang, C. Liu, and S. Y. Wang, Phys. Rev. C, 88: 027302 (2013)
    [34] J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Phys. Rev. C, 73: 037303 (2006)
    [35] J. Peng, H. Sagawa, S. Q. Zhang, J. M. Yao, Y. Zhang, and J. Meng, Phys. Rev. C, 77: 024309 (2008)
    [36] J. M. Yao, B. Qi, S. Q. Zhang, J. Peng, S. Y. Wang, and J. Meng, Phys. Rev. C, 79: 067302 (2009)
    [37] J. Li, S. Q. Zhang, and J. Meng, Phys. Rev. C, 83: 037301 (2011)
    [38] H. Jia, B. Qi, S. Y. Wang, S. Wang and C. Liu, Chin. Phys. C, 40: 124103 (2016)
    [39] J. Wiśniewski, W. Urban, T. Rząca-Urban, A. G. Smith, J. F. Smith, G. S. Simpson, I. Ahmad, and J. P. Greene, Phys. Rev. C, 96: 064301 (2017)
    [40] S. Frauendorf, Rev. Mod. Phys., 73: 463 (2001)
    [41] P. Bonche, P.-H. Heenen, H. Flocard, and D. Vautherin, Phys. Lett. B, 175: 387 (1986)
    [42] P. Bonche, in The Variation of Nuclear Shapes, edited by J. D. Garrett, p. 302, (Singapore: World Scientific, 1988)
    [43] J. L. Egido and L. M. Robledo, Nucl. Phys. A, 524: 65 (1991)
    [44] K. Rutz, J. A. Maruhn, P. G. Reinhard, and W. Greiner, Nucl. Phys., A590: 680 (1995)
    [45] L. S. Geng, J, Meng, and H. Toki, Chin. Phys. Lett., 24: 1865 (2007)
    [46] N. Wang, J. Meng, and E. -G. Zhao, Commun. Theor. Phys., 53: 1145 (2010)
    [47] J.-Y. Guo, P. Jiao, and X.-Z. Fang, Phys. Rev. C, 82: 047301 (2010)
    [48] L. M. Robledo, M. Baldo, P. Schuck, and X. Vias, Phys. Rev. C, 81: 034315 (2010)
    [49] L. M. Robledo and G. F. Bertsch, Phys. Rev. C, 84: 054302 (2011)
    [50] R. Rodrguez-Guzmn, L.M. Robledo, and P. Sarriguren, Phys. Rev. C, 86: 034336 (2012)
    [51] L. M. Robledo and P. A. Butler, Phys. Rev. C, 88: 051302 (2013)
    [52] L. M. Robledo, J. Phys. G, 42: 055109 (2015)
    [53] Rmi N. Bernard, Luis M. Robledo, and Toms R. Rodrguez, Phys. Rev. C, 93: 061302(R) (2016)
    [54] B. N. Lu, E. -G. Zhao, and S. -G. Zhou, Phys. Rev. C, 85: 011301(R) (2012)
    [55] J. Zhao, B. N. Lu, E. -G. Zhao, and S. -G. Zhou, Phys. Rev. C, 86: 057304 (2012)
    [56] B. N. Lu, J. Zhao, E. -G. Zhao, and S. -G. Zhou, Phys. Rev. C, 89: 014323 (2014)
    [57] S.-G. Zhou, Phys. Scr., 91: 063008 (2016)
    [58] J. Zhao, B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 95: 014320 (2017)
    [59] K. Nomura, D. Vretenar, and B. N. Lu, Phys. Rev. C, 88:021303 (2013)
    [60] K. Nomura, D. Vretenar, T. Nikić, and B.-N. Lu, Phys. Rev. C, 89: 024312 (2014)
    [61] K. Nomura, R. Rodrguez-Guzmn, and L. M. Robledo, Phys. Rev. C, 92: 014312 (2015)
    [62] S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C, 93: 044304 (2016)
    [63] S. E. Agbemava, and A. V. Afanasjev, Phys. Rev. C, 96:024301 (2017)
    [64] S. Ebata and T. Nakatsukasa, Phys. Scr., 92: 064005 (2017)
    [65] W. Zhang, Z. P. Li, and S.-Q.Zhang, Chin. Phys. C, 34: 1094 (2010)
    [66] W. Zhang, Z. P. Li, S. Q. Zhang, and J.Meng, Phys. Rev. C, 81: 034302 (2010)
    [67] Z. P. Li, B. Y. Song, J. M. Yao, D. Vretenar, and J. Meng, Phys. Lett. B, 726: 866 (2013)
    [68] J. M. Yao, E. F. Zhou, and Z. P. Li, Phys. Rev. C, 92: 041304 (2015)
    [69] Z. P. Li, T. Nikić, and D. Vretenar, J. Phys. G, 43: 024005 (2016)
    [70] E. F. Zhou, J. M. Yao, Z. P. Li, J. Meng, and P. Ring, Phys. Lett. B, 753: 227 (2016)
    [71] W. Nazarewicz, P. Olanders, I. Ragnarsson, J. Dudek, G. A. Leander, P. Mller, and E. Ruchowsa, Nucl. Phys. A, 429: 269 (1984)
    [72] J. Dudek, K. Mazurek, and B. Nerlo-pomorska, Int. J. Mod. Phys. E, 13: 117 (2004)
    [73] K. Mazurek, and J. Dudek, AIP Conf. Proc., 802: 153 (2005)
    [74] P. Mller, R. Bengtsson, B. Carlsson, P. Olivius, T. Ichikawa, H. Sagawa, and A. Iwamoto, At. Data Nucl. Data Tables, 94:758 (2008)
    [75] H. L. Wang, J. Yang, M.-L. Liu, and F.-R. Xu, Phys. Rev. C, 92: 024303 (2015)
    [76] Y. -S. Chen and Z. C. Gao, Phys. Rev. C, 63: 014314 (2000)
    [77] Z. C. Gao, Y. -S. Chen, and J. Meng, Chin. Phys. Lett., 21:806 (2004)
    [78] Y.-S. Chen, Yang Sun, and Zao-Chun Gao, Phys. Rev. C, 77: 061305(R) (2008)
    [79] Y.-J. Chen, Z. C. Gao, Y. -S. Chen, and Y. Tu, Phys. Rev. C, 91: 014317 (2015)
    [80] H. L. Wang, H. L. Liu, and F. R. Xu, Phys. Scr., 86: 035201 (2012)
    [81] O. Scholten, F. Iachello, and A. Arima, Ann. Phys. (NY), 115:325 (1978)
    [82] T. Otsuka and M. Sugita, Phys. Lett. B, 209: 140 (1988)
    [83] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C, 70: 064319 (2004)
    [84] D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, and P. Yotov, Phys. Rev. C, 71: 064309 (2005)
    [85] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C, 88: 011305(R) (2013)
    [86] N. Minkov, S. Drenska, M. Strecker, W. Scheid, and H. Lenske, Phys. Rev. C, 85: 034306 (2012)
    [87] R. V. Jolos, P. von Brentano, and J. Jolie, Phys. Rev. C, 86:024319 (2012)
    [88] K. Pomorski, and J. Dudek, Phys. Rev. C, 67: 044316 (2003)
    [89] S. J. Zhu et al, Phys. Lett. B, 357: 273 (1995)
    [90] D. C. Biswas et al, Phys. Rev. C, 71: 011301 (2005)
    [91] W. Urban et al, Nucl. Phys. A, 613: 107 (1997)
    [92] B. Bucher et al, Phys. Rev. Lett., 116: 112503 (2016)
    [93] B. Bucher et al, Phys. Rev. Lett., 118: 152504 (2017)
    [94] R. Liča et al, Phys. Rev. C, 97: 024305 (2018)
    [95] J. F. Smith et al, Phys. Rev. C, 57: R1037(R) (1998)
    [96] S. J. Zhu et al, Chin. Phys. Lett., 18: 1027 (2001)
    [97] P. Mason et al, Phys. Rev. C, 72: 064315 (2005)
    [98] H. Nadja et al, Phys. Rev. C, 95: 064303 (2017)
    [99] J. Fernandez-Niello, H. Puchta, F. Riess, and W. Trautmann, Nucl. Phys. A, 391: 221 (1982)
    [100] J. F. Shriner et al, Phys. Rev. C, 32: 1888 (1985)
    [101] J. F. Smith et al, Phys. Rev. Lett., 75: 1050 (1995)
    [102] L. P. Gaffney et al, Nature, 497: 199 (2013)
    [103] J. F. C. Cocks et al, Nucl. Phys. A, 645: 61 (1999)
    [104] H. J. Wollersheim et al, Nucl. Phys. A, 556: 261 (1993)
  • 加载中

Get Citation
Chen Liu, Shou-Yu Wang, Bin Qi and Hui Jia. Possible candidate nuclei for chirality-parity quartet bands[J]. Chinese Physics C, 2018, 42(7): 074105. doi: 10.1088/1674-1137/42/7/074105
Chen Liu, Shou-Yu Wang, Bin Qi and Hui Jia. Possible candidate nuclei for chirality-parity quartet bands[J]. Chinese Physics C, 2018, 42(7): 074105.  doi: 10.1088/1674-1137/42/7/074105 shu
Milestone
Received: 2018-04-04
Fund

    Supported by Natural Science Foundation of China (11705102, 11622540, 11675094), the Shandong Natural Science Foundation (ZR2017PA005, JQ201701), the China Postdoctoral Science Foundation (2017M612254), and the Young Scholars Program of Shandong University, Weihai (2015WHWLJH01)

Article Metric

Article Views(1705)
PDF Downloads(17)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Possible candidate nuclei for chirality-parity quartet bands

  • 1. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China
Fund Project:  Supported by Natural Science Foundation of China (11705102, 11622540, 11675094), the Shandong Natural Science Foundation (ZR2017PA005, JQ201701), the China Postdoctoral Science Foundation (2017M612254), and the Young Scholars Program of Shandong University, Weihai (2015WHWLJH01)

Abstract: The potential energy surfaces of the even-even 68-92Se, 112-150Ba, and 208-230Ra isotopes are calculated using the macroscopic-microscopic method in a multidimensional space {αλ,μ} including quadrupole (λ=2, μ=0, 2) and octupole (λ=3, μ=0, 1, 2, 3) degrees of freedom. The calculated results show that the even-even isotopes 92Se, 112,114,144-150Ba and 220-228Ra can exhibit the coexistence of triaxial and octupole deformations, thereby leading to simultaneous chiral and reflected symmetry breaking. Therefore, chirality-parity quartet bands are expected in these and their neighboring odd-A/odd-odd nuclei.

    HTML

Reference (104)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return