α particle preformation and shell effect for heavy andsuperheavy nuclei

  • The α particle preformation factor is extracted within a generalized liquid drop model for Z=84-92 isotopes and N=126, 128, 152, 162, 176, 184 isotones. The calculated results show clearly that the shell effects play a key role in α particle preformation. The closer the proton and neutron numbers are to the magic numbers, the more difficult the formation of the α cluster inside the mother nucleus is. The preformation factors of the isotopes reflect that N=126 is a magic number for Po, Rn, Ra, and Th isotopes, but for U isotopes the weakening of the influence of the N=126 shell closure is evident. The trend of the factors for N=126 and N=128 isotones also support this conclusion. We extend the calculations for N=152, 162, 176, 184 isotones to explore the magic numbers for heavy and superheavy nuclei, which are probably present near Z=108 to N=152, 162 isotones and Z=116 to N=176, 184 isotones. The results also show that another subshell closure may exist after Z=124 in the superheavy nuclei. This is useful for future experiments.
      PCAS:
  • 加载中
  • [1] Z. Ren and G. Xu, Phys. Rev. C, 36: 456 (1987)
    [2] R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S.Delion, Phys. Rep., 294: 265 (1998)
    [3] F. Garcia, O. Rodriguez, M. Gonalves, S. B. Duarte, O. A. P. Tavares, and F. Guzman, J. Phys. G, 26: 755 (2000)
    [4] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A, 729: 3 (2003)
    [5] T. N. Ginter et al, Phys. Rev. C, 67: 064609 (2003)
    [6] P. E. Hodgson and E. Betak, Phys. Rep., 374: 1 (2003)
    [7] Z. G. Gan, J. S. Guo, X. L. Wu, Z. Qin, H. M. Fan, X. G. Lei, H. Y. Liu, B. Guo, H. G. Xu, R. F. Chen, C. F. Dong, F. M. Zhang, H. L. Wang, C. Y. Xie, Z. Q. Feng, Y. Zhen, L. T. Song, P. Luo, H. S. Xu, X. H. Zhou, G. M. Jin, and Z. Ren, Eur. Phys. J. A, 20: 385 (2004)
    [8] D. Seweryniak et al, Phys. Rev. C, 73: 061301(R) (2006)
    [9] A. P. Leppanen et al, Phys. Rev. C, 75: 054307 (2007)
    [10] Yu. Ts. Oganessian et al, Phys. Rev. C, 72: 034611 (2005); 74:044602 (2006)
    [11] P. Schuck, Y. Funaki, H. Horiuchi, G. Rpke, A. Tohsaki, and T. Yamada, Nuclear Physics A, 738(Supplement C): 245 94-100 (2004)
    [12] K. Morita et al, J. Phys. Soc. Jpn., 76: 045001 (2007)
    [13] Yu. Ts. Oganessian et al, Phys. Rev. C, 76: 011601(R) (2007)
    [14] G. Gamow, Z. Phys., 51: 204 (1928)
    [15] E. U. Condon and R. W. Gurney, Nature (London), 122: 439 (1928)
    [16] B. Buck, A. C. Merchant, and S. M. Perez, At. Data Nucl. Data Tables, 54: 53 (1993)
    [17] P. Mohr, Phys. Rev. C, 73: 031301(R) (2006)
    [18] D. N. Poenaru and M. Ivascu, Rev. Roum. Phys., 28: 309 (1983)
    [19] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett., 69:37 (1992)
    [20] G. Royer and B. Remaud, Nucl. Phys. A, 444: 447 (1985)
    [21] S. B. Duarte et al, At. Data Nucl. Data Tables, 80: 235 (2002)
    [22] D. N. Basu, Phys. Lett. B, 566: 90 (2003); P. Roy Chowdhury, D. N. Basu, and C. Samanta, Phys. Rev. C, 75: 047306 (2007)
    [23] B. A. Brown, Phys. Rev. C, 46: 811 (1992)
    [24] G. Royer, J. Phys. G, 26: 1149 (2000); G. Royer and R. Moustabchir, Nucl. Phys. A, 683: 182 (2001)
    [25] R. K. Gupta, M. Balasubramaniam, C. Mazzocchi, M. LaCommara, W. Scheid, Phys. Rev. C, 65: 024201 (2002)
    [26] D. N. Poenaru, I. H. Plonski, and W. Greiner, Phys. Rev. C, 74: 014312 (2006)
    [27] H. F. Zhang, W. Zuo, J. Q. Li, and G. Royer, Phys. Rev. C, 74: 017304 (2006)
    [28] H. F. Zhang and G. Royer, Phys. Rev. C, 76: 047304 (2007)
    [29] C. Xu and Z. Z. Ren, Phys. Rev. C, 74: 014304 (2006); Nucl. Phys. A, 760: 303 (2005)
    [30] J. C. Pei, F. R. Xu, Z. J. Lin, and E. G. Zhao, Phys. Rev. C, 76: 044326 (2007)
    [31] H. F. Zhang and G. Royer, Phys. Rev. C, 77: 054318 (2008)
    [32] L. Ma, Z. Y. Zhang, Z. G. Gan, H. B. Yang, L. Yu, J. Jiang, J. G. Wang, Y. L. Tian, Y. S. Wang, and S. Guo, Phys. Rev. C, 91: (2015)
    [33] M. Sun, Z. Liu, T. H. Huang et al, Physics Letters B, 771: 303 (2017)
    [34] G. Royer, J. Phys. G: Nucl. Part. Phys., 26 (2000)
    [35] P. Moller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Atomic Data and Nuclear Data Tables, 109: 110 (2016)
    [36] G. Royer, Journal of Physics G Nuclear Particle Physics, 26:1149 (2000)
    [37] J. Khuyagbaatar, A. Yakushev, Ch. E. Dllmann et al, Physical Review Letters, 115: 242502 (2015)
    [38] R. Ferrer, A. Barzakh, B. Bastin et al, Nature Communications, 8: 14520 (2017)
  • 加载中

Get Citation
Yan-Wei Zhao, Shu-Qing Guo and Hong-Fei Zhang. α particle preformation and shell effect for heavy andsuperheavy nuclei[J]. Chinese Physics C, 2018, 42(7): 074103. doi: 10.1088/1674-1137/42/7/074103
Yan-Wei Zhao, Shu-Qing Guo and Hong-Fei Zhang. α particle preformation and shell effect for heavy andsuperheavy nuclei[J]. Chinese Physics C, 2018, 42(7): 074103.  doi: 10.1088/1674-1137/42/7/074103 shu
Milestone
Received: 2018-02-01
Revised: 2018-04-09
Fund

    Supported by National Natural Science Foundation of China (11675066, 11475050), Fundamental Research Funds for the Central Universities (lzujbky-2017-ot04) and Feitian Scholar Project of Gansu Province

Article Metric

Article Views(1309)
PDF Downloads(52)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

α particle preformation and shell effect for heavy andsuperheavy nuclei

  • 1.  School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
  • 2. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
  • 3. Joint Department for Nuclear Physics, Lanzhou University and Institute of Modern Physics, CAS, Lanzhou 730000, China
Fund Project:  Supported by National Natural Science Foundation of China (11675066, 11475050), Fundamental Research Funds for the Central Universities (lzujbky-2017-ot04) and Feitian Scholar Project of Gansu Province

Abstract: The α particle preformation factor is extracted within a generalized liquid drop model for Z=84-92 isotopes and N=126, 128, 152, 162, 176, 184 isotones. The calculated results show clearly that the shell effects play a key role in α particle preformation. The closer the proton and neutron numbers are to the magic numbers, the more difficult the formation of the α cluster inside the mother nucleus is. The preformation factors of the isotopes reflect that N=126 is a magic number for Po, Rn, Ra, and Th isotopes, but for U isotopes the weakening of the influence of the N=126 shell closure is evident. The trend of the factors for N=126 and N=128 isotones also support this conclusion. We extend the calculations for N=152, 162, 176, 184 isotones to explore the magic numbers for heavy and superheavy nuclei, which are probably present near Z=108 to N=152, 162 isotones and Z=116 to N=176, 184 isotones. The results also show that another subshell closure may exist after Z=124 in the superheavy nuclei. This is useful for future experiments.

    HTML

Reference (38)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return