Pair production of Higgs boson in NMSSM at the LHC with the next-to-lightest CP-even Higgs boson being SM-like

  • The next-to-minimal supersymmetric standard model (NMSSM) more naturally accommodates a Higgs boson with a mass of approximately 125 GeV than the minimal supersymmetric standard model (MSSM). In this work, we assume that the next-to-lightest CP-even Higgs boson h2 is the SM-like Higgs boson h, whereas the lightest CP-even Higgs boson h1 is dominantly singlet-like. We discuss the h1h1, h2h2, and h1h2 pair production processes via gluon-gluon fusion at the LHC for an collision energy of 14 TeV, and we consider the cases in which one Higgs boson decays to bb and the other decays to γγ or τ+τ-. We find that, for mh1≲ 62 GeV, the cross section of the ggh1h1 process is relatively large and maximally reaches 5400 fb, and the production rate of the h1h1bbτ+τ-final state can reach 1500 fb, which make the detection of this final state possible for future searches of an integrated luminosity of 300 and 3000 fb-1. This is mainly due to the contributions from the resonant production process pph2h1h1 and the relatively large branching ratio of h1bb and h1τ+τ-. The cross sections of the pph2h2 and pph1h2 production processes maximally reach 28 fb and 133 fb, respectively.
      PCAS:
  • 加载中
  • [1] G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 716: 1 (2012); S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30 (2012)
    [2] G. Aad et al (ATLAS Collaboration), Eur. Phys. J. C, 76(1):, 6 (2016) [arXiv:1507.04548 [hep-ex]]; V. Khachatryan et al (CMS Collaboration), Eur. Phys. J. C, 75(5): 212 (2015) [arXiv:1412.8662 [hep-ex]]; S. Chatrchyan et al (CMS Collaboration), Phys. Rev. Lett., 110(8): 081803 (2013) [arXiv:1212.6639 [hep-ex]]; G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 726: 120 (2013) [arXiv:1307.1432 [hepex]]
    [3] M. J. Dolan, C. Englert, and M. Spannowsky, Phys. Rev. D, 87(5): 055002 (2013) [arXiv:1210.8166 [hep-ph]]; S. Dawson, A. Ismail, and I. Low, Phys. Rev. D, 91(11): 115008 (2015) [arXiv:1504.05596 [hep-ph]]; H. J. He, J. Ren, and W. Yao, Phys. Rev. D, 93(1): 015003 (2016) [arXiv:1506.03302 [hepph]]; G. D. Kribs and A. Martin, Phys. Rev. D, 86: 095023 (2012) [arXiv:1207.4496 [hep-ph]]
    [4] M. Carena, Z. Liu, and M. Riembau, arXiv:1801.00794 [hepph]; J. H. Kim, Y. Sakaki, and M. Son, arXiv:1801.06093 [hepph]; L. Bian, N. Chen, and Y. Jiang, Int. J. Mod. Phys. A, 32(34): 1746002 (2017) [arXiv:1712.01632 [hep-ph]]; J. Ren, R. Q. Xiao, M. Zhou, Y. Fang, H. J. He, and W. Yao, arXiv:1706.05980 [hep-ph]; I. M. Lewis and M. Sullivan, Phys. Rev. D, 96(3): 035037 (2017) [arXiv:1701.08774 [hepph]]; S. Dawson and M. Sullivan, arXiv:1711.06683 [hep-ph]; K. Nakamura, K. Nishiwaki, K. y. Oda, S. C. Park, and Y. Yamamoto, Eur. Phys. J. C, 77(5): 273 (2017) [arXiv:1701.06137 [hep-ph]]
    [5] C. Han, X. Ji, L. Wu, P. Wu, and J. M. Yang, JHEP, 1404:003 (2014) [arXiv:1307.3790 [hep-ph]]; X. F. Han, L. Wang, and J. M. Yang, Nucl. Phys. B, 825: 222 (2010) [arXiv:0908.1827 [hep-ph]]; X. F. Han, L. Wang, and J. M. Yang, Mod. Phys. Lett. A, 31(31): 1650178 (2016) [arXiv:1509.02453 [hep-ph]]; J. Cao, D. Li, L. Shang, P. Wu, and Y. Zhang, JHEP, 1412: 026 (2014) [arXiv:1409.8431 [hep-ph]]; Z. Heng, L. Shang, Y. Zhang, and J. Zhu, JHEP, 1402: 083 (2014) [arXiv:1312.4260 [hep-ph]]
    [6] U. Ellwanger, JHEP, 1308: 077 (2013) [arXiv:1306.5541 [hepph]]
    [7] J. Cao, Z. Heng, L. Shang, P. Wan, and J. M. Yang, JHEP, 1304: 134 (2013) [arXiv:1301.6437 [hep-ph]]
    [8] P. Huang, A. Joglekar, M. Li, and C. E. M. Wagner, arXiv:1711.05743 [hep-ph]
    [9] A. Djouadi, W. Kilian, M. Muhlleitner, and P. M. Zerwas, Eur. Phys. J. C, 10: 45 (1999) [hep-ph/9904287]
    [10] T. Plehn, M. Spira, and P. M. Zerwas, Nucl. Phys. B, 479:46 (1996) Erratum: [Nucl. Phys. B, 531: 655 (1998)] [hepph/9603205]; E. W. N. Glover and J. J. van der Bij, Nucl. Phys. B, 309: 282 (1988)
    [11] J. Baglio et al, JHEP, 1304: 151 (2013) [arXiv:1212.5581 [hepph]]; D. Y. Shao, C. S. Li, H. T. Li, and J. Wang, JHEP, 1307:169 (2013) [arXiv:1301.1245 [hep-ph]]
    [12] U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys. Rept., 496: 1 (2010) [arXiv:0910.1785]
    [13] J. J. Cao, Z. X. Heng, J. M. Yang, Y. M. Zhang, and J. Y. Zhu, JHEP, 1203: 086 (2012) [arXiv:1202.5821 [hep-ph]]
    [14] Z. Kang, J. Li, and T. Li, JHEP, 1211: 024 (2012) [arXiv:1201.5305 [hep-ph]]
    [15] J. Cao, Y. He, L. Shang, W. Su, and Y. Zhang, JHEP, 1608: 037 (2016) [arXiv:1606.04416 [hep-ph]]; J. Cao, Y. He, L. Shang, W. Su, P. Wu, and Y. Zhang, JHEP, 1610: 136 (2016) [arXiv:1609.00204 [hep-ph]]
    [16] U. Baur, T. Plehn, and D. L. Rainwater, Phys. Rev. D, 69: 053004 (2004) [hep-ph/0310056]; A. Papaefstathiou, L. L. Yang and J. Zurita, Phys. Rev. D, 87(1): 011301 (2013) [arXiv:1209.1489 [hep-ph]]; T. Huang et al, Phys. Rev. D, 96(3): 035007 (2017) [arXiv:1701.04442 [hep-ph]]; A. Adhikary, S. Banerjee, R. K. Barman, B. Bhattacherjee, and S. Niyogi, arXiv:1712.05346 [hep-ph]
    [17] M. Maniatis, Int. J. Mod. Phys. A, 25: 3505 (2010) [arXiv:0906.0777 [hep-ph]]
    [18] U. Ellwanger, J. F. Gunion, and C. Hugonie, JHEP, 0502: 066 (2005) [hep-ph/0406215]; U. Ellwanger and C. Hugonie, Comput. Phys. Commun., 175: 290 (2006) [hep-ph/0508022]
    [19] P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, and G. Weiglein, Eur. Phys. J. C, 74(2) 2711 (2014) [arXiv:1305.1933 [hep-ph]]; JHEP, 1411: 039 (2014) [arXiv:1403.1582 [hep-ph]]; O. Stal and T. Stefaniak, PoS EPS, -HEP2013: 314 (2013) [arXiv:1310.4039 [hep-ph]]
    [20] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, Comput. Phys. Commun., 181: 138 (2010) [arXiv:0811.4169 [hep-ph]]; Comput. Phys. Commun., 182:2605 (2011) [arXiv:1102.1898 [hep-ph]]
    [21] M. Papucci, K. Sakurai, A. Weiler, and L. Zeune, Eur. Phys. J. C, 74(11): 3163 (2014) [arXiv:1402.0492 [hep-ph]]
    [22] S. Kraml, S. Kulkarni, U. Laa, A. Lessa, W. Magerl, D. Proschofsky-Spindler, and W. Waltenberger, Eur. Phys. J. C, 74: 2868 (2014) [arXiv:1312.4175 [hep-ph]]
    [23] J. Alwall et al, JHEP, 1407: 079 (2014) [arXiv:1405.0301 [hepph]]; J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, JHEP, 1106: 128 (2011) [arXiv:1106.0522 [hep-ph]]
    [24] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP, 0605: 026 (2006) [hep-ph/0603175]
    [25] J. de Favereau et al (DELPHES 3 Collaboration), JHEP, 1402:057 (2014) [arXiv:1307.6346 [hep-ex]]
    [26] D. Dercks, N. Desai, J. S. Kim, K. Rolbiecki, J. Tattersall, and T. Weber, Comput. Phys. Commun., 221: 383 (2017) [arXiv:1611.09856 [hep-ph]]; J. S. Kim, D. Schmeier, J. Tattersall, and K. Rolbiecki, Comput. Phys. Commun., 196:535 (2015) [arXiv:1503.01123 [hep-ph]]; M. Drees, H. Dreiner, D. Schmeier, J. Tattersall, and J. S. Kim, Comput. Phys. Commun., 187: 227 (2015) [arXiv:1312.2591 [hep-ph]]
    [27] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40(10): 100001 (2016)
    [28] A. Belyaev, M. Drees, O. J. P. Eboli, J. K. Mizukoshi, and S. F. Novaes, Phys. Rev. D, 60: 075008 (1999) [hepph/9905266]
    [29] M. Aaboud et al (ATLAS Collaboration), JHEP, 1801: 055 (2018) [arXiv:1709.07242 [hep-ex]]
    [30] CMS Collaboration, CMS PAS HIG-17-020
    [31] M. Aaboud et al (ATLAS Collaboration), arXiv:1804.06174 [hep-ex]
    [32] A. M. Sirunyan et al (CMS Collaboration), Phys. Lett. B, 778:101 (2018) [arXiv:1707.02909 [hep-ex]]
    [33] CMS Collaboration, CMS-PAS-HIG-17-008
  • 加载中

Get Citation
Zhaoxia Heng, Xue Gong and Haijing Zhou. Pair production of Higgs boson in NMSSM at the LHC with the next-to-lightest CP-even Higgs boson being SM-like[J]. Chinese Physics C, 2018, 42(7): 073103. doi: 10.1088/1674-1137/42/7/073103
Zhaoxia Heng, Xue Gong and Haijing Zhou. Pair production of Higgs boson in NMSSM at the LHC with the next-to-lightest CP-even Higgs boson being SM-like[J]. Chinese Physics C, 2018, 42(7): 073103.  doi: 10.1088/1674-1137/42/7/073103 shu
Milestone
Received: 2018-04-06
Fund

    Supported by National Natural Science Foundation of China (11705048)

Article Metric

Article Views(1787)
PDF Downloads(15)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Pair production of Higgs boson in NMSSM at the LHC with the next-to-lightest CP-even Higgs boson being SM-like

  • 1. College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
Fund Project:  Supported by National Natural Science Foundation of China (11705048)

Abstract: The next-to-minimal supersymmetric standard model (NMSSM) more naturally accommodates a Higgs boson with a mass of approximately 125 GeV than the minimal supersymmetric standard model (MSSM). In this work, we assume that the next-to-lightest CP-even Higgs boson h2 is the SM-like Higgs boson h, whereas the lightest CP-even Higgs boson h1 is dominantly singlet-like. We discuss the h1h1, h2h2, and h1h2 pair production processes via gluon-gluon fusion at the LHC for an collision energy of 14 TeV, and we consider the cases in which one Higgs boson decays to bb and the other decays to γγ or τ+τ-. We find that, for mh1≲ 62 GeV, the cross section of the ggh1h1 process is relatively large and maximally reaches 5400 fb, and the production rate of the h1h1bbτ+τ-final state can reach 1500 fb, which make the detection of this final state possible for future searches of an integrated luminosity of 300 and 3000 fb-1. This is mainly due to the contributions from the resonant production process pph2h1h1 and the relatively large branching ratio of h1bb and h1τ+τ-. The cross sections of the pph2h2 and pph1h2 production processes maximally reach 28 fb and 133 fb, respectively.

    HTML

Reference (33)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return