A minimal model for two-component FIMP dark matter: A basic search

  • In the multi-component configurations of dark matter phenomenology, we propose a minimal two-component configuration which is an extension of the Standard Model with only three new fields; one scalar and one fermion interact with the thermal soup through Higgs portal, mediated by the other scalar in such a way that the stabilities of dark matter candidates are made simultaneously by an explicit Z2 symmetry. Against the most common freeze-out framework, we look for dark matter particle signatures in the freeze-in scenario by evaluating the relic density and detection signals. A simple distinguishing feature of the model is the lack of dark matter conversion, so the dark matter components act individually and the model can be adapted entirely to both singlet scalar and singlet fermionic models, separately. We find dark matter self-interaction as the most promising approach to probe such feeble models. Although the scalar component satisfies this constraint, the fermionic one refuses it even in the resonant region.
      PCAS:
  • 加载中
  • [1] P. Gondolo, and G. Gelmini, Nucl. Phys. B, 360: 145 (1991)
    [2] M. Srednicki, R. Watkins, and K. A. Olive, Nucl. Phys. B, 310:693 (1988)
    [3] H. Y. Chiu, Phys. Rev. Lett., 17: 712 (1966)
    [4] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rept., 267: 195 (1996)
    [5] H. C. Cheng, J. L. Feng, and K. T. Matchev, Phys. Rev. Lett., 89: 211301 (2002)
    [6] G. Servant, and T. M. P. Tait, Nucl. Phys. B, 650: 391 (2003)
    [7] V. Silveira, and A. Zee, Phys. Lett. B, 161: 136 (1985)
    [8] J. McDonald, Phys. Rev. D, 50: 3637 (1994)
    [9] C. P. Burgess, M. Pospelov, and T. ter Veldhuis, Nucl. Phys. B, 619: 709 (2001)
    [10] V. Barger, P. Langacker, M. McCaskey et al, Phys. Rev. D, 77:035005 (2008)
    [11] Y. G. Kim, K. Y. Lee, and S. Shin, JHEP, 0805: 100 (2008)
    [12] M. M. Ettefaghi and R. Moazzemi, JCAP, 1302: 048 (2013)
    [13] M. Fairbairn and R. Hogan, JHEP, 1309: 022 (2013)
    [14] J. McDonald, Phys. Rev. Lett., 88: 091304 (2002)
    [15] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, JHEP, 1003: 080 (2010)
    [16] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, and V. Vaskonen, Int. J. Mod. Phys. A, 32(27): 1730023 (2017) doi: 10.1142/S0217751X1730023X [arXiv:1706.07442 [hep-ph]]
    [17] C. E. Yaguna, JHEP, 1108: 060 (2011)
    [18] M. Klasen and C. E. Yaguna, JCAP, 1311: 039 (2013)
    [19] S. Yaser Ayazi, S. M. Firouzabadi, and S. P. Zakeri, J. Phys. G, 43(9): 095006 (2016)
    [20] A. Merle and A. Schneider, Phys. Lett. B, 749: 283 (2015)
    [21] A. Merle and M. Totzauer, JCAP, 1506: 011 (2015)
    [22] B. Shakya, Mod. Phys. Lett. A, 31(06): 1630005 (2016)
    [23] Z. Kang, Eur. Phys. J. C, 75(10): 471 (2015) doi:10.1140/epjc/s10052-015-3702-4 [arXiv:1411.2773 [hep-ph]]
    [24] A. Biswas and A. Gupta, JCAP, 1609: 044 (2016)
    [25] M. Pandey, D. Majumdar, and K. P. Modak, arXiv: hepph/1709.05955
    [26] P. S. Bhupal Dev, A. Mazumdar, and S. Qutub, Front. in Phys., 2: 26 (2014) doi:10.3389/fphy.2014.00026 [arXiv:1311.5297 [hep-ph]]
    [27] S. Profumo, K. Sigurdson, and L. Ubaldi, JCAP, 0912: 016 (2009)
    [28] G. B. Gelmini, Nucl. Phys. Proc. Suppl, 138: 32 (2005)
    [29] G. Duda, G. Gelmini, P. Gondolo et al, Phys. Rev. D, 67:023505 (2003)
    [30] G. Duda, G. Gelmini, and P. Gondolo, Phys. Lett. B, 529: 187 (2002)
    [31] J. Herrero-Garcia, A. Scaffidi, M. White et al, JCAP, 1711:021 (2017)
    [32] A. Biswas, D. Majumdar, and P. Roy, JHEP, 1504: 065 (2015)
    [33] S. Esch, M. Klasen, and C. E. Yaguna, JHEP, 1409: 108 (2014)
    [34] S. Bhattacharya, A. Drozd, B. Grzadkowski et al, JHEP, 1310:158 (2013)
    [35] A. Biswas, D. Majumdar, A. Sil et al, JCAP, 1312: 049 (2013)
    [36] D. Chialva, P. S. B. Dev, and A. Mazumdar, Phys. Rev. D, 87(6): 063522 (2013) doi:10.1103/PhysRevD.87.063522 [arXiv:1211.0250 [hep-ph]]
    [37] A. Dutta Banik, M. Pandey, D. Majumdar et al, Eur. Phys. J. C, 77(10): 657 (2017)
    [38] K. P. Modak, JHEP, 1503: 064 (2015)
    [39] K. S. Babu, and R. N. Mohapatra, Phys. Rev. D, 89: 115011 (2014)
    [40] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys, 571: A31 (2014)
    [41] E. W. Kolb and M. S. Turner, Front. Phys., 69: 1 (1990)
    [42] J. Edsjo and P. Gondolo, Phys. Rev. D, 56: 1879 (1997)
    [43] E. Aprile et al (XENON100 Collaboration), Phys. Rev. Lett., 109: 181301 (2012)
    [44] D. S. Akerib et al (LUX Collaboration), Phys. Rev. Lett., 112:091303 (2014)
    [45] Y. Hochberg, Y. Zhao, and K. M. Zurek, Phys. Rev. Lett., 116(1): 011301 (2016)
    [46] Y. Hochberg, M. Pyle, Y. Zhao et al, JHEP, 1608: 057 (2016)
    [47] Y. Hochberg, Y. Kahn, M. Lisanti et al, Phys. Lett. B, 772:239 (2017)
    [48] G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 716: 1 (2012)
    [49] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716:30 (2012)
    [50] G. Belanger, B. Dumont, U. Ellwanger et al, Phys. Lett. B, 723: 340 (2013)
    [51] S. Tulin, and H. B. Yu, arXiv: hepph/1705.02358
    [52] D. Clowe, A. Gonzalez, and M. Markevitch, Astrophys. J, 604:596 (2004)
    [53] S. W. Randall, M. Markevitch, D. Clowe et al, Astrophys. J, 679: 1173 (2008)
    [54] M. Kaplinghat, S. Tulin, and H. B. Yu, Phys. Rev. Lett., 116(4): 041302 (2016)
    [55] R. Campbell, S. Godfrey, H. E. Logan et al, Phys. Rev. D, 92(5): 055031 (2015)
    [56] S. Tulin, H. B. Yu, and K. M. Zurek, Phys. Rev. D, 87(11):115007 (2013)
    [57] K. Kainulainen, K. Tuominen, and V. Vaskonen, Phys. Rev. D, 93(1): 015016 (2016); Phys. Rev. D, 95(7): 079901 (2017)
    [58] C. Kouvaris, I. M. Shoemaker, and K. Tuominen, Phys. Rev. D, 91(4): 043519 (2015)
    [59] M. Duch, and B. Grzadkowski, JHEP, 1709: 159 (2017)
    [60] G. Blanger, F. Boudjema, A. Goudelis et al, arXiv: hepph/1801.03509
    [61] A. Fradette, M. Pospelov, J. Pradler, and A. Ritz, Phys. Rev. D, 90(3): 035022 (2014)
    [62] J. Berger, K. Jedamzik, and D. G. E. Walker, JCAP, 1611:032 (2016)
  • 加载中

Get Citation
Peyman Zakeri, Mohammad Moosavi, Mohammadreza Zakeri and Yaser Ayazi. A minimal model for two-component FIMP dark matter: A basic search[J]. Chinese Physics C, 2018, 42(7): 073101. doi: 10.1088/1674-1137/42/7/073101
Peyman Zakeri, Mohammad Moosavi, Mohammadreza Zakeri and Yaser Ayazi. A minimal model for two-component FIMP dark matter: A basic search[J]. Chinese Physics C, 2018, 42(7): 073101.  doi: 10.1088/1674-1137/42/7/073101 shu
Milestone
Received: 2018-01-31
Revised: 2018-04-20
Article Metric

Article Views(1713)
PDF Downloads(9)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A minimal model for two-component FIMP dark matter: A basic search

  • 1.  Faculty of Physics, Yazd University, Yazd, Iran
  • 2.  School of Particles and Accelerators, Institute for Research in Fundamental Sciences(IPM), Tehran, Iran
  • 3. Physics and Astronomy Department, University of California, California 92521, USA
  • 4. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 5.  Physics Department, Semnan University, Semnan, Iran

Abstract: In the multi-component configurations of dark matter phenomenology, we propose a minimal two-component configuration which is an extension of the Standard Model with only three new fields; one scalar and one fermion interact with the thermal soup through Higgs portal, mediated by the other scalar in such a way that the stabilities of dark matter candidates are made simultaneously by an explicit Z2 symmetry. Against the most common freeze-out framework, we look for dark matter particle signatures in the freeze-in scenario by evaluating the relic density and detection signals. A simple distinguishing feature of the model is the lack of dark matter conversion, so the dark matter components act individually and the model can be adapted entirely to both singlet scalar and singlet fermionic models, separately. We find dark matter self-interaction as the most promising approach to probe such feeble models. Although the scalar component satisfies this constraint, the fermionic one refuses it even in the resonant region.

    HTML

Reference (62)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return