×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Shear and bulk viscosity of high-temperature gluon plasma

  • We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic gggg forward scattering and the inelastic soft gluon bremsstrahlung ggggg processes. Due to the suppressed contribution to η and ζ in the gggg forward scattering and the effective ggg gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung ggggg process with an analytic method. We find that the contribution of the collision term from the ggggg soft gluon bremsstrahlung process is just a small perturbation to the gggg scattering process and that the correction is at~5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula ζ∝(αs2T3)/(lnαs-1) in high-temperature gluon plasma.
      PCAS:
  • 加载中
  • [1] D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett., 86: 4783 (2001)
    [2] P. Romatschke, U. Romatschke, Phys. Rev. Lett., 99: 172301 (2007)
    [3] M. Luzum, P. Romatschke, Phys. Rev. C, 78: 034915 (2008)
    [4] P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett., 94: 111601 (2005)
    [5] A. Hosoya, M. Sakagami, and M. Takao, Ann. Phys.(N.Y.), 154: 229 (1984)
    [6] D. Hou, arXiv:hep-ph/0501284(2005)
    [7] M. E. Carrington, D. Hou, and R. Kobes, Phys. Rev. D, 62:025010 (2000)
    [8] A. Hosoya and K. Kajantie, Nucl. Phys. B, 250: 666 (1985)
    [9] J. Chen, J. Deng, H. Dong, and Q. Wang, Phys. Rev. D, 83:034031 (2011)
    [10] P. Arnold, G. D. Moore, and L. G. Yafie, JHEP, 0011: 001 (2000)
    [11] P. Arnold, G. D. Moore, and L. G. Yafie, JHEP, 0305: 051 (2003)
    [12] Z. Xu, C. Greiner, Phys. Rev. Lett., 100: 172301 (2008)
    [13] J. Chen, J. Deng, H. Dong, and Q. Wang, Phys. Rev. C, 87:024910 (2013)
    [14] P. Arnold, C. Dogan, and G. D. Moore, Phys. Rev. D, 74:085021 (2006)
    [15] Harvey B. Meyer, Nucl. Phys. A, 830: 641C-648C (2009)
    [16] G. Boyd, J. Engels, F. Karsch et al, Nucl. Phys. B, 469: 419-444 (1996)
    [17] M. Cheng, N. H. Christ, S. Datta et al, Phys. Rev. D, 77:014511 (2008)
    [18] H. B. Meyer, Phys. Rev. Lett., 100: 162001 (2008)
    [19] F. Karsch, D. Kharzeev, K. Tuchin, Phys. Lett. B, 663: 217-221 (2008)
    [20] K. Paech and S. Pratt, Phys. Rev. C, 74: 014901 (2006)
    [21] B. C. Li and M. Huang, Phys. Rev. D, 78; Phys. Rev. D, 80:034023 (2009) 117503 (2008)
    [22] J. W. Chen and J. Wang, Phys. Rev. C, 79: 044913 (2009)
    [23] C. Sasaki and K. Redlich. Phys. Rev. C, 79: 055207 (2009)
    [24] S. Xiao, L. Zhang, P. Guo, and D. Hou, Chin. Phys. C, 38(5):054101 (2014)
    [25] G. Baym, H. Monien, C. J. Pethick, and D. G. Ravenhall, Phys. Rev. Lett., 64: 1867 (1990)
    [26] J. F. Gunion and G. Bertsch, Phys. Rev. D, 25: 746 (1982)
    [27] T. Bhattacharyya, S. Mazumder, S. K. Das, and J. e. Alam, Phys. Rev. D, 85: 034033 (2012)
    [28] R. Abir, C. Greiner, M. Martinez, and M. G.Mustafa, Phys. Rev. D, 83: 011501(R) (2011)
    [29] L. Hui, D. Hou, and J. Li, Commun. Theor. Phys., 50: 429-436 (2008)
    [30] P. Arnold, Int. J. Mod. Phys. E, 16: 2555 (2007)
    [31] A. Nakamura and S. Sakai, Phys. Rev. Lett., 94: 072305 (2005)
    [32] S. Weinberg, Astrophys. J., 168: 175 (1971)
    [33] F. Gelis, Nucl. Phys. A, 715: 329-338 (2003)
  • 加载中

Get Citation
Le Zhang and De-Fu Hou. Shear and bulk viscosity of high-temperature gluon plasma[J]. Chinese Physics C, 2018, 42(6): 064101. doi: 10.1088/1674-1137/42/6/064101
Le Zhang and De-Fu Hou. Shear and bulk viscosity of high-temperature gluon plasma[J]. Chinese Physics C, 2018, 42(6): 064101.  doi: 10.1088/1674-1137/42/6/064101 shu
Milestone
Received: 2018-02-26
Fund

    Supported by Ministry of Science and Technology of China (MSTC) under the 973 Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

Article Metric

Article Views(1755)
PDF Downloads(23)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Shear and bulk viscosity of high-temperature gluon plasma

  • 1. Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics(MOE), Central China Normal University, Wuhan 430079, China
  • 2. The College of Post and Telecommunication, Wuhan Institute of Technology, Wuhan 430070, China
Fund Project:  Supported by Ministry of Science and Technology of China (MSTC) under the 973 Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

Abstract: We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic gggg forward scattering and the inelastic soft gluon bremsstrahlung ggggg processes. Due to the suppressed contribution to η and ζ in the gggg forward scattering and the effective ggg gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung ggggg process with an analytic method. We find that the contribution of the collision term from the ggggg soft gluon bremsstrahlung process is just a small perturbation to the gggg scattering process and that the correction is at~5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula ζ∝(αs2T3)/(lnαs-1) in high-temperature gluon plasma.

    HTML

Reference (33)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return