Last electroweak WIMP standing: pseudo-Dirac higgsino status and compact stars as future probes

  • Electroweak WIMPs are under intense scrutiny from direct detection, indirect detection, and collider experiments. Nonetheless the pure (pseudo-Dirac) higgsino, one of the simplest such WIMPs, remains elusive. We present an up-to-date assessment of current experimental constraints on neutralino dark matter. The strongest bound on pure higgsino dark matter currently may arise from AMS-02 measurements of antiprotons, though the interpretation of these results has sizable uncertainty. We discuss whether future astrophysical observations could offer novel ways to test higgsino dark matter, especially in the challenging regime with order MeV mass splitting between the two neutral higgsinos. We find that heating of white dwarfs by annihilation of higgsinos captured via inelastic scattering could be one useful probe, although it will require challenging observations of distant dwarf galaxies or a convincing case to be made for substantial dark matter content in ω Cen, a globular cluster that may be a remnant of a disrupted dwarf galaxy. White dwarfs and neutron stars give a target for astronomical observations that could eventually help to close the last, most difficult corner of parameter space for dark matter with weak interactions.
      PCAS:
  • 加载中
  • [1] G. Steigman and M. S. Turner, Nucl. Phys. B, 253:375-386 (1985)
    [2] P. Gondolo and G. Gelmini, Nucl. Phys. B, 360:145-179 (1991)
    [3] G. Steigman, B. Dasgupta, and J. F. Beacom, Phys. Rev. D, 86:023506 (2012), arXiv:1204.3622[hep-ph]
    [4] M. Cirelli, A. Strumia, and M. Tamburini, Nucl. Phys. B, 787:152-175 (2007), arXiv:0706.4071[hep-ph]
    [5] L. J. Hall and Y. Nomura, JHEP, 01:082 (2012), arXiv:1111.4519[hep-ph].
    [6] P. J. Fox, G. D. Kribs, and A. Martin, Phys. Rev. D, 90 (7):075006 (2014), arXiv:1405.3692[hep-ph]
    [7] R. Mahbubani and L. Senatore, Phys. Rev. D, 73:043510 (2006), arXiv:hep-ph/0510064[hep-ph]
    [8] J. Kearney, N. Orlofsky, and A. Pierce, Phys. Rev. D, 95 (3):035020 (2017), arXiv:1611.05048[hep-ph]
    [9] D. Tucker-Smith and N. Weiner, Phys. Rev. D, 64:043502 (2001), arXiv:hep-ph/0101138[hep-ph]
    [10] D. Tucker-Smith and N. Weiner, Phys. Rev. D, 72:063509 (2005), arXiv:hep-ph/0402065[hep-ph]
    [11] J. Antoniadis et al, Science, 340:6131 (2013), arXiv:1304.6875[astro-ph.HE]
    [12] F. Ozel and P. Freire, Ann. Rev. Astron. Astrophys., 54:401 (2016), arXiv:1603.02698[astro-ph.HE]
    [13] N. Chamel and P. Haensel, Living Rev. Rel., 11:10 (2008), arXiv:0812.3955[astro-ph]
    [14] S. O. Kepler, S. J. Kleinman, A. Nitta, D. Koester, B. G. Castanheira, O. Giovannini, A. F. M. Costa, and L. Althaus, Mon. Not. Roy. Astron. Soc., 375:1315-1324 (2007), arXiv:astro-ph/0612277[astro-ph]
    [15] H. L. Shipman, Astrophys. J., 228:240-256 (Feb., 1979)
    [16] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs, and neutron stars:The physics of compact objects 1983
    [17] R. Catena and B. Schwabe, JCAP, 1504 (4):042 (2015), arXiv:1501.03729[hep-ph]
    [18] N. Nagata and S. Shirai, JHEP, 01:029 (2015), arXiv:1410.4549[hep-ph].
    [19] S. D. Thomas and J. D. Wells, Phys. Rev. Lett., 81:34-37 (1998), arXiv:hep-ph/9804359[hep-ph]
    [20] M. Cirelli, N. Fornengo, and A. Strumia, Nucl. Phys. B, 753:178-194 (2006), arXiv:hep-ph/0512090[hep-ph]
    [21] M. R. Buckley, L. Randall, and B. Shuve, JHEP, 05:097 (2011), arXiv:0909.4549[hep-ph]
    [22] N. Arkani-Hamed, A. Delgado, and G. F. Giudice, Nucl. Phys. B, 741:108-130 (2006), arXiv:hep-ph/0601041[hep-ph]
    [23] J. Hisano, S. Matsumoto, M. Nagai, O. Saito, and M. Senami, Phys. Lett. B, 646:34-38 (2007), arXiv:hep-ph/0610249[hep-ph].
    [24] T. Moroi and L. Randall, Nucl. Phys. B, 570:455-472 (2000), arXiv:hep-ph/9906527[hep-ph]
    [25] B. S. Acharya, G. Kane, S. Watson, and P. Kumar, Phys. Rev. D, 80:083529 (2009), arXiv:0908.2430[astro-ph.CO]
    [26] J. Bramante, P. J. Fox, G. D. Kribs, and A. Martin, Phys. Rev. D, 94 (11):115026 (2016), arXiv:1608.02662[hep-ph]
    [27] H. E. Haber and D. Wyler, Nucl. Phys. B, 323:267-310 (1989)
    [28] R. Essig, Phys. Rev. D, 78:015004 (2008), arXiv:0710.1668[hep-ph]
    [29] T. Cohen, D. J. Phalen, and A. Pierce, Phys. Rev. D, 81:116001 (2010), arXiv:1001.3408[hep-ph]
    [30] C. Cheung, L. J. Hall, D. Pinner, and J. T. Ruderman, JHEP, 05:100 (2013), arXiv:1211.4873[hep-ph]
    [31] J. Hisano, K. Ishiwata, N. Nagata, and T. Takesako, JHEP, 07:005 (2011), arXiv:1104.0228[hep-ph]
    [32] J. Hisano, K. Ishiwata, and N. Nagata, Phys. Rev. D, 87:035020 (2013), arXiv:1210.5985[hep-ph]
    [33] R. J. Hill and M. P. Solon, Phys. Rev. Lett., 112:211602 (2014), arXiv:1309.4092[hep-ph]
    [34] R. J. Hill and M. P. Solon, Phys. Rev. D, 91:043504 (2015), arXiv:1401.3339[hep-ph]
    [35] R. J. Hill and M. P. Solon, Phys. Rev. D, 91:043505 (2015), arXiv:1409.8290[hep-ph]
    [36] X. Cui et al (PandaX-Ⅱ Collaboration), Phys. Rev. Lett., 119 (18):181302 (2017), arXiv:1708.06917[astro-ph.CO]
    [37] M. G. Aartsen et al (IceCube Collaboration), Eur. Phys. J. C, 77 (3):146 (2017), arXiv:1612.05949[astro-ph.HE]
    [38] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, Comput. Phys. Commun., 185:960-985 (2014), arXiv:1305.0237[hep-ph]
    [39] E. Aprile et al, First Dark Matter Search Results from the XENON1T Experiment, arXiv:1705.06655[astro-ph.CO]
    [40] D. S. Akerib et al (LUX Collaboration), Phys. Rev. Lett., 118 (2):021303 (2017), arXiv:1608.07648[astro-ph.CO]
    [41] A. Tan et al (PandaX-Ⅱ Collaboration), Phys. Rev. Lett., 117 (12):121303 (2016), arXiv:1607.07400[hep-ex]
    [42] W. H. Press and D. N. Spergel, Astrophys. J., 296:679-684 (1985)
    [43] J. Silk, K. A. Olive, and M. Srednicki, Phys. Rev. Lett., 55:257-259 (1985)
    [44] A. Gould, Astrophys. J., 321:571 (1987)
    [45] A. Gould, Astrophys. J., 388:338-344 (1992)
    [46] IceCube Collaboration, M. G. Aartsen et al, JCAP, 1604 (04):022 (2016), arXiv:1601.00653[hep-ph]
    [47] P. Agrawal, J. Fan, M. Reece, and W. Xue, Deciphering the MSSM Higgs Mass at Future Hadron Colliders, arXiv:1702.05484[hep-ph]
    [48] XENON Collaboration, E. Aprile et al, JCAP, 1604 (04):027 (2016), arXiv:1512.07501[physics.ins-det]
    [49] B. J. Mount et al, LUX-ZEPLIN (LZ) Technical Design Report, arXiv:1703.09144[physics.ins-det]
    [50] J. Bramante, N. Desai, P. Fox, A. Martin, B. Ostdiek, and T. Plehn, Phys. Rev. D, 93 (6):063525 (2016), arXiv:1510.03460[hep-ph]
    [51] J. Herzog-Arbeitman, M. Lisanti, P. Madau, and L. Necib, Empirical Determination of Dark Matter Velocities using Metal-Poor Stars, arXiv:1704.04499[astro-ph.GA]
    [52] J. Hisano, S. Matsumoto, M. M. Nojiri, and O. Saito, Phys. Rev. D, 71:063528 (2005), arXiv:hep-ph/0412403[hep-ph]
    [53] L. Bergstrom and P. Ullio, Nucl. Phys. B, 504:27-44 (1997), arXiv:hep-ph/9706232[hep-ph]
    [54] Z. Bern, P. Gondolo, and M. Perelstein, Phys. Lett. B, 411:86-96 (1997), arXiv:hep-ph/9706538[hep-ph]
    [55] A. Hryczuk and R. Iengo, JHEP, 01:163 (2012), arXiv:1111.2916[hep-ph] [Erratum:JHEP06,137 (2012)]
    [56] M. Bauer, T. Cohen, R. J. Hill, and M. P. Solon, JHEP, 01:099 (2015), arXiv:1409.7392[hep-ph]
    [57] G. Ovanesyan, T. R. Slatyer, and I. W. Stewart, Phys. Rev. Lett., 114 (21):211302 (2015), arXiv:1409.8294[hep-ph]
    [58] M. Baumgart, I. Z. Rothstein, and V. Vaidya, JHEP, 04:106 (2015), arXiv:1412.8698[hep-ph]
    [59] M. Baumgart and V. Vaidya, JHEP, 03:213 (2016), arXiv:1510.02470[hep-ph]
    [60] G. Ovanesyan, N. L. Rodd, T. R. Slatyer, and I. W. Stewart, Phys. Rev. D, 95 (5):055001 (2017), arXiv:1612.04814[hep-ph]
    [61] M. Ackermann et al (Fermi-LAT Collaboration), Phys. Rev. Lett., 115 (23):231301 (2015), arXiv:1503.02641[astro-ph.HE]
    [62] H. Abdallah et al (H.E.S.S. Collaboration), Phys. Rev. Lett., 117 (11):111301 (2016), arXiv:1607.08142[astro-ph.HE]
    [63] T. Cohen, M. Lisanti, A. Pierce, and T. R. Slatyer, JCAP, 1310:061 (2013), arXiv:1307.4082[hep-ph]
    [64] J. Fan and M. Reece, JHEP, 10:124 (2013), arXiv:1307.4400[hep-ph]
    [65] L. Bergstrom, T. Bringmann, M. Eriksson, and M. Gustafsson, Phys. Rev. Lett., 95:241301 (2005), arXiv:hep-ph/0507229[hep-ph]
    [66] M. Aguilar et al (AMS Collaboration), Phys. Rev. Lett., 117 (9):091103 (2016)
    [67] A. Cuoco, M. Krmer, and M. Korsmeier, Novel dark matter constraints from antiprotons in the light of AMS-02, arXiv:1610.03071[astro-ph.HE]
    [68] M.-Y. Cui, Q. Yuan, Y.-L. S. Tsai, and Y.-Z. Fan, A possible dark matter annihilation signal in the AMS-02 antiproton data, arXiv:1610.03840[astro-ph.HE]
    [69] J. Kawamura and Y. Omura, Study of dark matter physics in non-universal gaugino mass scenario, arXiv:1703.10379[hep-ph]
    [70] M. Korsmeier and A. Cuoco, Phys. Rev. D, 94 (12):123019 (2016), arXiv:1607.06093[astro-ph.HE]
    [71] J. Buckley et al, in Proceedings, Community Summer Study 2013:Snowmass on the Mississippi (CSS2013):Minneapolis, MN, USA, July 29-August 6, 2013, 2013, arXiv:1310.7040[astro-ph.HE]
    [72] M. Cahill-Rowley, R. Cotta, A. Drlica-Wagner, S. Funk, J. Hewett, A. Ismail, T. Rizzo, and M. Wood, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics:Snowmass on the Mississippi (CSS2013):Minneapolis, MN, USA, July 29-August 6, 2013, 2013,,arXiv:1305.6921[hep-ph],
    [73] M. Cahill-Rowley, R. Cotta, A. Drlica-Wagner, S. Funk, J. Hewett, A. Ismail, T. Rizzo, and M. Wood, Phys. Rev. D, 91 (5):055011 (2015), arXiv:1405.6716[hep-ph]
    [74] S. M. Barr and A. Zee, Phys. Rev. Lett., 65:21-24 (1990); Phys. Rev. Lett., 65:2920 (1990)
    [75] A. Pilaftsis, Nucl. Phys. B, 644:263-289 (2002), arXiv:hep-ph/0207277[hep-ph]
    [76] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino, Nucl. Phys. B, 709:3-46 (2005), arXiv:hep-ph/0409232[hep-ph]
    [77] G. F. Giudice and A. Romanino, Phys. Lett. B, 634:307-314 (2006), arXiv:hep-ph/0510197[hep-ph]
    [78] Y. Li, S. Profumo, and M. Ramsey-Musolf, Phys. Rev. D, 78:075009 (2008), arXiv:0806.2693[hep-ph]
    [79] J. Baron et al (ACME Collaboration), Science, 343:269-272 (2014), arXiv:1310.7534[physics.atom-ph]
    [80] C. D. Panda et al, Phys. Rev. A, 93:052110 (2016), arXiv:1603.07707[physics.atom-ph]
    [81] Y. Nakai and M. Reece, Electric Dipole Moments in Natural Supersymmetry, arXiv:1612.08090[hep-ph]
    [82] C. H. Chen, M. Drees, and J. F. Gunion, Phys. Rev. Lett., 76:2002-2005 (1996), arXiv:hep-ph/9512230[hep-ph]
    [83] C. H. Chen, M. Drees, and J. F. Gunion, Addendum/erratum for searching for invisible and almost invisible particles at e+ e-colliders[hep-ph/9512230] and a nonstandard string/SUSY scenario and its phenomenological implications[hep-ph/9607421], arXiv:hep-ph/9902309[hep-ph]
    [84] ATLAS Collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at s=13 TeV with the ATLAS detector,
    [85] T. Han, F. Kling, S. Su, and Y. Wu, JHEP, 02:057 (2017), arXiv:1612.02387[hep-ph]
    [86] J. Halverson, N. Orlofsky, and A. Pierce, Phys. Rev. D, 90 (1):015002 (2014), arXiv:1403.1592[hep-ph]
    [87] M. Low and L.-T. Wang, JHEP, 08:161 (2014), arXiv:1404.0682[hep-ph]
    [88] A. Ismail, E. Izaguirre, and B. Shuve, Phys. Rev. D, 94 (1):015001 (2016), arXiv:1605.00658[hep-ph]
    [89] K. Harigaya, K. Ichikawa, A. Kundu, S. Matsumoto, and S. Shirai, JHEP, 09:105 (2015), arXiv:1504.03402[hep-ph]
    [90] N. Liu and L. Wu, Eur. Phys. J. C, 77 (12):868 (2017), arXiv:1705.02534[hep-ph]
    [91] R. Mahbubani, P. Schwaller, and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, arXiv:1703.05327[hep-ph]
    [92] H. Fukuda, N. Nagata, H. Otono, and S. Shirai, Higgsino Dark Matter or Not:Role of Disappearing Track Searches at the LHC and Future Colliders, arXiv:1703.09675[hep-ph]
    [93] I. Goldman and S. Nussinov, Phys. Rev. D, 40:3221-3230 (1989)
    [94] C. Kouvaris, Phys. Rev. D, 77:023006 (2008), arXiv:0708.2362[astro-ph]
    [95] G. Bertone and M. Fairbairn, Phys. Rev. D, 77:043515 (2008), arXiv:0709.1485[astro-ph]
    [96] Y.-Z. Fan, R.-Z. Yang, and J. Chang, Phys. Rev. D, 84:103510 (2011), arXiv:1110.2819[astro-ph.HE]
    [97] B. Bertoni, A. E. Nelson, and S. Reddy, Phys. Rev. D, 88:123505 (2013), arXiv:1309.1721[hep-ph]
    [98] T. J. Hurst, A. R. Zentner, A. Natarajan, and C. Badenes, Phys. Rev. D, 91 (10):103514 (2015), arXiv:1410.3925[astro-ph.CO]
    [99] S. Nussinov, L.-T. Wang, and I. Yavin, JCAP, 0908:037 (2009), arXiv:0905.1333[hep-ph]
    [100] A. Menon, R. Morris, A. Pierce, and N. Weiner, Phys. Rev. D, 82:015011 (2010), arXiv:0905.1847[hep-ph]
    [101] J. Shu, P.-f. Yin, and S.-h. Zhu, Phys. Rev. D, 81:123519 (2010), arXiv:1001.1076[hep-ph]
    [102] M. McCullough and M. Fairbairn, Phys. Rev. D, 81:083520 (2010), arXiv:1001.2737[hep-ph]
    [103] D. Hooper, D. Spolyar, A. Vallinotto, and N. Y. Gnedin, Phys. Rev. D, 81:103531 (2010), arXiv:1002.0005[hep-ph]
    [104] M. Baryakhtar, J. Bramante, S. W. Li, T. Linden, and N. Raj, Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos, arXiv:1704.01577[hep-ph]
    [105] B. Brown and W. Rae, Nuclear Data Sheets, 120:115-118 (2014)
    [106] N. Anand, A. L. Fitzpatrick, and W. C. Haxton, Phys. Rev. C, 89 (6):065501 (2014), arXiv:1308.6288[hep-ph]
    [107] F. M. Araujo and C. B. M. H. Chirenti, Newtonian and relativistic polytropes, in Cosmic rays and astrophysics. Proceedings, 4th School, Santo Andre, Sao Paulo, Brazil, August 26-September 4, 2010, 2011, arXiv:1102.2393[gr-qc]
    [108] P.-H. Chavanis, Phys. Rev. D, 76:023004 (2007), arXiv:astro-ph/0604012[astro-ph]
    [109] D. L. Kaplan, J. Boyles, B. H. Dunlap, S. P. Tendulkar, A. T.Deller, S. M. Ransom, M. A. McLaughlin, D. R. Lorimer, and A. T. Stairs, Astrophys. J., 789:119 (2014), arXiv:1406.0488[astro-ph.SR]
    [110] V. Testa, R. P. Mignani, C. Pallanca, A. Corongiu, and F. R. Ferraro, Mon. Not. Roy. Astron. Soc., 453 (4):4159-4174 (2015), arXiv:1508.04780[astro-ph.HE]
    [111] C. G. Bassa, J. Antoniadis, F. Camilo, I. Cognard, D. Koester, M. Kramer, S. R. Ransom, and B. W. Stappers, Mon. Not. Roy. Astron. Soc., 455 (4):3806-3813 (2016), arXiv:1511.01319[astro-ph.HE]
    [112] G. D. Martinez, Mon. Not. Roy. Astron. Soc., 451 (3):2524-2535 (2015), arXiv:1309.2641[astro-ph.GA]
    [113] K. K. Boddy, J. Kumar, L. E. Strigari, and M.-Y. Wang, Sommerfeld-Enhanced J-Factors For Dwarf Spheroidal Galaxies, arXiv:1702.00408[astro-ph.CO]
    [114] F. Jiang and F. C. van den Bosch, Mon. Not. Roy. Astron. Soc., 453 (4):3575-3592 (2015), arXiv:1508.02715[astro-ph.CO]
    [115] A. W. McConnachie, Astron. J., 144:4 (2012), arXiv:1204.1562[astro-ph.CO]
    [116] A. Geringer-Sameth, S. M. Koushiappas, and M. Walker, Astrophys. J., 801 (2):74 (2015), arXiv:1408.0002[astro-ph.CO]
    [117] DES Collaboration, J. D. Simon et al, Astrophys. J., 808 (1):95 (2015), arXiv:1504.02889[astro-ph.GA]
    [118] L. R. Bedin, M. Salaris, G. Piotto, J. Anderson, I. R. King, and S. Cassisi, Astrophys. J., 697:965-979 (2009), arXiv:0903.2839[astro-ph.GA]
    [119] S. R. Majewski, R. J. Patterson, D. I. Dinescu, W. Y. Johnson, J. C. Ostheimer, W. E. Kunkel, and C. Palma, in 35th Liege International Astrophysics Colloquium on the Galactic Halo:from Globular Clusters to Field Stars Liege, Belgium, July 5-8, 1999, 1999, arXiv:astro-ph/9910278[astro-ph]
    [120] G. Carraro and C. Lia, Astron. Astrophys., 357:977 (2000), arXiv:astro-ph/0003371[astro-ph]
    [121] K. Bekki and K. C. Freeman, Mon. Not. Roy. Astron. Soc., 346:L11 (2003), arXiv:astro-ph/0310348[astro-ph]
    [122] A. Sollima, M. Bellazzini, R. L. Smart, M. Correnti, E. Pancino, F. R. Ferraro, and D. Romano, Mon. Not. Roy. Astron. Soc., 396:2183 (2009), arXiv:0904.0571[astro-ph.SR]
    [123] A. Bellini, J. Anderson, M. Salaris, S. Cassisi, L. R. Bedin, G. Piotto, and P. Bergeon, Astrophys. J., 769:L32 (2013), arXiv:1305.0265[astro-ph.GA]
    [124] P. Amaro-Seoane, J. Casanellas, R. Schdel, E. Davidson, and J. Cuadra, Mon. Not. Roy. Astron. Soc., 459 (1):695-700 (2016), arXiv:1512.00456[astro-ph.CO]
    [125] G. S. Da Costa, Astrophys. J., 751:6 (2012), arXiv:1203.2710[astro-ph.SR]
    [126] e-ASTROGAM Collaboration, A. De Angelis et al, The eASTROGAM mission (exploring the extreme Universe with gamma rays in the MeV-GeV range), arXiv:1611.02232[astro-ph.HE].
    [127] R. Bartels, D. Gaggero, and C. Weniger, Prospects for indirect dark matter searches with MeV photons, arXiv:1703.02546[astro-ph.HE]
  • 加载中

Get Citation
Rebecca Krall and Matthew Reece. Last electroweak WIMP standing: pseudo-Dirac higgsino status and compact stars as future probes[J]. Chinese Physics C, 2018, 42(4): 043105. doi: 10.1088/1674-1137/42/4/043105
Rebecca Krall and Matthew Reece. Last electroweak WIMP standing: pseudo-Dirac higgsino status and compact stars as future probes[J]. Chinese Physics C, 2018, 42(4): 043105.  doi: 10.1088/1674-1137/42/4/043105 shu
Milestone
Received: 2017-12-23
Fund

    Supported by NSF (PHY-1415548) and NASA ATP (NNX16AI12G)

Article Metric

Article Views(1662)
PDF Downloads(34)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Last electroweak WIMP standing: pseudo-Dirac higgsino status and compact stars as future probes

    Corresponding author: Matthew Reece,
  • 1. Department of Physics, Harvard University, Cambridge, MA, 02138, USA
Fund Project:  Supported by NSF (PHY-1415548) and NASA ATP (NNX16AI12G)

Abstract: Electroweak WIMPs are under intense scrutiny from direct detection, indirect detection, and collider experiments. Nonetheless the pure (pseudo-Dirac) higgsino, one of the simplest such WIMPs, remains elusive. We present an up-to-date assessment of current experimental constraints on neutralino dark matter. The strongest bound on pure higgsino dark matter currently may arise from AMS-02 measurements of antiprotons, though the interpretation of these results has sizable uncertainty. We discuss whether future astrophysical observations could offer novel ways to test higgsino dark matter, especially in the challenging regime with order MeV mass splitting between the two neutral higgsinos. We find that heating of white dwarfs by annihilation of higgsinos captured via inelastic scattering could be one useful probe, although it will require challenging observations of distant dwarf galaxies or a convincing case to be made for substantial dark matter content in ω Cen, a globular cluster that may be a remnant of a disrupted dwarf galaxy. White dwarfs and neutron stars give a target for astronomical observations that could eventually help to close the last, most difficult corner of parameter space for dark matter with weak interactions.

    HTML

Reference (127)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return