Conformal invariant cosmological perturbations via the covariant approach: multicomponent universe

  • In recent years there has been a lot of interest in discussing frame dependences/independences of the cosmological perturbations under the conformal transformations. This problem has previously been investigated in terms of the covariant approach for a single component universe, and it was found that the covariant approach is very powerful to pick out the perturbative variables which are both gauge and conformal invariant. In this work, we extend the covariant approach to a universe with multicomponent fluids. We find that similar results can be derived, as expected. In addition, some other interesting perturbations are also identified to be conformal invariant, such as entropy perturbation between two different components.
      PCAS:
  • 加载中
  • [1] J. M. Bardeen, Phys. Rev. D, 22:1882(1980)
    [2] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl., 78:1(1984)
    [3] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rept., 215:203(1992)
    [4] C. P. Ma and E. Bertschinger, Astrophys. J., 455:7(1995)[astro-ph/9506072].
    [5] G. F. R. Ellis and M. Bruni, Phys. Rev. D, 40:1804(1989)
    [6] G. F. R. Ellis, J. Hwang, and M. Bruni, Phys. Rev. D, 40:1819(1989)
    [7] M. Bruni, P. K. S. Dunsby, and G. F. R. Ellis, Astrophys. J., 395:34(1992)
    [8] P. K. S. Dunsby, M. Bruni, and G. F. R. Ellis, Astrophys. J., 395:54(1992)
    [9] Ehlers, J. (1961). Abh. Mainz Akad. Wiss. u. Litt. Math. Nat. kl, 11
    [10] S. W. Hawking, Astrophys. J., 145:544(1966)
    [11] G. F. R. Ellis, Gen. Rel. Grav., 41:581(2009)[Proc. Int. Sch. Phys. Fermi, 47:104(1971)]
    [12] J. M. Stewart and M. Walker, Proc. Roy. Soc. Lond. A, 341:49(1974)
    [13] A. Challinor and A. Lasenby, Astrophys. J., 513:1(1999)[astro-ph/9804301]
    [14] W. Hu, astro-ph/0402060
    [15] S. D. P. Vitenti, F. T. Falciano, and N. Pinto-Neto, Phys. Rev. D, 89(10):103538(2014)[arXiv:1311.6730[astro-ph.CO]]
    [16] B. Osano, C. Pitrou, P. Dunsby, J. P. Uzan, and C. Clarkson, JCAP, 0704:003(2007)[gr-qc/0612108]
    [17] C. Brans and R. H. Dicke, Phys. Rev., 124:925(1961)
    [18] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys., 82:451(2010)[arXiv:0805.1726[gr-qc]]
    [19] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rept., 692:1(2017)[arXiv:1705.11098[gr-qc]]
    [20] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D, 79:064036(2009)[arXiv:0811.2197[hep-th]]
    [21] C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys. Rev. D, 79:084003(2009)[arXiv:0901.1314[hep-th]]
    [22] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, Phys. Rev. D, 84:064039(2011)[arXiv:1103.3260[hep-th]]
    [23] R. Catena, M. Pietroni, and L. Scarabello, Phys. Rev. D, 76:084039(2007)[astro-ph/0604492]
    [24] T. Chiba and M. Yamaguchi, JCAP, 1310:040(2013)[arXiv:1308.1142[gr-qc]]
    [25] J. -O. Gong, J. -c. Hwang, W. -I. Park, M. Sasaki, and Y. -S. Song, JCAP, 1109:023(2011)[arXiv:1107.1840[gr-qc]]
    [26] T. Chiba and M. Yamaguchi, JCAP 0810 (2008) 021[arXiv:0807.4965[astro-ph]].
    [27] T. Prokopec and J. Weenink, JCAP, 1309:027(2013)[arXiv:1304.6737[gr-qc]]
    [28] T. Kubota, N. Misumi, W. Naylor, and N. Okuda, JCAP, 1202:034(2012)[arXiv:1112.5233[gr-qc]]
    [29] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D, 28:679(1983)
    [30] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B, 659:703(2008)[arXiv:0710.3755[hep-th]]
    [31] M. Li, Phys. Lett. B, 736:488(2014)[arXiv:1405.0211[hep-th]]
    [32] Y. S. Piao, arXiv:1109.4266; arXiv:1112.3737
    [33] T. Qiu, JCAP, 1206:041(2012)[arXiv:1204.0189[hep-ph]]
    [34] G. Domnech and M. Sasaki, JCAP, 1504(04):022(2015)[arXiv:1501.07699[gr-qc]]
    [35] M. Postma and M. Volponi, Phys. Rev. D, 90(10):103516(2014)[arXiv:1407.6874[astro-ph.CO]]
    [36] L. Jrv, P. Kuusk, M. Saal, and O. Vilson, Phys. Rev. D, 91(2):024041(2015)[arXiv:1411.1947[gr-qc]]
    [37] G. Domnech and M. Sasaki, Int. J. Mod. Phys. D, 25(13):1645006(2016)[arXiv:1602.06332[gr-qc]]
    [38] Y. Cai and Y. S. Piao, JHEP, 1603:134(2016)[arXiv:1601.07031[hep-th]]
    [39] C. Wetterich, JCAP, 1605:041(2016)[arXiv:1511.03530[gr-qc]]
    [40] M. Li, Int. J. Mod. Phys. D, 26(01):1740005(2016) doi:10.1142/S0218271817400053
    [41] Y. Cai, Y. T. Wang, and Y. S. Piao, Phys. Rev. D, 93(6):063005(2016)[arXiv:1510.08716[astro-ph.CO]]
    [42] S. Bahamonde, S. D. Odintsov, V. K. Oikonomou, and P. V. Tretyakov, Phys. Lett. B, 766:225(2017)[arXiv:1701. 02381[gr-qc]]
    [43] S. Bahamonde, S. D. Odintsov, V. K. Oikonomou, and M. Wright, Annals Phys., 373:96(2016)[arXiv:1603.05113[gr-qc]]
    [44] M. Li and Y. Mou, JCAP, 1510(10):037(2015)[arXiv:1505.04074[gr-qc]]
    [45] D. Langlois and F. Vernizzi, Phys. Rev. Lett., 95:091303(2005)[astro-ph/0503416]
    [46] D. Langlois and F. Vernizzi, Phys. Rev. D, 72:103501(2005)[astro-ph/0509078]
    [47] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Phys. Rev. D, 63:023506(2001)[astro-ph/0009131]
    [48] M. Li, Phys. Lett. B, 724:192(2013)[arXiv:1306.0191[hep-th]]
    [49] T. Qiu and J. Q. Xia, Phys. Lett. B, 744:273(2015)[arXiv:1406.5902[astro-ph.CO]]
  • 加载中

Get Citation
Yunlong Zheng, Yicen Mou, Haomin Rao and Mingzhe Li. Conformal invariant cosmological perturbations via the covariant approach: multicomponent universe[J]. Chinese Physics C, 2018, 42(3): 035102. doi: 10.1088/1674-1137/42/3/035102
Yunlong Zheng, Yicen Mou, Haomin Rao and Mingzhe Li. Conformal invariant cosmological perturbations via the covariant approach: multicomponent universe[J]. Chinese Physics C, 2018, 42(3): 035102.  doi: 10.1088/1674-1137/42/3/035102 shu
Milestone
Received: 2017-12-19
Fund

    Supported by NSFC (11422543, 11653002)

Article Metric

Article Views(1345)
PDF Downloads(13)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Conformal invariant cosmological perturbations via the covariant approach: multicomponent universe

    Corresponding author: Mingzhe Li,
  • 1. Department of Physics, Nanjing University, Nanjing 210093, China
  • 2. Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China
  • 3.  Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei 230026, China
Fund Project:  Supported by NSFC (11422543, 11653002)

Abstract: In recent years there has been a lot of interest in discussing frame dependences/independences of the cosmological perturbations under the conformal transformations. This problem has previously been investigated in terms of the covariant approach for a single component universe, and it was found that the covariant approach is very powerful to pick out the perturbative variables which are both gauge and conformal invariant. In this work, we extend the covariant approach to a universe with multicomponent fluids. We find that similar results can be derived, as expected. In addition, some other interesting perturbations are also identified to be conformal invariant, such as entropy perturbation between two different components.

    HTML

Reference (49)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return