Pairing-energy coefficients of neutron-rich fragments in spallation reactions

  • The ratio of pairing-energy coefficient to temperature (ap/T) of neutron-rich fragments produced in spallation reactions has been investigated by adopting an isobaric yield ratio method deduced in the framework of a modified Fisher model. A series of spallation reactions, 0.5A and 1A GeV 208Pb + p, 1A GeV 238U + p, 0.5A GeV 136Xe + d, 0.2A, 0.5A and 1A GeV 136Xe + p, and 56Fe + p with incident energy ranging from 0.3A to 1.5A GeV, has been analysed. An obvious odd-even staggering is shown in the fragments with small neutron excess (I≡ N-Z), and in the relatively small-A fragments which have large I. The values of ap/T for the fragments, with I from 0 to 36, have been found to be in a range from -4 to 4, and most values of ap/T fall in the range from -1 to 1. It is suggested that a small pairing-energy coefficient should be considered in predicting the cross sections of fragments in spallation reactions. It is also concluded that the method proposed in this article is not good for fragments with A/As > 85% (where As is the mass number of the spallation system).
      PCAS:
  • 加载中
  • [1] C. W. Ma, F. Niu, C. Y. Qiao et al, Phys. Rev. C, 94:024615(2016)
    [2] M. Huang, A. Bonasera, Z. Chen et al, Phys. Rev. C, 81:044618(2010)
    [3] C. W. Ma, F. Wang, Y. G. Ma, and C. Jin, Phys. Rev. C, 83:064620(2011)
    [4] K. Kaneko and M. Hasegawa, Phys. Rev. C, 72:031302(2005)
    [5] S. J. Lee and A. Z. Mekjian, Phys. Rev. C, 82:064319(2010)
    [6] Y. F. Niu, Z. M. Niu, N. Paar et al, Phys. Rev. C, 88:034308(2013)
    [7] R. Lisboa, M. Malheiro, and B. V. Carlson Phys. Rev. C, 93:024321(2016)
    [8] W. Zhang, Y.F. Niu, Chin. Phys. C, 41:094102(2017)
    [9] L. Liu, Z.-H. Zhang, P.-W. Zhao, Phys. Rev. C, 92:044304(2015)
    [10] E. Yuksel, E. Kha, K. Bozkurt et al, Eur. Phys. J. A, 50:160(2014)
    [11] R. Donangelo, K. Sneppen, and S. R. Souza, Comput. Phys. Commun., 140:405(2001)
    [12] C. B. Das, S. Das Gupta, W. G. Lynch et al, Phys. Rep., 406:1(2005)
    [13] C. W. Ma, J. Pu, Y. G. Ma et al, Phys. Rev. C, 86:054611(2012)
    [14] C. W. Ma, X. L. Zhao, J. Pu et al, Phys. Rev. C, 88:014609(2013)
    [15] C.-W. Ma, X.-M. Bai, J. Yu, and H.-L. Wei, Eur. Phys. J. A, 50:139(2014)
    [16] S. Goyal and R. K. Puri, Phys. Rev. C, 83:047601(2011)
    [17] Y. K. Vermani, J. K. Dhawan, S. Goyal et al, J. Phys. G:Nucl. Part. Phys., 37:015105(2010)
    [18] R. Kumar, S. Shivani Gautam, Eur. Phys. J. A, 52:112(2016)
    [19] R. Kumar, S. Gautam, and R. K. Puri, J. Phys. G:Nucl. Part. Phys., 43:025104(2016)
    [20] C. B. Das et al, Phys. Rev. C, 64:044608(2001)
    [21] M. B. Tsang et al, Phys. Rev. C, 76:041302(R) (2007)
    [22] R. W. Minich et al, Phys. Lett. B, 118:458(1982)
    [23] A. S. Hirsch et al, Phys. Rev. C, 29:508(1984)
    [24] C. Schmitt, K.-H. Schmidt, and A. Kelić-Heil, Phys. Rev. C, 94:039901(2016); for the corrected version of spacs parameterizations see the erratum Phys. Rev. C, 94:039901(E) (2016)
    [25] C.-W. Ma, L. Huang, and Y.-D. Song, Phys. Rev. C, 95:024612(2017)
    [26] C.-W. Ma, J.-L. Xu, J. Phys. G:Nucl. Part. Phys., 44:125101(2017)
    [27] J.-C. David, Eur. Phys. J. A, 51:68(2015)
    [28] C. W. Ma, C. Y. Qiao, T. T. Ding et al, Nucl. Phys. Sci., 27:111(2016)
    [29] T. T. Ding, C. W. Ma, Nucl. Phys. Sci., 27:132(2016)
    [30] C. W. Ma, T. T. Ding, C. Y. Qiao, and X. G. Cao, Phys. Rev. C, 92:064601(2015)
    [31] M. Yu et al., Nucl. Sci. Tech., 26:S20503(2015)
    [32] C. W. Ma, H. L. Wei, S. S. Wang et al.:Phys. Lett. B, 742:19(2015)
    [33] C.-W. Ma, Y.-D. Song, C.-Y. Qiao et al, J. Phys. G:Nucl. Part. Phys., 43:045102(2016)
    [34] M. Huang, Z. Chen, S. Kowalski et al, Nucl. Phys. A, 847:233(2011)
    [35] M. Huang, Z. Chen, S. Kowalski et al, Phys. Rev. C, 81:044620(2010)
    [36] C. F. von Weizscker, Z. Phys., 96:431(1935)
    [37] H. A. Bethe, Rev. Mod. Phys., 8:82(1936)
    [38] A. E. S. Green and D. F. Edwards, Phys. Rev., 91:46(1953)
    [39] M. Yu, H.-L. Wei, Y.-D. Song et al, Chin. Phys. C, 41:094001(2017)
    [40] H. Jiang, G. J. Fu, Y. M. Zhao et al, Phys. Rev. C, 82:054317(2010)
    [41] A. Bhagwat, Phys. Rev. C, 90:064306(2014)
    [42] L.Audouina, L.Tassan-Gota, P. Armbruster et al, Nucl. Phys. A, 768:1(2006)
    [43] T. Enqvist, W. Wlazlo, P. Armbruster et al, Nucl. Phys. A, 686:481(2001)
    [44] J. Taieb, K.-H Schmidt, L. Tassan-Got et al, Nucl. Phys. A, 724:431(2003)
    [45] C. Paradela, L. Tassan-Got, J. Benlliure et al, Phys. Rev. C, 95:044606(2017)
    [46] J. Alcntara-Nez, J. Benlliure, C. Paradela et al, Phys. Rev. C, 92:024607(2015)
    [47] L. Giot, J. Alcntara-Nez, J. Benlliure et al, Nucl. Phys. A, 899:116(2013)
    [48] P. Napolitani, K.-H. Schmidt, L. Tassan-Got et al, Phys.Rev. C, 76:064609(2007)
    [49] O. Yordanov, J. Ducret, T. Gorbinet et al, J. Phys.:Conf. Ser., 366 012051(2012)
    [50] T Gorbinet, T. Aumann, S. Bianchin et al, Phys. Scr., 2012:014015(2012)
    [51] C. Villagrasa-Canton et al, Phys. Rev. C, 75:044603(2007)
    [52] J. Su, F.-S. Zhang, B.-A. Bian, Phys. Rev. C, 83:014608(2010)
  • 加载中

Get Citation
Fei Niu and Chun-Wang Ma. Pairing-energy coefficients of neutron-rich fragments in spallation reactions[J]. Chinese Physics C, 2018, 42(3): 034102. doi: 10.1088/1674-1137/42/3/034102
Fei Niu and Chun-Wang Ma. Pairing-energy coefficients of neutron-rich fragments in spallation reactions[J]. Chinese Physics C, 2018, 42(3): 034102.  doi: 10.1088/1674-1137/42/3/034102 shu
Milestone
Received: 2017-10-24
Revised: 2017-12-25
Fund

    Supported by National Natural Science Foundation of China (U1732135), Natural Science Foundation of Henan Province (162300410179) and Henan Normal University for the Excellent Youth (154100510007)

Article Metric

Article Views(1374)
PDF Downloads(29)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Pairing-energy coefficients of neutron-rich fragments in spallation reactions

    Corresponding author: Chun-Wang Ma,
  • 1. Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
  • 2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 3.  Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
Fund Project:  Supported by National Natural Science Foundation of China (U1732135), Natural Science Foundation of Henan Province (162300410179) and Henan Normal University for the Excellent Youth (154100510007)

Abstract: The ratio of pairing-energy coefficient to temperature (ap/T) of neutron-rich fragments produced in spallation reactions has been investigated by adopting an isobaric yield ratio method deduced in the framework of a modified Fisher model. A series of spallation reactions, 0.5A and 1A GeV 208Pb + p, 1A GeV 238U + p, 0.5A GeV 136Xe + d, 0.2A, 0.5A and 1A GeV 136Xe + p, and 56Fe + p with incident energy ranging from 0.3A to 1.5A GeV, has been analysed. An obvious odd-even staggering is shown in the fragments with small neutron excess (I≡ N-Z), and in the relatively small-A fragments which have large I. The values of ap/T for the fragments, with I from 0 to 36, have been found to be in a range from -4 to 4, and most values of ap/T fall in the range from -1 to 1. It is suggested that a small pairing-energy coefficient should be considered in predicting the cross sections of fragments in spallation reactions. It is also concluded that the method proposed in this article is not good for fragments with A/As > 85% (where As is the mass number of the spallation system).

    HTML

Reference (52)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return