Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2

  • The properties of the low-lying states, especially the relevant shape coexistence in 80Ge, close to one of most neutron-rich doubly magic nuclei at N=50 and Z=28, have been investigated within the framework of the proton-neutron interacting model (IBM-2). Based on the fact that the relative energy of the d neutron boson is different from that of the proton boson, the calculated energy levels of low-lying states and E2 transition strengths can reproduce the experimental data very well. Particularly, the first excited state 0+2, which is intimately related to the shape coexistence phenomenon, is reproduced quite nicely. The ρ2(E2, 02+→01+) transition strength is also predicted. The experimental data and theoretical results indicate that both collective spherical and γ-soft vibration structures coexist in 80Ge.
      PCAS:
  • 加载中
  • [1] A. Poves, J. Phys. G:Nucl. Part. Phys., 43:020401(2016)
    [2] K. Heyde and J. L. Wood, Rev. Mod. Phys., 83:1467(2011)
    [3] A. Gade and S. N. Liddick, J. Phys. G:Nucl. Part. Phys., 43:024001(2016)
    [4] F. Nowacki, A. Poves, E. Caurier, and B. Bounthong, Phys. Rev. Lett., 117:272501(2016)
    [5] A. N. Andreyev, Nature, 405:430(2000)
    [6] A. G\ddotorgen and W. Korten, J. Phys. G:Nucl. Part. Phys., 43:024002(2016)
    [7] Y. X. Liu, S. Y. Yu, and Y. Sun, Sci. China-Phys. Mech. Astron., 58:112003(2015)
    [8] G. X. Dong, X. B. Wang, and S. Y. Yu, Sci. China-Phys. Mech. Astron., 58:112004(2015)
    [9] Z. J. Bai, X. M. Fu, C. F. Jiao, and F. R. Xu, Chin. Phys. C, 39:094101(2015)
    [10] J. Sun, T. Komatsubara, J. Q. Wang, H. Guo, X. Y. Hu, Y. J. Ma, Y. Z. Liu, and K. Furuno, Chin. Phys. C, 40:124001(2016)
    [11] F. Iachello, N. V. Zamfir, and R. F. Casten, Phys. Rev. Lett., 81:1191(1998)
    [12] Y. X. Liu, L. Z. Mu, and H. Q. Wei, Phys. Lett. B, 633:49(2006)
    [13] M. Hasegawa, K. Kaneko, T. Mizusaki, and Y. Sun, Phys. Lett. B, 656:51(2007)
    [14] Y. Sun et al, Phys. Rev. C, 80:054306(2009)
    [15] Y. X. Liu, Y. Sun, X. H. Zhou, Y. H. Zhang, S. Y. Yu, Y. C. Yang, H. Jin, Nucl. Phys. A, 858:11(2011)
    [16] Z. Z. Ren, Phys. Rev. C, 65:051304(2002)
    [17] G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. Lett., 117:172501(2016)
    [18] A. Gottardo et al, Phys. Rev. Lett., 116:182501(2016)
    [19] E. Padilla-Rodal et al, Phys. Rev. Lett., 94:122501(2005)
    [20] S. F. Shen, S. J. Zheng, F. R. Xu, and R. Wyss, Phys. Rev. C, 84:044315(2011)
    [21] D. L. Zhang and B. G. Ding, Chin. Phys. Lett., 30:122101(2013)
    [22] D. L. Zhang, and C. F. Mu, Sci. China-Phys. Mech. Astron., 61:012012(2018)
    [23] M. Lettmann et al, Phys. Rev. C, 96:011301(2017)
    [24] H. Iwasaki et al, Phys. Rev. C, 78:021304(2008)
    [25] S. Mukhopadhyay et al, Phys. Rev. C, 95:014327(2017)
    [26] L. Guo, J. A. Maruhn, and P. G. Reinhard, Phys. Rev. C, 76:034317(2007)
    [27] P. Sarriguren, Phys. Rev. C, 91:044304(2015)
    [28] T. Nikić, P. Marević, and D. Vretenar, Phys. Rev. C, 89:044325(2014)
    [29] G. H. Bhat, W. A. Dar, J. A. Sheikh, and Y. Sun, Phys. Rev. C, 89:014328(2014)
    [30] D. Verney et al, Phys. Rev. C, 87:054307(2013)
    [31] S. T. Hsieh, H. C. Chiang, and D. S. Chuu, Phys. Rev. C, 46:195(1992)
    [32] F. Iachello, and A. Arima The Interacting Boson Model (Cambridge, England:Cambridge University Press, 1987)
    [33] P. D. Duval, D. Goutte, and M. Vergnes, Phys. Lett. B, 124:297(1983)
    [34] J. P. Elliott, J. A. Evans, V. S. Lac, and G. L. Long, Nucl. Phys. A, 609:1(1996)
    [35] K. Nomura et al, Phys. Rev. C, 95:064310(2017)
    [36] D. L. Zhang and B. G. Ding, Sci. China-Phys. Mech. Astron., 57:447(2014)
    [37] D. L. Zhang and C. F. Mu, Chin. Phys. Lett., 33:102102(2016)
    [38] D. L. Zhang and C. F. Mu, Sci. China-Phys. Mech. Astron., 59:682012(2016)
    [39] P. Cejner, J, Jolie, and R. F. Casten, Rev. Mod. Phys., 82:2155(2010)
    [40] G. Grdal et al, Phys. Rev. C, 88:014301(2013)
    [41] H. Rotter et al, Nucl. Phys. A, 514:401(1990)
    [42] H. Dejbakhsh, D. Latypov, G. Ajupova, and S. Shlomo, Phys. Rev. C, 46:2326(1992)
    [43] K. Nomura, T. Otsuka, N. Shimizu, and L. Guo, Phys. Rev. C, 83:041302(2011)
    [44] K. Nomura, T. Otsuka, and P. V.Isacker, J. Phys. G:Nucl. Part. Phys., 43:024008(2016)
    [45] D. L. Zhang and C. F. Mu, Sci. China-Phys. Mech. Astron., 60:042011(2017)
    [46] T. Otsuka and N. Yoshida, Program NPBOS, JAER-M Report, No.85(unpublished):(1985)
    [47] R. F. Casten and D. D. Warner, Rev. Mod. Phys., 60:389(1988)
    [48] D. L. Zhang, S. Q. Yuan, and B. G. Ding, Chin. Phys. Lett., 32:062101(2015)
    [49] W. D. Hamilton, A. Irback, and J. P. Elliott, Phys. Rev. Lett., 53:2469(1984)
    [50] J. Stachel, P. Van Isacker, and K. Heyde, Phys. Rev. C, 25:650(1982)
    [51] P. F. Mantica and W. B. Walters, Phys. Rev. C, 53:R2586(1996)
    [52] E. Bouchez et al, Phys. Rev. Lett., 90:082502(2003)
    [53] B. A.Brown, A. B. Garnsworthy, T. Kib\acuteedi, and A. E. Stuchbery, Phys. Rev. C, 95:011301(2017)
    [54] B. R. Barrett and T. Otsuka, Phys. Rev. C, 46:1735(1992)
    [55] A. Leviatan and D. Shapira, Phys. Rev. C, 93:051302(2016)
    [56] J. L. Wood, E. E. Zganjar, C. E. Coster, and K. Heyde, Nucl. Phys. A, 651:323(1999)
    [57] K. Kaneko, Y. Sun, and R. Wadsworth, Phys. Scr. 92:114008(2017)
    [58] Y. Tsunoda et al, Phys. Rev. C, 89:031301(R) (2014)
  • 加载中

Get Citation
Da-Li Zhang and Cheng-Fu Mu. Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2[J]. Chinese Physics C, 2018, 42(3): 034101. doi: 10.1088/1674-1137/42/3/034101
Da-Li Zhang and Cheng-Fu Mu. Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2[J]. Chinese Physics C, 2018, 42(3): 034101.  doi: 10.1088/1674-1137/42/3/034101 shu
Milestone
Received: 2017-10-23
Fund

    Supported by National Natural Science Foundation of China (11475062, 11647306, 11147148)

Article Metric

Article Views(1623)
PDF Downloads(19)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2

    Corresponding author: Da-Li Zhang,
    Corresponding author: Cheng-Fu Mu,
  • 1. Department of Physics, Huzhou University, Huzhou 313000, China
Fund Project:  Supported by National Natural Science Foundation of China (11475062, 11647306, 11147148)

Abstract: The properties of the low-lying states, especially the relevant shape coexistence in 80Ge, close to one of most neutron-rich doubly magic nuclei at N=50 and Z=28, have been investigated within the framework of the proton-neutron interacting model (IBM-2). Based on the fact that the relative energy of the d neutron boson is different from that of the proton boson, the calculated energy levels of low-lying states and E2 transition strengths can reproduce the experimental data very well. Particularly, the first excited state 0+2, which is intimately related to the shape coexistence phenomenon, is reproduced quite nicely. The ρ2(E2, 02+→01+) transition strength is also predicted. The experimental data and theoretical results indicate that both collective spherical and γ-soft vibration structures coexist in 80Ge.

    HTML

Reference (58)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return