Gravitational waves from dark first order phase transitions and dark photons

  • Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon's space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates.
      PCAS:
  • 加载中
  • [1] C. Caprini et al, JCAP, 1604(4):001 (2016) doi:10.1088/1475-7516/2016/04/001[arXiv:1512.06239[astro-ph.CO]]
    [2] H. Kudoh, A. Taruya, T. Hiramatsu, and Y. Himemoto, Phys. Rev. D, 73:064006 (2006) doi:10.1103/PhysRevD.73.064006[gr-qc/0511145]
    [3] H. Audley et al, arXiv:1702.00786[astro-ph.IM]
    [4] E. Witten, Phys. Rev. D, 30:272 (1984) doi:10.1103/PhysRevD.30.272
    [5] M. S. Turner and F. Wilczek, Phys. Rev. Lett., 65; 3080 (1990) doi:10.1103/PhysRevLett.65.3080
    [6] C. J. Hogan, Mon. Not. Roy. Astron. Soc., 218:629 (1986)
    [7] A. Kosowsky, M. S. Turner, and R. Watkins, Phys. Rev. D, 45:4514 (1992) doi:10.1103/PhysRevD.45.4514
    [8] M. Kamionkowski, A. Kosowsky, and M. S. Turner, Phys. Rev. D, 49:2837 (1994) doi:10.1103/PhysRevD.49.2837[astroph/9310044]
    [9] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Phys. Rev. Lett., 112:041301 (2014) doi:10.1103/PhysRevLett.112.041301[arXiv:1304.2433[hepph]]
    [10] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Phys. Rev. D, 92(12):123009 (2015) doi:10.1103/PhysRevD.92.123009[arXiv:1504.03291[astroph.CO]]
    [11] P. Schwaller, Phys. Rev. Lett., 115(18):181101 (2015) doi:10.1103/PhysRevLett.115.181101[arXiv:1504.07263[hepph]]
    [12] M. Chala, G. Nardini, and I. Sobolev, Phys. Rev. D, 94(5):055006 (2016) doi:10.1103/PhysRevD.94.055006[arXiv:1605.08663[hep-ph]]
    [13] S. J. Huber, T. Konstandin, G. Nardini, and I. Rues, JCAP, 1603(3):036 (2016) doi:10.1088/1475-7516/2016/03/036[arXiv:1512.06357[hep-ph]]
    [14] F. P. Huang, Y. Wan, D. G. Wang, Y. F. Cai, and X. Zhang, Phys. Rev. D, 94(4):041702 (2016) doi:10.1103/PhysRevD.94.041702[arXiv:1601.01640[hep-ph]]
    [15] M. Artymowski, M. Lewicki, and J. D. Wells, arXiv:1609.07143[hep-ph]
    [16] P. S. B. Dev and A. Mazumdar, Phys. Rev. D, 93(10):104001 (2016) doi:10.1103/PhysRevD.93.104001[arXiv:1602.04203[hep-ph]]
    [17] A. Katz and A. Riotto, arXiv:1608.00583[hep-ph]
    [18] F. P. Huang and X. Zhang, arXiv:1701.04338[hep-ph]
    [19] I. Baldes, arXiv:1702.02117[hep-ph]
    [20] W. Chao, H. K. Guo, and J. Shu, arXiv:1702.02698[hep-ph]
    [21] A. Addazi, arXiv:1607.08057[hep-ph], to appear in Mod. Phys. Lett.A.
    [22] C. Delaunay, C. Grojean, and J. D. Wells, JHEP, 0804:029 (2008) doi:10.1088/1126-6708/2008/04/029[arXiv:0711.2511[hep-ph]]
    [23] B. Holdom, Phys. Lett., 166B:196 (1986) doi:10.1016/0370-2693(86)91377-8
    [24] S. L. Glashow, Phys. Lett. B, 167:36 (1986)
    [25] E. D. Carlson and S. L. Glashow, Phys. Lett. B, 193:168 (1987)
    [26] J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys. Rev. D, 80:075018 (2009)[arXiv:0906.0580[hep-ph]]
    [27] J. D. Bjorken et al, Phys. Rev. D, 38:3375 (1988)
    [28] E. M. Riordan et al, Phys. Rev. Lett., 59:755 (1987)
    [29] A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbanek, Phys. Rev. Lett., 67:2942 (1991)
    [30] M. Pospelov, Phys. Rev. D, 80:095002 (2009)[arXiv:0811.1030[hep-ph]]
    [31] H. Davoudiasl, H. -S. Lee, and W. J. Marciano, Phys. Rev. D, 86:095009 (2012)[arXiv:1208.2973[hep-ph]]
    [32] M. Endo, K. Hamaguchi, and G. Mishima, Phys. Rev. D, 86:095029 (2012)[arXiv:1209.2558[hep-ph]]
    [33] D. Babusci et al (KLOE-2 Collaboration), Phys. Lett. B, 720:111 (2013)[arXiv:1210.3927[hep-ex]]
    [34] F. Archilli, D. Babusci, D. Badoni, I. Balwierz, G. Bencivenni, C. Bini, C. Bloise, and V. Bocci et al, Phys. Lett. B, 706:251 (2012)[arXiv:1110.0411[hep-ex]]
    [35] P. Adlarson et al (WASA-at-COSY Collaboration), Phys. Lett. B, 726:187 (2013)[arXiv:1304.0671[hep-ex]]
    [36] Abrahamyan et al (APEX Collaboration), Phys. Rev. Lett., 107:191804 (2011)[arXiv:1108.2750[hep-ex]]
    [37] H. Merkel et al (A1 Collaboration), Phys. Rev. Lett., 106:251802 (2011)[arXiv:1101.4091[nucl-ex]]
    [38] M. Reece and L. T. Wang, JHEP, 0907:051 (2009)[arXiv:0904.1743[hep-ph]]
    [39] B. Aubert et al (BABAR Collaboration), Phys. Rev. Lett., 103:081803 (2009)[arXiv:0905.4539[hep-ex]]
    [40] J. B. Dent, F. Ferrer, and L. M. Krauss, arXiv:1201.2683[astroph.CO]
    [41] H. K. Dreiner, J.-F. Fortin, C. Hanhart, and L. Ubaldi, arXiv:1310.3826[hep-ph]
    [42] R. Essig, P. Schuster, N. Toro, and B. Wojtsekhowski, JHEP, 1102:009 (2011)[arXiv:1001.2557[hep-ph]]
    [43] The Heavy Photon Search Collaboration (HPS), https://confluence.slac.stanford.edu/display/hpsg/
    [44] M. Freytsis, G. Ovanesyan, and J. Thaler, JHEP, 1001 111 (2010)[arXiv:0909.2862[hep-ph]]
    [45] B. Wojtsekhowski, AIP Conf. Proc., 1160:149 (2009)[arXiv:0906.5265[hep-ex]]
    [46] B. Wojtsekhowski, D. Nikolenko, and I. Rachek, arXiv:1207.5089[hep-ex]
    [47] T. Beranek, H. Merkel, and M. Vanderhaeghen, Phys. Rev. D, 88:015032 arXiv:1303.2540[hep-ph]
    [48] R. Bernabei et al, Eur. Phys. J. C, 73:2648 (2013) doi:10.1140/epjc/s10052-013-2648-7[arXiv:1308.5109[astroph.GA]]
    [49] R. Bernabei et al, Phys. Rev. D, 77:023506 (2008) doi:10.1103/PhysRevD.77.023506[arXiv:0712.0562[astro-ph]]
    [50] R. Foot, arXiv:1508.07402[hep-ph]
    [51] S. K. Lee, M. Lisanti, S. Mishra-Sharma, and B. R. Safdi, Phys. Rev. D, 92(8):083517 (2015) doi:10.1103/PhysRevD.92.083517[arXiv:1508.07361[hep-ph]]
    [52] J. W. Chen, H. C. Chi, C. P. Liu, C. L. Wu, and C. P. Wu, Phys. Rev. D, 92(9):096013 (2015) doi:10.1103/PhysRevD.92.096013[arXiv:1508.03508[hep-ph]]
    [53] A. Addazi, Z. Berezhiani, R. Bernabei, P. Belli, F. Cappella, R. Cerulli, and A. Incicchitti, Eur. Phys. J. C, 75(8):400 (2015) doi:10.1140/epjc/s10052-015-3634-z[arXiv:1507.04317[hep-ex]]
    [54] R. Cerulli, P. Villar, F. Cappella, R. Bernabei, P. Belli, A. Incicchitti, A. Addazi, and Z. Berezhiani, Eur. Phys. J. C, 77(2):83 (2017) doi:10.1140/epjc/s10052-017-4658-3[arXiv:1701.08590[hep-ex]]
  • 加载中

Get Citation
Andrea Addazi and Antonino Marcianò. Gravitational waves from dark first order phase transitions and dark photons[J]. Chinese Physics C, 2018, 42(2): 023107. doi: 10.1088/1674-1137/42/2/023107
Andrea Addazi and Antonino Marcianò. Gravitational waves from dark first order phase transitions and dark photons[J]. Chinese Physics C, 2018, 42(2): 023107.  doi: 10.1088/1674-1137/42/2/023107 shu
Milestone
Received: 2017-10-09
Revised: 2017-12-18
Fund

    Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)}

Article Metric

Article Views(1329)
PDF Downloads(20)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Gravitational waves from dark first order phase transitions and dark photons

    Corresponding author: Andrea Addazi,
Fund Project:  Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)}

Abstract: Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon's space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates.

    HTML

Reference (54)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return