Woods-Saxon-Gaussian potential and alpha-cluster structures ofalpha + closed shell nuclei

  • The Woods-Saxon-Gaussian (WSG) potential is proposed as a new phenomenological potential to systematically describe the level scheme, electromagnetic transitions, and alpha-decay half-lives of the alpha-cluster structures in various alpha + closed shell nuclei. It modifies the original Woods-Saxon (WS) potential with a shifted Gaussian factor centered at the nuclear surface. The free parameters in the WSG potential are determined by reproducing the correct level scheme of 212Po=208Pb+α. It is found that the resulting WSG potential matches the M3Y double-folding potential at the surface region and makes corrections to the inner part of the cluster-core potential. It was also determined that the WSG potential, with nearly identical parameters to that of 212Po (except for a rescaled radius), could also be used to describe alpha-cluster structures in 20Ne=16O+α and 44Ti=40Ca+α. In all three cases, the calculated values of the level schemes, electromagnetic transitions, and alpha-decay half-lives agree with the experimental data, which indicates that the WSG potential could indeed capture many important features of the alpha-cluster structures in alpha + closed shell nuclei. This study is a useful complement to the existing cluster-core potentials in literature. The Gaussian form factor centered at the nuclear surface might also help to improve our understanding of the alpha-cluster formation, which occurs in the same general region.
      PCAS:
  • 加载中
  • [1] L. R. Hafstad and E. Teller, Phys. Rev., 54:681(1938)
    [2] A. Tohsaki, H. Horiuchi, P. Schuck and G. Rpke, Phys. Rev. Lett., 87:192501(2001)[nucl-th/0110014]
    [3] D. Bai and Z. Ren, Phys. Rev. C, 97:054301(2018), arXiv:1804.05992[nucl-th]
    [4] B. Zhou et al, Phys. Rev. Lett., 110:262501(2013), arXiv:1304.1244[nucl-th]
    [5] G. Gamow, Z. Phys. 51:204(1928)
    [6] R. Gurney, and E. Condon, Nature (London), 122:439(1928)
    [7] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. Lett., 65:2975(1990)
    [8] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 45:2247(1992)
    [9] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 51:559(1995)
    [10] B. Buck, J. C. Johnston, A. C. Merchant and S. M. Perez, Phys. Rev. C, 53:2841(1996)
    [11] V. Y. Denisov and A. A. Khudenko, Phys. Rev. C, 80:034603(2009) Erratum:[Phys. Rev. C, 82:059902(2010)]
    [12] T. T. Ibrahim, S. M. Perez, and S. M. Wyngaardt, Phys. Rev. C, 82:034302(2010)
    [13] D. S. Delion and A. Dumitrescu, Atom. Data Nucl. Data Tabl., 101:1(2015)
    [14] V. Y. Denisov, O. I. Davidovskaya, and I. Y. Sedykh, Phys. Rev. C, 92:014602(2015) arXiv:1506.08005[nucl-th]
    [15] P. Mohr, Eur. Phys. J. A, 53:209(2017) arXiv:1710.02790[nucl-th]
    [16] D. S. Delion, Z. Ren, A. Dumitrescu, and D. Ni, J. Phys. G, 45:053001(2018)
    [17] M. Ismail and A. Adel, Phys. Rev. C, 97:044301(2018)
    [18] C. Xu and Z. Ren, Nucl. Phys. A, 753:174(2005)
    [19] D. Ni and Z. Ren, Nucl. Phys. A, 828:348(2009)
    [20] D. Ni and Z. Ren, Nucl. Phys. A, 825:145(2009)
    [21] D. Ni and Z. Ren, Phys. Rev. C, 80:014314(2009)
    [22] D. Ni and Z. Ren, Phys. Rev. C, 80:051303(2009)
    [23] D. Ni and Z. Ren, Phys. Rev. C, 81:024315(2010)
    [24] D. Ni and Z. Ren, Phys. Rev. C, 82:024311(2010)
    [25] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett., 69:37(1992)
    [26] A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, and P. Schuck, Phys. Rev. Lett., 104:042701(2010), arXiv:0911.3502[nucl-ex]
    [27] A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, and P. Schuck, Eur. Phys. J. A, 46:165(2010), arXiv:1004.1517[nucl-ex]
    [28] D. S. Delion, R. J. Liotta, P. Schuck, A. Astier, and M. G. Porquet, Phys. Rev. C, 85:064306(2012)
    [29] G. Rpke et al, Phys. Rev. C, 90:034304(2014), arXiv:1407.0510[nucl-th]
    [30] C. Xu et al, Phys. Rev. C, 93:011306(2016), arXiv:1511.07584[nucl-th]
    [31] D. S. Delion, Theory of Particle and Cluster Emission (Springer-Verlag, Berlin, 2010)
    [32] S. M. Wang, J. C. Pei, and F. R. Xu, Phys. Rev. C, 87:014311(2013)
    [33] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, (Academic Press, New York, 1977)
    [34] E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys., 51:223(2003)
    [35] S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett., 59:262(1987)
    [36] S. A. Gurvitz, Phys. Rev. A, 38:1747(1988)
    [37] G. R. Satchler and W. G. Love, Phys. Rept., 55:183(1979)
    [38] National Nuclear Data Center (NNDC):https://www.nndc.bnl.gov
    [39] H. Abele and G. Staudt, Phys. Rev. C, 47:742(1993)
  • 加载中

Get Citation
Dong Bai and Zhongzhou Ren. Woods-Saxon-Gaussian potential and alpha-cluster structures ofalpha + closed shell nuclei[J]. Chinese Physics C, 2018, 42(12): 124102. doi: 10.1088/1674-1137/42/12/124102
Dong Bai and Zhongzhou Ren. Woods-Saxon-Gaussian potential and alpha-cluster structures ofalpha + closed shell nuclei[J]. Chinese Physics C, 2018, 42(12): 124102.  doi: 10.1088/1674-1137/42/12/124102 shu
Milestone
Received: 2018-07-11
Fund

    Supported by the National Natural Science Foundation of China (11535004, 11761161001, 11375086, 11120101005, 11175085, 11235001), the National Key RD Program of China (2018YFA0404403, 2016YFE0129300) and the Science and Technology Development Fund of Macau (008/2017/AFJ)

Article Metric

Article Views(1637)
PDF Downloads(31)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Woods-Saxon-Gaussian potential and alpha-cluster structures ofalpha + closed shell nuclei

    Corresponding author: Dong Bai,
    Corresponding author: Zhongzhou Ren,
  • 1.  School of Physics, Nanjing University, Nanjing 210093, China
  • 2.  School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Fund Project:  Supported by the National Natural Science Foundation of China (11535004, 11761161001, 11375086, 11120101005, 11175085, 11235001), the National Key RD Program of China (2018YFA0404403, 2016YFE0129300) and the Science and Technology Development Fund of Macau (008/2017/AFJ)

Abstract: The Woods-Saxon-Gaussian (WSG) potential is proposed as a new phenomenological potential to systematically describe the level scheme, electromagnetic transitions, and alpha-decay half-lives of the alpha-cluster structures in various alpha + closed shell nuclei. It modifies the original Woods-Saxon (WS) potential with a shifted Gaussian factor centered at the nuclear surface. The free parameters in the WSG potential are determined by reproducing the correct level scheme of 212Po=208Pb+α. It is found that the resulting WSG potential matches the M3Y double-folding potential at the surface region and makes corrections to the inner part of the cluster-core potential. It was also determined that the WSG potential, with nearly identical parameters to that of 212Po (except for a rescaled radius), could also be used to describe alpha-cluster structures in 20Ne=16O+α and 44Ti=40Ca+α. In all three cases, the calculated values of the level schemes, electromagnetic transitions, and alpha-decay half-lives agree with the experimental data, which indicates that the WSG potential could indeed capture many important features of the alpha-cluster structures in alpha + closed shell nuclei. This study is a useful complement to the existing cluster-core potentials in literature. The Gaussian form factor centered at the nuclear surface might also help to improve our understanding of the alpha-cluster formation, which occurs in the same general region.

    HTML

Reference (39)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return