Discussion of thermodynamic features within the PNJL model

  • We discuss some thermodynamical features of a QCD system within the two-flavor Polyakov loop extended Nambu—Jona-Lasinio (PNJL) model. Several thermodynamical quantities of interest (pressure, energy density, specific heat, speed of sound, etc.) are investigated and discussed in detail with two different forms of Polyakov loop potential. The effective coupling strength G incorporating a quark feedback (quark condensate) through operator product expansion is also discussed, as well as the relationship between color deconfinement and chiral phase crossover. We find that some thermodynamical quantities have quite different behavior for different Polyakov loop potentials. By changing the characteristic temperature T0 of the pure Yang-Mills field, we find that when T0 becomes small, color deconfinement might happen earlier than chiral phase crossover, while their relationship can be determined via some thermodynamical quantities. Furthermore, the behavior of the thermodynamical quantities is quite different in the two different forms of Polyakov loop potential studied. Especially, one of the potentials, specific heat, has two peaks, which correspond to color deconfinement and chiral phase crossover respectively. This interesting phenomenon may shed some light on whether the inflection points of the chiral condensate and deconfinement transitions happen at the same temperature or not for lattice QCD and experimental studies.
      PCAS:
  • 加载中
  • [1] K. Fukushima, Phys. Rev. D, 77:114028 (2008)
    [2] H. Abuki, R. Anglani, R. Gatto, G. Nardulli, and M. Ruggieri, Phys. Rev. D, 78:034034 (2008)
    [3] S. P. Klevansky, Rev. Mod. Phys., 64:649 (1992)
    [4] M. Buballa, Phys. Rep., 407:205 (2005)
    [5] M. Ciminale, R. Gatto, N. D. Ippolito, G. Nardulli, and M. Ruggieri, Phys. Rev. D, 77:054023 (2008)
    [6] S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa, and R. Ray, Phys. Rev. D, 73:114007 (2006)
    [7] H.-T. Ding, F. Karsch, and S. Mukherjee, Int. J. Mod. Phys. E, 24:1530007 (2015), arXiv:1504.05274[hep-lat]
    [8] H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi, and C. Ratti, Phys. Rev. D, 75:065004 (2007)
    [9] Y. Sakai, K. Kashiwa, H. Kouno, and M. Yahiro, Phys. Rev. D, 77:051901 (2008)
    [10] P. Costa, M. C. Ruivo, C. A. de Sousa, H. Hansen, and W. M. Alberico, Phys. Rev. D, 79:116003 (2009)
    [11] C. Ratti, S. Roessner, M. A. Thaler, and W. Weise, Proceedings, Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2006):Villasimius, Italy, May 15-20, 2006, Eur. Phys. J. C., 49:213 (2007), arXiv:hep-ph/0609218[hep-ph]
    [12] Z. Zhang and Y.-X. Liu, Phys. Rev. C, 75:064910 (2007), arXiv:hep-ph/0610221[hep-ph]
    [13] K. Kashiwa, H. Kouno, and M. Yahiro, Phys. Rev. D, 80:117901 (2009), arXiv:0908.1213[hep-ph]
    [14] G. Hellstern, R. Alkofer, and H. Reinhardt, Nucl. Phys. A, 625:697 (1997), arXiv:hep-ph/9706551[hep-ph]
    [15] T. Z. Nakano, K. Miura, and A. Ohnishi, Phys. Rev. D, 83:016014 (2011), arXiv:1009.1518[hep-lat]
    [16] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, J. Phys. G, 39:035004 (2012), arXiv:1104.2394[hep-ph]
    [17] K.-I. Kondo, Phys. Rev. D, 82:065024 (2010), arXiv:1005.0314 [hep-th]
    [18] Z.-F. Cui, I. C. Clet, Y. Lu, C. D. Roberts, S. M. Schmidt, S.-S. Xu, and H.-S. Zong, Phys. Rev. D, 94:071503 (2016), arXiv:1604.08454[nucl-th]
    [19] B. B. Back et al, Nucl. Phys. A, 757:28 (2005), arXiv:nuclex/0410022[nucl-ex]
    [20] J. Adams et al (STAR), Nucl. Phys. A, 757:102 (2005), arXiv:nucl-ex/0501009[nucl-ex]
    [21] K. Adcox et al, Nucl. Phys. A, 757:184 (2005)
    [22] A. Bazavov et al, Phys. Rev. D, 80:014504 (2009), arXiv:0903.4379[hep-lat]
    [23] B. Mohanty and J.-e. Alam, Phys. Rev. C, 68:064903 (2003)
    [24] C. Bernard et al, Phys. Rev. D, 75:094505 (2007), arXiv:heplat/0611031[hep-lat]
    [25] M. Cheng et al, Phys. Rev. D, 77:014511 (2008), arXiv:0710.0354[hep-lat]
    [26] A. Polyakov, Phys. Lett. B, 72:477 (1978)
    [27] B.-J. Schaefer, M. Wagner, and J. Wambach, Phys. Rev. D, 81:074013 (2010)
    [28] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D, 73:014019 (2006)
    [29] S. Rner, C. Ratti, and W. Weise, Phys. Rev. D, 75:034007 (2007)
    [30] R. D. Pisarski, Phys. Rev. D, 62:111501 (2000)
    [31] A. Dumitru and R. D. Pisarski, Phys. Lett. B, 525:95 (2002), arXiv:hep-ph/0106176[hep-ph]
    [32] K. Fukushima, Phys. Lett. B, 591:277 (2004), arXiv:hepph/0310121[hep-ph]
    [33] C. Ratti, S. Roessner, and W. Weise, Phys. Lett. B, 649:57 (2007), arXiv:hep-ph/0701091[hep-ph]
    [34] C. Ratti and W. Weise, Phys. Rev. D, 70:054013 (2004)
    [35] J. Braun and H. Gies, JHEP, 2006:024 (2006)
    [36] B.-J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys. Rev. D, 76:074023 (2007)
    [37] H.-S. Zong, W.-M. Sun, J.-L. Ping, F. Wang et al, Chin. Phys. Lett., 22:3036 (2005)
    [38] Y. Jiang, H. Gong, W.-M. Sun, and H.-S. Zong, Phys. Rev. D, 85:034031 (2012)
    [39] Z.-F. Cui, C. Shi, Y.-H. Xia, Y. Jiang, and H.-S. Zong, Eur. Phys. J. C, 73:2612 (2013)
    [40] Z.-F. Cui, C. Shi, W.-M. Sun, Y.-L. Wang, and H.-S. Zong, Eur. Phys. J. C., 74:2782 (2014)
    [41] C. Shi, Y.-L. Du, S.-S. Xu, X.-J. Liu, and H.-S. Zong, Phys. Rev. D, 93:036006 (2016), arXiv:1602.00062[hep-ph]
    [42] C.-M. Li, J.-L. Zhang, Y. Yan, Y.-F. Huang, and H.-S. Zong, Phys. Rev. D, 97:103013 (2018), arXiv:1804.10785[nucl-th]
    [43] S. Borsnyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szab, JHEP, 2010:73 (2010)
    [44] T. G. Steele, Z. Phys. C-Particles and Fields, 42:499 (1989)
    [45] Y. Aoki, S. Borsnyi, S. Drr, Z. Fodor, S. D. Katz, S. Krieg, and K. Szab, JHEP 2009:88 (2009)
    [46] Z.-F. Cui, F.-Y. Hou, Y.-M. Shi, Y.-L. Wang, and H.-S. Zong, Annals Phys., 358:172 (2015), arXiv:1505.00310[hep-ph]
    [47] I. General, D. G. Dumm, and N. Scoccola, Phys. Lett. B, 506:267 (2001)
    [48] S. Borsanyi, Proceedings, 23rd International Conference on Ultrarelativistic Nucleus-Nucleus Collisions:Quark Matter 2012 (QM 2012):Washington, DC, USA, August 13-18, 2012, Nucl. Phys. A904-905, 270c (2013), arXiv:1210.6901[hep-lat]
    [49] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, JHEP, 11:077 (2010), arXiv:1007.2580[hep-lat]
    [50] A. Bazavov et al (HotQCD), Phys. Rev. D, 90:094503 (2014), arXiv:1407.6387[hep-lat]
    [51] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo, Phys. Lett. B, 730:99 (2014), arXiv:1309.5258 [hep-lat]
  • 加载中

Get Citation
Jin-Li Zhang, Cheng-Ming Li and Hong-Shi Zong. Discussion of thermodynamic features within the PNJL model[J]. Chinese Physics C, 2018, 42(12): 123105. doi: 10.1088/1674-1137/42/12/123105
Jin-Li Zhang, Cheng-Ming Li and Hong-Shi Zong. Discussion of thermodynamic features within the PNJL model[J]. Chinese Physics C, 2018, 42(12): 123105.  doi: 10.1088/1674-1137/42/12/123105 shu
Milestone
Received: 2018-06-04
Revised: 2018-08-15
Fund

    Supported by National Natural Science Foundation of China (11475085,11535005,11690030, 11805097), National Major state Basic Research and Development of China (2016YFE0129300) and Jiangsu Provincial Natural Science Foundation of China (BK20180323)

Article Metric

Article Views(1576)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Discussion of thermodynamic features within the PNJL model

    Corresponding author: Hong-Shi Zong,
  • 1.  Department of Physics, Nanjing University, Nanjing 210093, China
  • 2. Department of Physics, Nanjing University, Nanjing 210093, China
  • 3. Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China
  • 4. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing 100190, China
Fund Project:  Supported by National Natural Science Foundation of China (11475085,11535005,11690030, 11805097), National Major state Basic Research and Development of China (2016YFE0129300) and Jiangsu Provincial Natural Science Foundation of China (BK20180323)

Abstract: We discuss some thermodynamical features of a QCD system within the two-flavor Polyakov loop extended Nambu—Jona-Lasinio (PNJL) model. Several thermodynamical quantities of interest (pressure, energy density, specific heat, speed of sound, etc.) are investigated and discussed in detail with two different forms of Polyakov loop potential. The effective coupling strength G incorporating a quark feedback (quark condensate) through operator product expansion is also discussed, as well as the relationship between color deconfinement and chiral phase crossover. We find that some thermodynamical quantities have quite different behavior for different Polyakov loop potentials. By changing the characteristic temperature T0 of the pure Yang-Mills field, we find that when T0 becomes small, color deconfinement might happen earlier than chiral phase crossover, while their relationship can be determined via some thermodynamical quantities. Furthermore, the behavior of the thermodynamical quantities is quite different in the two different forms of Polyakov loop potential studied. Especially, one of the potentials, specific heat, has two peaks, which correspond to color deconfinement and chiral phase crossover respectively. This interesting phenomenon may shed some light on whether the inflection points of the chiral condensate and deconfinement transitions happen at the same temperature or not for lattice QCD and experimental studies.

    HTML

Reference (51)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return