Pseudo-rapidity distribution from a perturbative solution of viscous hydrodynamics for heavy ion collisions at RHIC and LHC

  • The charged-particle final state spectrum is derived from an analytic perturbative solution for relativistic viscous hydrodynamics. By taking into account the longitudinal acceleration effect in relativistic viscous hydrodynamics, the pseudorapidity spectrum describes the nucleus-nucleus colliding systems at RHIC and the LHC well. Based on both the extracted longitudinal acceleration parameter λ* and a phenomenological description of λ*, the charged-particle pseudorapidity distributions for √sNN=5.44 TeV Xe+Xe collisions are computed from the final state expression in a limited space-time rapidity ηs region.
      PCAS:
  • 加载中
  • [1] S. A. Bass, M. Gyulassy, H. Stecker, and W. Greiner, J. Phys. G, 25:R1-R57(1999), arXiv:9810281[hep-ph]
    [2] M. Gyulassy and L. McLerran, Nucl. Phys. A, 750:30-63, arXiv:0405013[nucl-th]
    [3] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci., 63:123-151(2013), arXiv:1301.2826[nucl-th]
    [4] Paul. Romatschke and Ulrike. Romatschke, arXiv:1712.05815[nucl-th]
    [5] W. Israel and J. M. Stewart, Annals Phys., 118:341-372(1979)
    [6] A. Muronga, Phys. Rev. C, 69:034904(2004), arXiv:0309055[nucl-th]
    [7] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A. Stephanov, JHEP, 04:100(2008), arXiv:0712.2451[hep-th]
    [8] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, JHEP, 02:045(2008), arXiv:0712.2456[hep-th]
    [9] T. Koide, G. S. Denicol, P. Mota, and T. Kodama, Phys. Rev. C, 75:034909(2007), arXiv:0609117[hep-ph]
    [10] J. Peralta-Ramos and E. Calzetta, Phys. Rev. D, 80:126002(2009), arXiv:0908.2646[hep-ph]
    [11] G. S. Denicol, H. Niemi, E. Molnr, and D. H. Rischke, Phys. Rev. D, 85:114047(2012), arXiv:1202.4551[nucl-th]
    [12] L. D. Landau, Izv. Akad. Nauk Ser. Fiz., 17:51(1953)
    [13] R. C. Hwa, Phys. Rev. D, 10:2260(1974)
    [14] J. D. Bjorken, Phys. Rev. D, 27:140(1983)
    [15] T. S. Bir, Phys. Lett. B, 487:133(2000), arXiv:0003027[nucl-th]
    [16] T. Csrgő, F. Grassi, Y. Hama, and T. Kodama, Phys. Lett. B, 565:107(2003), arXiv:0305059[nucl-th]
    [17] T. Csrgő, M. I. Nagy, and M. Csand, Phys. Lett. B, 663:306(2008), arXiv:0605070[nucl-th]
    [18] M. I. Nagy, T. Csrgő, and M. Csand, Phys. Rev. C, 77:024908(2008)
    [19] M. I. Nagy, Phys. Rev. C, 83:054901(2011), arXiv:0909.4286[nucl-th]
    [20] S. S. Gubser, Phys. Rev. D, 82:085027(2010), arXiv:1006.0006[hep-th]
    [21] S. S. Gubser and A. Yarom, Nucl. Phys. B, 846:469(2011), arXiv:1012.1314[hep-th]
    [22] Z. J. Jiang, K. Ma, H. L Zhang, and L. M. Cai, Chin. Phys. C, 38:084103(2014)
    [23] Z. J. Jiang, J. Wang, H. L. Zhang, and K. Ma, Chin. Phys. C, 39:044102(2015)
    [24] Y. Hatta, J. Noronha, and Bo-Wen Xiao, Phys. Rev. D, 89:051702(2014), arXiv:1401.6248[nucl-th]
    [25] Y. Hatta, J. Noronha, and Bo-Wen Xiao, Phys. Rev. D, 89:114011(2014), arXiv:1403.7693[nucl-th]
    [26] Chao Wu, Yidian Chen, and Mei Huang, JHEP, 03:082(2017) arXiv:1608.04922[hep-th]
    [27] Schenke, Bjorn, Jeon, Sangyong, and Gale, Charles, Phys. Rev. Lett., 106:042301(2011) arXiv:1009.3244[hep-ph]
    [28] Song Huichao, Bass Steffen A., Heinz Ulrich, Hirano Tetsufumi, and Shen Chun, Phys. Rev. Lett., 106:192301, arXiv:1011.2783[nucl-th]
    [29] K.Werner, Iu. Karpenko, T. Pierog, M. Bleicher, and K. Mikhailov, Phys. Rev. C, 82:044904(2010), arXiv:1004.0805[nucl-th]
    [30] Long-Gang Pang, Petersen Hannah, and Xin-Nian Wang, arXiv:1802.04449[nucl-th]
    [31] Wei Chen, Shanshan Cao, Tan Luo, Long-Gang Pang, and Xin-Nian Wang, Phys. Let. B, 777:86(2018), arXiv:1704.03648[nucl-th]
    [32] M. Csand, T. Csrgő, Ze-Fang. Jiang, and C. B. Yang, Universe. 3, 1:9(2017), arXiv:1609.07176
    [33] Ze-Fang. Jiang, C. B. Yang, M. Csand, and T. Csrgő, Phys. Rev. C, 97:064906(2018), arXiv:1711. 10740
    [34] Ze-Fang Jiang, C. B. Yang, M. Csand, T. Csrgő, G. Kasza, and M. I. Nagy in preparing
    [35] B. Alver et al (PHOBOS Collaboration), Phys. Rev. C, 83:024913(2011), arXiv:1011.1940[nucl-th]
    [36] J. Adam and et al (ALICE Collaboration), Phys. Lett. B, 754:373(2016), arXiv:1509.07299[nucl-ex]
    [37] J. Adam and et al (ALICE Collaboration), Phys. Lett. B, 772:567, arXiv:1612.08966[nucl-ex]
    [38] Giacalone Giuliano, Noronha-Hostler Jacquelyn, Luzum Matthew, and Ollitrault Jean-Yves, Phys. Rev. C, 97:034904(2018), arXiv:1711.08499[nucl-th]
    [39] K. J. Eskola, H. Niemi, R. Paatelainen, and K. Tuominen, Phys. Rev. C, 97:034911(2018), arXiv:1711.09803[hep-ph]
    [40] Leonard S. Kisslinger and Debasish Das, arXiv:1801.03826[hep-ph]
    [41] Acharya, Shreyasi, and others (ALICE collaboration) arXiv:1805.04432[nucl-ex]
    [42] P. Romatschke, Int. J. Mod. Phys. E, 19:1-53(2010), arXiv:0902.3663v3[hep-ph]
    [43] D.Teaney, Phys. Rev. C, 68:034913(2003), arXiv:0301099[nucl-th]; 0209024[nucl-th]
    [44] M. Damodaran, D. Molnr, G. G. Barnafdi, D. Bernyi, and M. F. Nagy-Egri, arXiv:1707.00793[nucl-th]
    [45] S. Weinberg, Gravitation and cosmology:Princles and Applications of the General Theory of Relativity, (Wiley, New York, 1972)
    [46] H. B. Meyer, Phys. Rev. Lett., 100:162001(2008), arXiv:0710.3717[hep-lat]
    [47] A. Adare and others (PHENIX Collaboration), Phys. Rev. Lett., 95:162301(2007) arXiv:0608033[nucl-ex]
    [48] H. Kouno, M. Maruyama, F. Takagi, and K. Saito, Phys. Rev. D, 41:2903(1990)
    [49] F. Cooper and G. Frye, Phys. Rev. D, 10:186(1974)
    [50] K. Dusling and D. Teaney, Phys. Rev. C, 77:034905(2008), arXiv:0710.5932[nucl-th]
    [51] K. Dusling, G. D. Moore, and D. Teaney, Phys. Rev. C, 81:034907(2010), arXiv:0909.0754[nucl-th]
    [52] M. Csand and T. Csrgő, J. Phys. G, 30:S1079-S1082(2004), arXiv:0403074[nucl-th]
    [53] M. Csand, T. Csrgő, B. Lrstad, and A. Ster, AIP Conf. Proc., 828:479(2005), arXiv:0510027[nucl-th] Huovinen:2009yb P. Huovinen and P. Petreczky, Nucl. Phys. A, 837:26(2010), arXiv:0912.2541[hep-ph]
    [54] P. Huovinen and P. Petreczky, Nucl. Phys. A, 837: 26 (2010), arXiv: 0912.2541[hep-ph]
    [55] P. Alba et al, Phys. Rev. D, 96(3):034517(2017), doi:10.1103/PhysRevD.96.034517, arXiv:1702.01113[hep-lat]
    [56] H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, Phys. Rev. C, 83:054910(2011) Erratum:[Phys. Rev. C, 86:059903(2012)], doi:10.1103/PhysRevC.83.054910, 10.1103/PhysRevC.86.059903, arXiv:1101.4638[nucl-th]
  • 加载中

Get Citation
Ze-Fang Jiang, C. B. Yang, Chi Ding and Xiang-Yu Wu. Pseudo-rapidity distribution from a perturbative solution of viscous hydrodynamics for heavy ion collisions at RHIC and LHC[J]. Chinese Physics C, 2018, 42(12): 123103. doi: 10.1088/1674-1137/42/12/123103
Ze-Fang Jiang, C. B. Yang, Chi Ding and Xiang-Yu Wu. Pseudo-rapidity distribution from a perturbative solution of viscous hydrodynamics for heavy ion collisions at RHIC and LHC[J]. Chinese Physics C, 2018, 42(12): 123103.  doi: 10.1088/1674-1137/42/12/123103 shu
Milestone
Received: 2018-06-22
Fund

    Supported by National Natural Science Foundation of China (11435004), the Chinese-Hungarian bilateral cooperation program (Te'T 12CN-1-2012-0016) and the CCNU PhD Fund 2016YBZZ100 of China

Article Metric

Article Views(1666)
PDF Downloads(16)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Pseudo-rapidity distribution from a perturbative solution of viscous hydrodynamics for heavy ion collisions at RHIC and LHC

    Corresponding author: Ze-Fang Jiang,
    Corresponding author: C. B. Yang,
  • 1. Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan, 430079, China
  • 2. Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
Fund Project:  Supported by National Natural Science Foundation of China (11435004), the Chinese-Hungarian bilateral cooperation program (Te'T 12CN-1-2012-0016) and the CCNU PhD Fund 2016YBZZ100 of China

Abstract: The charged-particle final state spectrum is derived from an analytic perturbative solution for relativistic viscous hydrodynamics. By taking into account the longitudinal acceleration effect in relativistic viscous hydrodynamics, the pseudorapidity spectrum describes the nucleus-nucleus colliding systems at RHIC and the LHC well. Based on both the extracted longitudinal acceleration parameter λ* and a phenomenological description of λ*, the charged-particle pseudorapidity distributions for √sNN=5.44 TeV Xe+Xe collisions are computed from the final state expression in a limited space-time rapidity ηs region.

    HTML

Reference (56)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return