×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Particle number conserving BCS approach in the relativistic mean field model and its application to 32-74Ca

  • A fixed particle number BCS (FBCS) approach is formulated in the relativistic mean field (RMF) model. It is shown that the RMF+FBCS model obtained can describe the weak pairing limit. We calculate the ground-state properties of the calcium isotopes 32-74Ca and compare the results with those obtained from the usual RMF+BCS model. Although the results are quite similar to each other, we observe the interesting phenomenon that for 54Ca, the FBCS approach can enhance the occupation probability of the 2p1/2 single particle level and slightly increases its radius, compared with the RMF+BCS model. This leads to the unusual scenario that although 54Ca is more bound with a spherical configuration, the corresponding size is not the most compact. We anticipate that such a phenomenon might happen for other neutron-rich nuclei and should be checked by further more systematic studies.
      PCAS:
  • 加载中
  • [1] Isao Tanihata, Herve Savajols, and Rituparna Kanungo, Prog. Part. Nucl. Phys., 68:215-313(2013)
    [2] J. Meng and S. G. Zhou, J. Phys. G, 42(9):093101(2015)
    [3] J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger, C. R. Chinn, and J. Decharge, Phys. Rev. C, 53:2809-2840(1996)
    [4] J. Meng and P. Ring, Phys. Rev. Lett., 77:3963-3966(1996)
    [5] W. Poschl, D. Vretenar, G. A. Lalazissis, and P. Ring, Phys. Rev. Lett., 79:3841-3844(1997)
    [6] G. A. Lalazissis, D. Vretenar, W. Poeschl, and P. Ring, Phys. Lett. B, 418:7-12(1998)
    [7] Jie Meng, Nucl. Phys. A, 635(1-2):3-42(1998)
    [8] N. Sandulescu, Nguyen Van Giai, and R. J. Liotta, Phys. Rev. C, 61:061301(2000)
    [9] Li-Gang Cao and Zhong-Yu Ma, Phys. Rev. C, 66:024311(2002)
    [10] N. Sandulescu, L. S. Geng, H. Toki, and G. C. Hillhouse, Phys. Rev. C, 68:054323(2003)
    [11] Li-Sheng Geng, Hiroshi Toki, Satoru Sugimoto, and Jie Meng, Prog. Theor. Phys., 110:921-936(2003)
    [12] J. C. Pei, A. T. Kruppa, and W. Nazarewicz, Phys. Rev. C, 84:024311(2011)
    [13] Shi-Sheng Zhang, En-Guang Zhao, and Shan-Gui Zhou, Eur. Phys. J. A, 49(6):77(2013)
    [14] Ya-Juan Tian, Tai-Hua Heng, Zhong-Ming Niu, Quan Liu, and Jian-You Guo, Chin. Phys. C, 41(4):044104(2017)
    [15] P. Ring and P. Schuck, The Nuclear Many-Body Problem, (New York:Springer-Verlag, 1980)
    [16] A.Bohr and B. R. Mottelson, Nuclear Structure, (Singapore:World Scientific, 1998)
    [17] John Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 106:162(1957)
    [18] John Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 108:1175-1204(1957)
    [19] Leon N Cooper et al, BCS:50 years, (World Scientific, 2011)
    [20] N. N. Bogolyubov, Sov. Phys. JETP, 7:41-46(1958);[Front. Phys., 6:399(1961)]
    [21] Klaus Dietrich, Hans J. Mang, and Jean H. Pradal, Phys. Rev., 135:B22-B34(1964)
    [22] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys., 75:607-656(2003)
    [23] Javid A. Sheikh and Peter Ring, Nucl. Phys. A, 665(1-2):71-91(2000)
    [24] J. A. Sheikh, P. Ring, E. Lopes, and R. Rossignoli, Phys. Rev. C, 66:044318(2002)
    [25] M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A, 696(3-4):467-493(2001)
    [26] M. Anguiano, J. L. Egido, and L. M. Robledo, Phys. Lett. B, 545:62-72(2002)
    [27] Michael Bender, Paul-Henri Heenen, and Paul-Gerhard Reinhard, Rev. Mod. Phys., 75:121-180(2003)
    [28] T. Nikić, D. Vretenar, and P. Ring, Phys. Rev. C, 73:034308 (2006)
    [29] T. Nikić, D. Vretenar, and P. Ring, Phys. Rev. C, 74:064309 (2006)
    [30] Wei-Chia Chen, J. Piekarewicz, and A. Volya, Phys. Rev. C, 89(1):014321(2014)
    [31] Jie Meng, Jian-You Guo, Lang Liu, and Shuang-Quan Zhang, Front. Phys. China, 1:38(2006)
    [32] Ming-Jian Cheng, Lang Liu, and Yi-Xin Zhang, Chin. Phys. C, 39(10):104102(2015)
    [33] Z. Shi, Z. H. Zhang, Q. B. Chen, S. Q. Zhang, and J. Meng, Phys. Rev. C, 97:034317(2018)
    [34] J. D. Walecka, Ann. Phys., 83:491-529(1974)
    [35] P. G. Reinhard. Rept. Prog. Phys., 52:439(1989)
    [36] Brian D. Serot and John Dirk Walecka, Adv. Nucl. Phys., 16:1-327(1986)
    [37] P. Ring, Prog. Part. Nucl. Phys., 37:193-263(1996)
    [38] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57:470-563(2006)
    [39] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rept., 409:101-259(2005)
    [40] J. Meng, Relativistic density functional for nuclear structure, volume 10, (World Scientific, 2016)
    [41] Y. K. Gambhir, P. Ring, and A. Thimet, Annals Phys., 198:132-179(1990)
    [42] P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Comput. Phys. Commun., 105:77-97(1997)
    [43] G. A. Lalazissis, J. Knig, and P. Ring, Phys. Rev. C, 55:540-543(1997)
    [44] Y. Sugahara and H. Toki, Nucl. Phys. A, 579(3):557-572(1994)
    [45] Wen-Hui Long, Jie Meng, Nguyen Van Giai, and Shan-Gui Zhou, Phys. Rev. C, 69:034319(2004)
    [46] Chin W. Ma and John O. Rasmussen, Phys. Rev. C, 16:1179-1195(1977)
    [47] A. Gade et al, Phys. Rev. C, 74:021302(2006)
    [48] F. Wienholtz et al, Nature, 498(7454):346-349(2013)
    [49] Marcella Grasso, Phys. Rev. C, 89:034316(2014)
    [50] Jia Jie Li, Jr?me Margueron, Wen Hui Long, and Nguyen Van Giai, Phys. Lett. B, 753:97-102(2016)
    [51] W. J. Huang, G. Audi, Meng Wang, F. G. Kondev, S. Naimi, and Xing Xu, Chin. phys. C, 41(3):30002(2017)
    [52] Nobuo Hinohara and Witold Nazarewicz, theory. Phys. Rev. Lett., 116:152502(2016)
    [53] D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys., 75:1021-1082(2003)
    [54] P. H. Heenen, A. Valor, M. Bender, P. Bonche, and H. Flocard, Eur. Phys. J. A, 11:393-402(2001)
    [55] Shan-Gui Zhou, Jie Meng, and P. Ring, Phys. Rev. C, 68:034323(2003)
    [56] Shan-Gui Zhou, Jie Meng, P. Ring, and En-Guang Zhao, Phys. Rev. C, 82:011301(2010)
  • 加载中

Figures(1)

Get Citation
Rong An, Lisheng Geng, Shisheng Zhang and Lang Liu. Particle number conserving BCS approach in the relativistic mean field model and its application to 32-74Ca[J]. Chinese Physics C, 2018, 42(11): 114101. doi: 10.1088/1674-1137/42/11/114101
Rong An, Lisheng Geng, Shisheng Zhang and Lang Liu. Particle number conserving BCS approach in the relativistic mean field model and its application to 32-74Ca[J]. Chinese Physics C, 2018, 42(11): 114101.  doi: 10.1088/1674-1137/42/11/114101 shu
Milestone
Received: 2018-05-06
Fund

    Supported by the National Natural Science Foundation of China (11522539, 11735003, 11775014, 11375022)

Article Metric

Article Views(2102)
PDF Downloads(74)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Particle number conserving BCS approach in the relativistic mean field model and its application to 32-74Ca

  • 1.  School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
  • 2.  School of Physics and Nuclear Energy Engineering &
  • 3.  School of Science, Jiangnan University, Wuxi 214122, China
Fund Project:  Supported by the National Natural Science Foundation of China (11522539, 11735003, 11775014, 11375022)

Abstract: A fixed particle number BCS (FBCS) approach is formulated in the relativistic mean field (RMF) model. It is shown that the RMF+FBCS model obtained can describe the weak pairing limit. We calculate the ground-state properties of the calcium isotopes 32-74Ca and compare the results with those obtained from the usual RMF+BCS model. Although the results are quite similar to each other, we observe the interesting phenomenon that for 54Ca, the FBCS approach can enhance the occupation probability of the 2p1/2 single particle level and slightly increases its radius, compared with the RMF+BCS model. This leads to the unusual scenario that although 54Ca is more bound with a spherical configuration, the corresponding size is not the most compact. We anticipate that such a phenomenon might happen for other neutron-rich nuclei and should be checked by further more systematic studies.

    HTML

Reference (56)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return