The semi-constrained NMSSM in light of muon g-2, LHC, anddark matter constraints

  • The semi-constrained NMSSM (scNMSSM) extends the MSSM by a singlet field, and requires unification of the soft SUSY breaking terms in the squark and slepton sectors, while it allows that in the Higgs sector to be different. We try to interpret the muon g-2 in the scNMSSM, under the constraints of 125 GeV Higgs data, B physics, searches for low and high mass resonances, searches for SUSY particles at the LHC, dark matter relic density by WMAP/Planck, and direct searches for dark matter by LUX, XENON1T, and PandaX-Ⅱ. We find that under the above constraints, the scNMSSM can still (i) satisfy muon g-2 at 1σ level, with a light muon sneutrino and light chargino; (ii) predict a highly-singlet-dominated 95 GeV Higgs, with a diphoton rate as hinted at by CMS data, because of a light higgsino-like chargino and moderate λ; (iii) get low fine tuning from the GUT scale with small μeff, M0, M1/2, and A0, with a lighter stop mass which can be as low as about 500 GeV, which can be further checked in future studies with search results from the 13 TeV LHC; (iv) have the lightest neutralino be singlino-dominated or higgsino-dominated, while the bino and wino are heavier because of high gluino bounds at the LHC and universal gaugino conditions at the GUT scale; (v) satisfy all the above constraints, although it is not easy for the lightest neutralino, as the only dark matter candidate, to get enough relic density. Several ways to increase relic density are discussed.
      PCAS:
  • 加载中
  • [1] G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 716:1 (2012)
    [2] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716:30 (2012)
    [3] J. Cao, Z. Heng, D. Li, and J. M. Yang, Phys. Lett. B, 710:665 (2012), arXiv:1112.4391[hep-ph]; C. Han, K. i. Hikasa, L. Wu, J. M. Yang, and Y. Zhang, Phys. Lett. B, 769:470 (2017), arXiv:1612.02296[hep-ph]
    [4] J. Cao, Z. Heng, J. M. Yang, and J. Zhu, JHEP, 1210:079 (2012), arXiv:1207.3698[hep-ph]; J. J. Cao, Z. X. Heng, J. M. Yang, Y. M. Zhang, and J. Y. Zhu, JHEP, 1203:086 (2012), arXiv:1202.5821[hep-ph]
    [5] CMS Collaboration (CMS Collaboration), CMS-PAS-HIG-17-013
    [6] G. Brooijmans et al, arXiv:1803.10379[hep-ph]; J. H. Kim and I. M. Lewis, arXiv:1803.06351[hep-ph]; N. Bizot, G. Cacciapaglia and T. Flacke, arXiv:1803.00021[hep-ph]; U. Haisch, J. F. Kamenik, A. Malinauskas, and M. Spira, JHEP, 1803:178 (2018), arXiv:1802.02156[hep-ph]; X. F. Han and L. Wang, arXiv:1801.08317[hep-ph]; U. Haisch and A. Malinauskas, JHEP, 1803:135 (2018), arXiv:1712.06599[hep-ph]; F. Richard, arXiv:1712.06410[hep-ex]; G. F. Giudice, Y. Kats, M. McCullough, R. Torre, and A. Urbano, arXiv:1711.08437[hep-ph]; R. Vega, R. Vega-Morales, and K. Xie, JHEP, 1803:168 (2018), arXiv:1711.05329[hep-ph]; G. Cacciapaglia, G. Ferretti, T. Flacke, and H. Serodio, arXiv:1710.11142[hep-ph]; A. Crivellin, J. Heeck and D. Mller, Phys. Rev. D, 97(3):035008 (2018), arXiv:1710.04663[hep-ph]; A. Mariotti, D. Redigolo, F. Sala, and K. Tobioka, arXiv:1710.01743[hep-ph]
    [7] J. Cao, F. Ding, C. Han, J. M. Yang, and J. Zhu, JHEP, 1311:018 (2013), arXiv:1309.4939[hep-ph]; C. T. Potter, Eur. Phys. J. C, 76(1):44 (2016), arXiv:1505.05554[hep-ph]; F. Mahmoudi, J. Rathsman, O. Stal, and L. Zeune, Eur. Phys. J. C, 71:1608 (2011), arXiv:1012.4490[hep-ph]; F. Domingo, JHEP, 1703:052 (2017), arXiv:1612.06538[hep-ph]; M. Badziak and C. E. M. Wagner, JHEP, 1702:050 (2017), arXiv:1611.02353[hep-ph]; E. Conte, B. Fuks, J. Guo, J. Li, and A. G. Williams, JHEP, 1605:100 (2016), arXiv:1604.05394[hep-ph]; U. Ellwanger and M. Rodriguez-Vazquez, JHEP, 1602:096 (2016), arXiv:1512.04281[hep-ph]
    [8] J. Cao, X. Guo, Y. He, P. Wu, and Y. Zhang, Phys. Rev. D, 95(11):116001 (2017), arXiv:1612.08522[hep-ph]
    [9] K. Kowalska, S. Munir, L. Roszkowski, E. M. Sessolo, S. Trojanowski, and Y. L. S. Tsai, Phys. Rev. D, 87:115010 (2013), arXiv:1211.1693[hep-ph]; J. F. Gunion, Y. Jiang, and S. Kraml, Phys. Lett. B, 710:454 (2012), arXiv:1201.0982[hep-ph]
    [10] U. Ellwanger and C. Hugonie, Comput. Phys. Commun., 177:399 (2007),[hep-ph/0612134]
    [11] U. Ellwanger, A. Florent, and D. Zerwas, JHEP, 1101:103 (2011), arXiv:1011.0931[hep-ph]; G. Panotopoulos, J. Phys. Conf. Ser., 259:012064 (2010), arXiv:1010.4481[hep-ph]; D. E. Lopez-Fogliani, L. Roszkowski, R. Ruiz de Austri, and T. A. Varley, Phys. Rev. D, 80:095013 (2009), arXiv:0906.4911[hep-ph]; G. Belanger, C. Hugonie, and A. Pukhov, JCAP, 0901:023 (2009), arXiv:0811.3224[hep-ph]; A. Djouadi, U. Ellwanger, and A. M. Teixeira, JHEP, 0904:031 (2009), arXiv:0811.2699[hep-ph]; U. Ellwanger, AIP Conf. Proc., 1078:73 (2009), arXiv:0809.0779[hep-ph]; C. Hugonie, G. Belanger, and A. Pukhov, JCAP, 0711:009 (2007), arXiv:0707.0628[hep-ph]
    [12] D. Das, U. Ellwanger, and A. M. Teixeira, JHEP, 1304:117 (2013), arXiv:1301.7584[hep-ph]
    [13] U. Ellwanger and C. Hugonie, JHEP, 1408:046 (2014), arXiv:1405.6647[hep-ph]
    [14] D. G. Cerdeno, V. De Romeri, V. Martin-Lozano, K. A. Olive, and O. Seto, Eur. Phys. J. C, 78(4):290 (2018), arXiv:1707.03990[hep-ph]
    [15] A. Arbey and F. Mahmoudi, JHEP, 1005:051 (2010), arXiv:0906.0368[hep-ph] A. Arbey and F. Mahmoudi, Phys. Lett. B, 669:46 (2008), arXiv:0803.0741[hep-ph]
    [16] U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys. Rept., 496:1 (2010); M. Maniatis, Int. J. Mod. Phys. A, 25:3505 (2010),
    [17] S. P. Martin, Adv. Ser. Direct. High Energy Phys., 21:1 (2010); Adv. Ser. Direct. High Energy Phys., 18:1 (1998),[hep-ph/9709356]
    [18] D. J. Miller, R. Nevzorov, and P. M. Zerwas, Nucl. Phys. B, 681:3 (2004)[hep-ph/0304049]
    [19] U. Ellwanger, J. F. Gunion, and C. Hugonie, JHEP, 0502:066 (2005); U. Ellwanger and C. Hugonie, Comput. Phys. Commun., 175:290 (2006)
    [20] U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys. Rept., 496:1 (2010), arXiv:0910.1785[hep-ph]
    [21] U. Ellwanger, J. F. Gunion, and C. Hugonie, JHEP, 0502:066 (2005),[hep-ph/0406215] U. Ellwanger and C. Hugonie, Comput. Phys. Commun., 175:290 (2006),[hep-ph/0508022]
    [22] U. Ellwanger, C.-C. Jean-Louis, and A. M. Teixeira, JHEP, 0805:044 (2008), arXiv:0803.2962[hep-ph]
    [23] J. Cao, Y. He, P. Wu, M. Zhang, and J. Zhu, JHEP, 1401:150 (2014), doi:10.1007/JHEP01(2014)150, arXiv:1311.6661[hep-ph]
    [24] The ATLAS collaboration (ATLAS Collaboration), ATLAS-CONF-2015-007
    [25] V. Khachatryan et al (CMS Collaboration), Eur. Phys. J. C, 75(5):212 (2015), doi:10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662[hep-ex]
    [26] P. Bechtle, O. Brein, S. Heinemeyer, O. St?l, T. Stefaniak, G. Weiglein, and K. E. Williams, Eur. Phys. J. C, 74(3):2693 (2014), arXiv:1311.0055[hep-ph]
    [27] J. Cao, Y. He, L. Shang, W. Su, and Y. Zhang, JHEP, 1608:037 (2016), arXiv:1606.04416[hep-ph]
    [28] F. Ambrogi et al, Comput. Phys. Commun., 227:72 (2018), arXiv:1701.06586[hep-ph] S. Kraml, S. Kulkarni, U. Laa, A. Lessa, W. Magerl, D. Proschofsky-Spindler, and W. Waltenberger, Eur. Phys. J. C, 74:2868 (2014), arXiv:1312.4175[hep-ph]
    [29] A. M. Sirunyan et al (CMS Collaboration), Phys. Rev. D, 96(3):032003 (2017), arXiv:1704.07781[hep-ex]
    [30] A. M. Sirunyan et al (CMS Collaboration), Eur. Phys. J. C, 77(10):710 (2017), arXiv:1705.04650[hep-ex]
    [31] A. M. Sirunyan et al (CMS Collaboration), Phys. Rev. D, 97(3):032009 (2018) arXiv:1711.00752[hep-ex]
    [32] A. M. Sirunyan et al (CMS Collaboration), JHEP, 1710:019 (2017) arXiv:1706.04402[hep-ex]
    [33] A. M. Sirunyan et al (CMS Collaboration), JHEP, 1711:029 (2017) arXiv:1706.09933[hep-ex]
    [34] A. M. Sirunyan et al (CMS Collaboration), JHEP, 1803:160 (2018) arXiv:1801.03957[hep-ex]
    [35] [BaBar Collaboration), Phys. Rev. Lett., 109:191801 (2012); Phys. Rev. Lett., 109:101802 (2012)
    [36] (LHCb Collaboration), Phys. Rev. Lett., 110:021801 (2013)
    [37] C. Patrignani et al (Particle Data Group], Chin. Phys. C, 40(10):100001 (2016)
    [38] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 571:A16 (2014), arXiv:1303.5076[astro-ph.CO] G. Hinshaw et al (WMAP Collaboration), Astrophys. J. Suppl., 208:19 (2013) arXiv:1212.5226[astro-ph.CO]
    [39] D. S. Akerib et al (LUX Collaboration), Phys. Rev. Lett., 118(2):021303 (2017), arXiv:1608.07648[astro-ph.CO]
    [40] X. Cui et al (PandaX-Ⅱ Collaboration), Phys. Rev. Lett., 119(18):181302 (2017), arXiv:1708.06917[astro-ph.CO]
    [41] E. Aprile et al (XENON Collaboration), arXiv:1805.12562[astro-ph.CO]
    [42] C. Amole et al (PICO Collaboration), Phys. Rev. D, 93(6):061101 (2016), arXiv:1601.03729[astro-ph.CO] D. S. Akerib et al (LUX Collaboration), Phys. Rev. Lett., 116(16):161302 (2016) arXiv:1602.03489[hep-ex] C. Fu et al (PandaX-Ⅱ Collaboration), Phys. Rev. Lett., 118(7):071301 (2017); Phys. Rev. Lett., 120(4):049902 (2018), arXiv:1611.06553[hep-ex]
    [43] G. W. Bennett et al (Muon g-2 Collaboration), Phys. Rev. D, 73:072003 (2006),[hep-ex/0602035]
    [44] F. Jegerlehner, Acta Phys. Polon. B, 38:3021 (2007),[hep-ph/0703125] J. Bijnens and J. Prades, Mod. Phys. Lett. A, 22:767 (2007),[hep-ph/0702170[HEP-PH] S. Heinemeyer, D. Stockinger, and G. Weiglein, Nucl. Phys. B, 699:103 (2004),[hep-ph/0405255] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D, 67:073006 (2003); Phys. Rev. D, 73:119901 (2006),[hep-ph/0212229]
    [45] U. Ellwanger, G. Espitalier-Noel, and C. Hugonie, JHEP, 1109:105 (2011), arXiv:1107.2472[hep-ph]
    [46] G. Aad et al (ATLAS Collaboration), Phys. Rev. Lett., 113(17):171801 (2014), arXiv:1407.6583[hep-ex]
    [47] E. A. Bagnaschi et al, Eur. Phys. J. C, 75:500 (2015), arXiv:1508.01173[hep-ph]
    [48] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rept., 267:195 (1996),[hep-ph/9506380]
  • 加载中

Get Citation
Kun Wang, Fei Wang, Jingya Zhu and Quanlin Jie. The semi-constrained NMSSM in light of muon g-2, LHC, anddark matter constraints[J]. Chinese Physics C, 2018, 42(10): 103109. doi: 10.1088/1674-1137/42/10/103109
Kun Wang, Fei Wang, Jingya Zhu and Quanlin Jie. The semi-constrained NMSSM in light of muon g-2, LHC, anddark matter constraints[J]. Chinese Physics C, 2018, 42(10): 103109.  doi: 10.1088/1674-1137/42/10/103109 shu
Milestone
Received: 2018-06-11
Fund

    Supported by National Natural Science Foundation of China (NNSFC) (11605123, 11675147, 11547103, 11547310), the Innovation Talent project of Henan Province (15HASTIT017), and the Young Core Instructor Foundation of Henan Education Department. J. Z. also thanks the support of the China Scholarship Council (CSC) (201706275160) while at the University of Chicago as a visiting scholar, and the U.S. National Science Foundation (NSF) (PHY-0855561) while at Michigan State University from 2014-2015.

Article Metric

Article Views(1074)
PDF Downloads(24)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

The semi-constrained NMSSM in light of muon g-2, LHC, anddark matter constraints

  • 1.  School of Physics, Zhengzhou University, Zhengzhou 450000, China
  • 2.  Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
Fund Project:  Supported by National Natural Science Foundation of China (NNSFC) (11605123, 11675147, 11547103, 11547310), the Innovation Talent project of Henan Province (15HASTIT017), and the Young Core Instructor Foundation of Henan Education Department. J. Z. also thanks the support of the China Scholarship Council (CSC) (201706275160) while at the University of Chicago as a visiting scholar, and the U.S. National Science Foundation (NSF) (PHY-0855561) while at Michigan State University from 2014-2015.

Abstract: The semi-constrained NMSSM (scNMSSM) extends the MSSM by a singlet field, and requires unification of the soft SUSY breaking terms in the squark and slepton sectors, while it allows that in the Higgs sector to be different. We try to interpret the muon g-2 in the scNMSSM, under the constraints of 125 GeV Higgs data, B physics, searches for low and high mass resonances, searches for SUSY particles at the LHC, dark matter relic density by WMAP/Planck, and direct searches for dark matter by LUX, XENON1T, and PandaX-Ⅱ. We find that under the above constraints, the scNMSSM can still (i) satisfy muon g-2 at 1σ level, with a light muon sneutrino and light chargino; (ii) predict a highly-singlet-dominated 95 GeV Higgs, with a diphoton rate as hinted at by CMS data, because of a light higgsino-like chargino and moderate λ; (iii) get low fine tuning from the GUT scale with small μeff, M0, M1/2, and A0, with a lighter stop mass which can be as low as about 500 GeV, which can be further checked in future studies with search results from the 13 TeV LHC; (iv) have the lightest neutralino be singlino-dominated or higgsino-dominated, while the bino and wino are heavier because of high gluino bounds at the LHC and universal gaugino conditions at the GUT scale; (v) satisfy all the above constraints, although it is not easy for the lightest neutralino, as the only dark matter candidate, to get enough relic density. Several ways to increase relic density are discussed.

    HTML

Reference (48)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return