Stagnancy of the pygmy dipole resonance

  • The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm-1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei 70-78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section.
      PCAS:
  • 加载中
  • [1] T. Hartmann, J. Enders, P. Mohr et al, ewblock Phys. Rev. Lett., 85:274 (2000)
    [2] P. Adrich, A. Klimkiewicz, M. Fallot et al, ewblock Phys. Rev. Lett., 95:132501 (2005)
    [3] O. Wieland, A. Bracco, F. Camera et al, ewblock Phys. Rev. Lett., 102:092502 (2009)
    [4] D. Vretenar, N. Paar, P. Ring et al, ewblock Nuclear Physics A, 692 (3):496 (2001)
    [5] N. Paar, D. Vretenar, E. Khan et al, ewblock Reports on Progress in Physics, 70 (5):691 (2007)
    [6] H. Sagawa, N. Van Giai, N. Takigawa et al, ewblock Zeitschrift fr Physik A Hadrons and Nuclei, 351 (4):385 (1995)
    [7] J. Endres, E. Litvinova, D. Savran et al, ewblock Phys. Rev. Lett., 105:212503 (2010)
    [8] J. Endres, D. Savran, A. M. v. d. Berg et al, ewblock Phys. Rev. C, 80:034302 (2009)
    [9] E. G. Lanza, A. Vitturi, E. Litvinova et al, ewblock Phys. Rev. C, 89:041601 (2014)
    [10] G. Rusev, R. Schwengner, F. Dnau et al, ewblock Phys. Rev. C, 77:064321 (2008)
    [11] J. Gibelin, D. Beaumel, T. Motobayashi et al, ewblock Phys. Rev. Lett., 101:212503 (2008)
    [12] B. L枚her, D. Savran, T. Aumann et al, ewblock Physics Letters B, 756:72 (2016)
    [13] M. Scheck, V. Y. Ponomarev, T. Aumann et al, ewblock Phys. Rev. C, 87:051304 (2013)
    [14] S. Goriely, ewblock Physics Letters B, 436 (1):10 (1998)
    [15] A. Carbone, G. Col, A. Bracco et al, ewblock Phys. Rev. C, 81:041301 (2010)
    [16] J. Piekarewicz, ewblock Phys. Rev. C, 73:044325 (2006)
    [17] C. Xu, Z. Ren, and J. Liu, ewblock Phys. Rev. C, 90:064310 (2014)
    [18] V. Baran, M. Colonna, M. Di Toro et al, ewblock Phys. Rev. C, 88:044610 (2013)
    [19] T. Shizuma, T. Hayakawa, H. Ohgaki et al, ewblock Phys. Rev. C, 87:024301 (2013)
    [20] T. Inakura, T. Nakatsukasa, and K. Yabana, ewblock Phys. Rev. C, 84:021302 (2011)
    [21] J. Boguta and A. Bodmer, ewblock Nuclear Physics A, 292 (3):413 (1977)
    [22] D. Vretenar, A. Afanasjev, G. Lalazissis et al, ewblock Physics Reports, 409 (34):101 (2005)
    [23] P. Ring and P. Schuck, ewblock The Nuclear Many-Body Problem. ewblock Springer (2004)
    [24] N. Paar, P. Ring, T. Nikić et al, Phys. Rev. C, 67:034312 (2003)
    [25] S. Ebata, T. Nakatsukasa, T. Inakura et al, ewblock Phys. Rev. C, 82:034306 (2010)
    [26] D. P. n. Arteaga, E. Khan, and P. Ring, ewblock Phys. Rev. C, 79:034311 (2009)
    [27] J. Piekarewicz, ewblock Phys. Rev. C, 83:034319 (2011)
    [28] P. Ring, Z. Y. Ma, N. V. Giai et al, ewblock Nuclear Physics A, 694 (1):249 (2001)
    [29] D. Yang, L.-G. Cao, Y. Tian et al, ewblock Phys. Rev. C, 82:054305 (2010)
    [30] Ding Yang, Li-Gang Cao, and Zhong-Yu Ma, ewblock Chinese Physics C, 37 (12):124102 (2013)
    [31] D. P. Arteaga and P. Ring, ewblock Phys. Rev. C, 77:034317 (2008)
    [32] P. Ring, Y. Gambhir, and G. Lalazissis, ewblock Computer Physics Communications, 105 (1):77 (1997)
    [33] T. Niki, N. Paar, D. Vretenar et al, ewblock Computer Physics Communications, 185 (6):1808 (2014)
    [34] N. Paar, Y. F. Niu, D. Vretenar et al, ewblock Phys. Rev. Lett., 103:032502 (2009)
    [35] H. Nakada, T. Inakura, and H. Sawai, ewblock Phys. Rev. C, 87:034302 (2013)
    [36] N. Tsoneva and H. Lenske, ewblock Phys. Rev. C, 77:024321 (2008)
    [37] G. Co', V. De Donno, M. Anguiano et al, ewblock Phys. Rev. C, 87:034305 (2013)
    [38] J. Bartel, P. Quentin, M. Brack et al, ewblock Nuclear Physics A, 386 (1):79 (1982)
    [39] L.-G. Cao, H. Sagawa, and G. Col, ewblock Phys. Rev. C, 86:054313 (2012)
    [40] B.-A. Li, L.-W. Chen, and C. M. Ko, ewblock Physics Reports, 464 (46):113 (2008)
  • 加载中

Get Citation
Xu-Wei Sun, Jing Chen and Ding-Hui Lu. Stagnancy of the pygmy dipole resonance[J]. Chinese Physics C, 2018, 42(1): 014101. doi: 10.1088/1674-1137/42/1/014101
Xu-Wei Sun, Jing Chen and Ding-Hui Lu. Stagnancy of the pygmy dipole resonance[J]. Chinese Physics C, 2018, 42(1): 014101.  doi: 10.1088/1674-1137/42/1/014101 shu
Milestone
Received: 2017-06-23
Fund

    Supported by National Science Foundation of China

Article Metric

Article Views(1722)
PDF Downloads(58)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Stagnancy of the pygmy dipole resonance

    Corresponding author: Xu-Wei Sun,
  • 1. Department of Physics, Zhejiang University, Hangzhou 310027, China
Fund Project:  Supported by National Science Foundation of China

Abstract: The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm-1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei 70-78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section.

    HTML

Reference (40)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return