Pion transverse-momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss interferometry in a viscous granular source model

  • We examine the evolution of quark-gluon plasma (QGP) droplets with viscous hydrodynamics and analyze the pion transverse-momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss (HBT) interferometry in a granular source model consisting of viscous QGP droplets. The shear viscosity of the QGP droplet speeds up and slows down the droplet evolution in the central and peripheral regions of the droplet, respectively. The effect of the bulk viscosity on the evolution is negligible. Although there are viscous effects on the droplet evolution, the pion momentum spectrum and elliptic flow change little for granular sources with and without viscosity. On the other hand, the influence of viscosity on HBT radius Rout is considerable. It makes Rout decrease in the granular source model. We determine the model parameters of granular sources using the experimental data of pion transverse-momentum spectrum, elliptic flow, and HBT radii together, and investigate the effects of viscosity on the model parameters. The results indicate that the granular source model may reproduce the experimental data of pion transverse-momentum spectrum, elliptic flow, and HBT radii in heavy-ion collisions of Au-Au at √sNN=200 GeV and Pb-Pb at √sNN=2.76 TeV in different centrality intervals. The viscosity of the droplet leads to an increase in the initial droplet radius and a decrease of the source shell parameter in the granular source model.
      PCAS:
  • 加载中
  • [1] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys., 53:43 (1981)
    [2] I. Arsene et al (BRAHMS collaboration), Nucl. Phys. A, 757:1 (2005)
    [3] B. B. Back et al (PHOBOS collaboration), Nucl. Phys. A, 757:28 (2005)
    [4] J. Adams et al (STAR collaboration), Nucl. Phys. A, 757:102 (2005)
    [5] K. Adcox et al (PHENIX collaboration), Nucl. Phys. A, 757:184 (2005)
    [6] D. H. Rischke, arXiv:nucl-th/9809044
    [7] P. F. Kolb and U. Heinz, arXiv:nucl-th/0305084
    [8] Y. Hama, T. Kodama, O. Socolowski Jr, Braz. J. Phys., 35:24 (2005); arXiv:hep-ph/0407264
    [9] A. Muronga and D. H. Rischke, arXiv:nucl-th/0407114
    [10] R. Baier, P. Romatschke, and U. A. Wiedemann, Phys. Rev. C, 73:064903 (2006)
    [11] U. Heinz, H. C. Song, and A. K. Chaudhuri, Phys. Rev. C, 73:034904 (2006)
    [12] H. C. Song and U. Heinz, Phys. Rev. C, 77:064901 (2008)
    [13] B. Schenke, S. Jeon, and C.Gale, Phys. Rev. C, 82:014903 (2010)
    [14] A. Monnai and T. Hirano, Nucl. Phys. A, 847:283 (2010)
    [15] P. Romatschke, Int. J. Mod. Phys. E, 19:1 (2010)
    [16] H. C. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, Phys. Rev. Lett., 106:192301 (2011)
    [17] P. Huovinen, Int. J. Mod. Phys. E, 22:1330029 (2013)
    [18] C. Gale, S. Jeon, and B. Schenke, Int. J. of Mod. Phys. A, 28:1340011 (2013)
    [19] S. Jeon and U. Heinz, arXiv:1503.03931
    [20] R. Derradi de Souza, T. Koide, T. Kodama, Prog. Part. Nucl. Phys., 86:35 (2016); arXiv:1506.03863
    [21] M. Gyulassy, Structure and Dynamics of Elementary Matter (Dordrecht:Kluwer, 2004), p. 159
    [22] P. Huovinen, Quark Gluon Plasma 3 (Singapore:World Scientific, 2004), p. 600; P. F. Kolb and U. Heinz, ibid, p. 634
    [23] M. Gyulassy and L. McLerran, Nucl. Phys. A, 750:30 (2005)
    [24] E. V. Shuryak, Nucl. Phys. A, 750:64 (2005)
    [25] B. Muller and J. L. Nagle, Annu. Rev. Nucl. Part. Sci., 56:93 (2006)
    [26] A. K. Chaudhuri, Phys. Rev. C, 74:044904 (2006)
    [27] A. Muronga, Phys. Rev. C, 76:014909; ibid 014910 (2007)
    [28] P. Romatschke and U. Romatschke, Phys. Rev. Lett., 99:172301 (2007)
    [29] K. Dusling and D. Teaney, Phys. Rev. C, 77:034905 (2008)
    [30] M. Luzum and P. Romatschke, Phys. Rev. C, 78:034915 (2008)[Erratum, ibid 79:039903](2009)
    [31] M. Luzum and P. Romatschke, Phys. Rev. Lett., 103:262302 (2009)
    [32] S. Pratt and J. Vredevoogd, Phys. Rev. C, 78:054906 (2008)
    [33] S. Pratt, Phys. Rev. Lett., 102:232301 (2009)
    [34] A. Monnai and T. Hirano, Phys. Rev. C, 80:054906 (2009)
    [35] H. C. Song and U. Heinz, Phys. Rev. C, 81:024905 (2010)
    [36] P. Bożek, Phys. Rev. C, 83:044910 (2011)
    [37] P. Bożek and I. Wyskiel-Piekarska, Phys. Rev. C, 85:064915 (2012)
    [38] C. Shen, U. Heinz, P. Huovinen, and H. C. Song, Phys. Rev. C, 82:054904 (2010)
    [39] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett., 106:042301 (2011)
    [40] H. Song, S. A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. C, 83:054910 (2011)
    [41] V. Roy and A. K. Chaudhuri, Phys. Rev. C, 85:024909 (2012)
    [42] K. Dusling and T. Schfer, Phys. Rev. C, 85:044909 (2012)
    [43] A. K. Chaudhuri, Advances in High Energy Physics, 2013:693180 (2013)
    [44] G. Vujanovic, C. Young, B. Schenke et al, Phys. Rev. C, 89:034904 (2014)
    [45] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci., 63:123 (2013)
    [46] M. Ruggieri, F. Scardina, S. Plumari, and V. Greco, Phys. Rev. C, 89:054914 (2014)
    [47] H. Song, S. A. Bass, and U. Heinz, Phys. Rev. C, 83:054912 (2011)
    [48] C. Shen, U. Heinz, P. Huovinen, and H. Song, Phys. Rev. C, 84:044903 (2011)
    [49] B. Schenke, S. Jeon, C. Galeb, Phys. Lett. B, 702:59 (2011)
    [50] C. Shen and U. Heinz, Phys. Rev. C, 85:054902 (2012)
    [51] R. A. Soltz, I. Garishvili, M. Cheng et al, Phys. Rev. C, 87:044901 (2013)
    [52] Iu. A. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher, Phys. Rev. C, 91:064901 (2015)
    [53] J. Yang, Y. Y. Ren, and W. N. Zhang, Advances in High Energy Physics, 2015:846154 (2015)
    [54] J. Yang, Y. Y. Ren, and W. N. Zhang, in Proceeding of the Xth Workshop on Particle Correlations and Femtoscopy (WPCF14) (Gyngys, Hungary on Aug. 2014), arXiv:1501.03651
    [55] W. N. Zhang, M. J. Efaaf, and C. Y. Wong, Phys. Rev. C, 70:024903 (2004)
    [56] W. N. Zhang, Y. Y. Ren, and C. Y. Wong, Phys. Rev. C, 74:024908 (2006)
    [57] W. N. Zhang, Z. T. Yang, and Y. Y. Ren, Phys. Rev. C, 80:044908 (2009)
    [58] W. N. Zhang, H. J. Yin, and Y. Y. Ren, Chin. Phys. Lett., 28:122501 (2011)
    [59] W. N. Zhang, in Proceedings of the 7th Workshop on Particle Correlations and Femtoscope (WPCF'11), Pos no. 051, (Tokyo, Japan, Sep. 2011), arXiv:1202.6560
    [60] L. D. Landau and E. M. Lifshitz, in Fluid Mechanics (Pergamon:Oxford, 1963)
    [61] I. Mller, Z. Phys., 198:329 (1967); W. Israel, Ann. Phys., 100:310 (1976); J. M. Stewart, Proc. Roy. Soc. A, 357:59 (1977); W. Israel and J. M. Stewart, Ann. Phys., 118:341 (1979)
    [62] D. H. Rischke, S. Bernard, and J. A. Maruhn, Nucl. Phys. A, 595:346 (1995); D. H. Rischke and M. Gyulassy, Nucl. Phys. A, 608:479 (1996)
    [63] W. N. Zhang, M. J. Efaaf, C. Y. Wong, and M. Khaliliasr, Chin. Phys. Lett., 10:1918 (2004); M. J. Efaaf, W. N. Zhang, M. Khaliliasr, E. P. Jin, and Y. M. Liu, High Energy Phys. Nucl. Phys., 29:46 (2005); M. J. Efaaf, W. N. Zhang, M. Khaliliasr, L. Huo, E. P. Jin, and J. B. Zhang, High Energy Phys. Nucl. Phys., 29:467 (2005)
    [64] Y. Hu, W. N. Zhang, and Y. Y. Ren, J. Phys. G, 42:045106 (2015)
    [65] P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett., 94:111601 (2005).
    [66] A. Buchel, Phys. Lett. B, 663:286 (2008)
    [67] F. Cooper and G. Frye, Phys. Rev. D, 10:186 (1974)
    [68] C. Adler et al (STAR Collaboration), Phys. Rev. Lett., 87:082301 (2001)
    [69] K. Adcox et al (PHENIX Collaboration), Phys. Rev. Lett., 88:192302 (2002)
    [70] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett., 93:152302 (2004)
    [71] J. Adams et al (STAR Collaboration), Phys. Rev. C, 71:044906 (2005)
    [72] G. Bertsch, M. Gong, and M. Tohyama, Phys. Rev. C, 37:1896 (1988); G. Bertsch, Nucl. Phys. A, 498:173c (1989)
    [73] S. Pratt, T. Csrgo, and J. Zimnyi, Phys. Rev. C, 42:2646 (1990)
    [74] E. Witten, Phys. Rev. D, 30:272 (1984)
    [75] L. P. Csernai, J. I. Kapusta, Phys. Rev. D, 46:1379 (1992); Phys. Rev. Lett. 69:737 (1992)
    [76] R. Venugopalan and A. P. Vischer, Phys. Rev. E, 49:5849 (1994)
    [77] J. Randrup, Phys. Rev. Lett., 92:122301 (2004)
    [78] Y. Y. Ren, W. N. Zhang, J. L. Liu, Phys. Lett. B, 669:317 (2008)
    [79] Z. T. Yang, W. N. Zhang, L. Huo, J. B. Zhang, J. Phys. G, 39:015113 (2009)
    [80] G. Torrieri, B. Tomvik, I. Mishustin, Phys. Rev. C, 77:034903 (2008)
    [81] J. Takahashi, B. M. Tavares, W. L. Qian et al, Phys. Rev. Lett., 103:242301 (2009)
    [82] K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, and K. Mikhailov, Phys. Rev. C, 82:044904 (2010)
    [83] B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett., 106:042301 (2011)
    [84] A. Adare, M. Luzum, H. Petersen, Phys. Scripta, 87:048001 (2013); arXiv:1212.5388[nucl-th]
    [85] S. Voloshin and Y. Zhang, Z. Phys. C, 70:665 (1996)
    [86] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C, 58:1671 (1998)
    [87] S. S. Adler et al (PHENIX Collaboration), Phys. Rev. C, 69:034909 (2004)
    [88] J. Adams et al (STAR Collaboration), Phys. Rev. Lett., 92:112301 (2004)
    [89] B. Abelev et al (ALICE Collaboration), Phys. Rev. C, 88:044910 (2013)
    [90] J. Adams et al (STAR Collaboration), Phys. Rev. C, 72, 014904 (2005)
    [91] R. Snellings (for ALICE Collaboration), J. Phys. G, 38:124013 (2011); M. Krzewicki (for ALICE Collaboration), J. Phys. G, 38:124047 (2011)
    [92] F. Noferini et al (ALICE Collaboration), Nucl. Phys. A, 904:483c (2013)
    [93] J. Yang and W. N. Zhang, Nucl. Sci. Tech., 27:147 (2016)
    [94] M. Gyulassy, S. K. Kauffmann, and Lance W. Wilson, Phys. Rev. C, 20:2267 (1979)
    [95] S. Pratt, Phys. Rev. D, 33:72 (1986)
    [96] Y. M. Liu, D. Beavis, S. Y. Chu et al, Phys. Rev. C, 34:1667 (1986)
    [97] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Annu. Rev. Nucl. Part. Sci., 55:357 (2005)
    [98] L. I. Schiff, Quantum Mechanics (New York:McGRAW-HILL Book Company, 1955), Sec. 21
    [99] J. Adam et al (ALICE Collaboration), Phys. Rev. C, 93:024905 (2016)
    [100] S. Chapman, P. Scotto, and U. Heinz, Phys. Rev. Lett., 74:4400 (1995)
    [101] S. Chapman, R. Nix, and U. Heinz, Phys. Rev. C, 52:2694 (1995)
    [102] M. A. Lisa et al (E895 Collaboration), Phys. Rev. Lett., 84:2798 (2000)
    [103] M. A. Lisa et al (E895 Collaboration), Phys. Lett. B, 496:1 (2000)
    [104] U. A. Wienemann and U. Heinz, Phys. Rep., 319:145 (1999)
    [105] C. Y. Wong, Introduction to High-Energy Heavy-Ion Collisions (Singapore:World Scientific, 1994), Chap. 17
    [106] R. M. Weiner, Phys. Rep., 327:249 (2000)
    [107] M. Herrmann and G. F. Bertsch, Phys. Rev. C, 51:328 (1995)
    [108] H. J. Yin, J. Yang, W. N. Zhang, and L. L. Yu, Phys. Rev. C, 86:024914 (2012)
  • 加载中

Get Citation
Jing Yang, Wei-Ning Zhang and Yan-Yu Ren. Pion transverse-momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss interferometry in a viscous granular source model[J]. Chinese Physics C, 2017, 41(8): 084102. doi: 10.1088/1674-1137/41/8/084102
Jing Yang, Wei-Ning Zhang and Yan-Yu Ren. Pion transverse-momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss interferometry in a viscous granular source model[J]. Chinese Physics C, 2017, 41(8): 084102.  doi: 10.1088/1674-1137/41/8/084102 shu
Milestone
Received: 2017-02-23
Fund

    Supported by National Natural Science Foundation of China (11675034,11275037)

Article Metric

Article Views(1479)
PDF Downloads(57)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Pion transverse-momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss interferometry in a viscous granular source model

    Corresponding author: Wei-Ning Zhang,
  • 1.  School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
  • 2. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
  • 3. Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
  • 4.  Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
Fund Project:  Supported by National Natural Science Foundation of China (11675034,11275037)

Abstract: We examine the evolution of quark-gluon plasma (QGP) droplets with viscous hydrodynamics and analyze the pion transverse-momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss (HBT) interferometry in a granular source model consisting of viscous QGP droplets. The shear viscosity of the QGP droplet speeds up and slows down the droplet evolution in the central and peripheral regions of the droplet, respectively. The effect of the bulk viscosity on the evolution is negligible. Although there are viscous effects on the droplet evolution, the pion momentum spectrum and elliptic flow change little for granular sources with and without viscosity. On the other hand, the influence of viscosity on HBT radius Rout is considerable. It makes Rout decrease in the granular source model. We determine the model parameters of granular sources using the experimental data of pion transverse-momentum spectrum, elliptic flow, and HBT radii together, and investigate the effects of viscosity on the model parameters. The results indicate that the granular source model may reproduce the experimental data of pion transverse-momentum spectrum, elliptic flow, and HBT radii in heavy-ion collisions of Au-Au at √sNN=200 GeV and Pb-Pb at √sNN=2.76 TeV in different centrality intervals. The viscosity of the droplet leads to an increase in the initial droplet radius and a decrease of the source shell parameter in the granular source model.

    HTML

Reference (108)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return